
Optimizing Runtime Performance of
Dynamically Typed Code

Jose Quiroga Alvarez

PhD Supervisor

Dr. Francisco Ort́ın Soler

Department of Computer Science

University of Oviedo

A thesis submitted for the degree of

Doctor of Philosophy

Oviedo, Spain

April 2016

Acknowledgements

This work has been partially funded by the Spanish Department of
Science and Technology, under the National Program for Research,
Development and Innovation. The main project was Obtaining Adapt-
able, Robust and Efficient Software by including Structural Reflection
to Statically Typed Programming Languages (TIN2011-25978). The
work is also part of the project entitled Improving Performance and
Robustness of Dynamic Languages to develop Efficient, Scalable and
Reliable Software (TIN2008-00276).

I was awarded a FPI grant by the Spanish Department of Science
and Technology. The objective of these grants is to support gradu-
ate students wishing to pursue a PhD degree associated to a specific
research project. This PhD dissertation is associated to the project
TIN2011-25978 (previous paragraph).

This work has also been funded by Microsoft Research, under the
project entitled Extending dynamic features of the SSCLI, awarded in
the Phoenix and SSCLI, Compilation and Managed Execution Request
for Proposals.

Part of the research discussed in this dissertation has also been funded
by the European Union, through the European Regional Development
Funds (ERDF); and the Principality of Asturias, through its Science,
Innovation Plan (grant GRUPIN14-100).

Abstract

Dynamic languages are widely used for different kinds of applications
including rapid prototyping, Web development and programs that
require a high level of runtime adaptiveness. However, the lack of
compile-time type information involves fewer opportunities for com-
piler optimizations, and no detection of type errors at compile time.
In order to provide the benefits of static and dynamic typing, hybrid
typing languages provide both typing approaches in the very same
programming language. Nevertheless, dynamically typed code in this
languages still shows lower performance and lacks early type error
detection.

The main objective of this PhD dissertation is to optimize runtime
performance of dynamically typed code. For this purpose, we have
defined three optimizations applicable to both dynamic and hybrid
typing languages. The proposed optimizations have been included in
an existing compiler to measure the runtime performance benefits.

The first optimization is performed at runtime. It is based on the
idea that the dynamic type of a reference barely changes at runtime.
Therefore, if the dynamic type is cached, we can generate specialized
code for that precise type. When there is a cache hit, the program
will perform close to its statically typed version. For this purpose,
we have used the DLR of the .Net framework to optimize all the
existing hybrid typing languages for that platform. The optimizations
are provided as a binary optimization tool, and included in an existing
compiler. Performance benefits range from 44.6% to 11 factors.

The second optimization is aimed at improving the performance of
dynamic variables holding different types in the same scope. We have
defined a modification of the classical SSA transformations to improve
the task of type inference. Due to the proposed algorithms, we infer
one single type for each local variable. This makes the generated code
to be significantly faster, since type casts are avoided. When a refer-
ence has a flow sensitive type, we use union types and nested runtime
type inspections. Since we avoid the use of reflection, execution time
is significantly faster than existing approaches. Average performance
improvements range from 6.4 to 21.7 factors. Besides, the optimized
code consumes fewer memory resources.

The third optimization is focused on the improvement of multiple
dispatch for object-oriented languages. One typical way of providing
multiple dispatch is resolving method overload at runtime: depend-

ing on the dynamic types of the arguments, the appropriate method
implementation is selected. We propose a multiple dispatch mech-
anism based on the type information of the arguments gathered by
the compiler. With this information, a particular specialization of the
method is generated, making the code to run significantly faster than
reflection or nested type inspection. This approach has other benefits
such as better maintainability and readability, lower code size, pa-
rameter generalization, early type error detection and fewer memory
resources.

Keywords

Dynamic typing, runtime performance, optimization, hy-
brid dynamic and static typing, Dynamic Language Run-
time, Static Single Assignment, SSA Form, multiple dis-
patch, multi-method, union types, reflection, StaDyn, .Net

Contents

Contents iv

List of Figures vi

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Structure of the document . 4

2 Related Work 5
2.1 The StaDyn programming language 5

2.1.1 Type inference . 6
2.1.2 Duck typing . 6
2.1.3 Dynamic and static typing 8
2.1.4 Implicitly typed parameters 9
2.1.5 Implicitly typed attributes 10
2.1.6 Alias analysis for concrete type evolution 11
2.1.7 Implementation . 11

2.2 Hybrid static and dynamic typing languages 12
2.3 Optimizations of dynamically typed virtual machines 15
2.4 Optimizations based on the SSA form 16
2.5 Multiple dispatch (multi-methods) 17

3 Optimizing Dynamically Typed Operations with a Type Cache 20
3.1 The Dynamic Language Runtime 21
3.2 Optimization of .Net hybrid typing languages 22

3.2.1 VB optimizations . 24
3.2.2 Boo optimizations . 29
3.2.3 Cobra optimizations . 29
3.2.4 Fantom optimizations . 29
3.2.5 StaDyn optimizations . 33

3.3 Implementation . 33
3.3.1 Binary program transformation 33
3.3.2 Compiler optimization phase 34

3.4 Evaluation . 35
3.4.1 Methodology . 35

3.4.1.1 Selected languages 36
3.4.1.2 Selected benchmarks 36

iv

Contents

3.4.1.3 Data analysis . 37
3.4.1.4 Data measurement 39

3.4.2 Start-up performance . 39
3.4.2.1 Discussion . 40

3.4.3 Steady-State performance 41
3.4.3.1 Discussion . 41

3.4.4 Memory consumption . 42
3.4.4.1 Discussion . 43

4 Optimizations based on the SSA form 45
4.1 SSA form . 47
4.2 SSA form to allow multiple types in the same scope 48

4.2.1 Basic blocks . 49
4.2.2 Conditionals statements 51
4.2.3 Loop statements . 52
4.2.4 Union types . 53
4.2.5 Implementation . 55

4.3 Evaluation . 56
4.3.1 Methodology . 56
4.3.2 Start-up performance . 57
4.3.3 Steady-state performance 59
4.3.4 Memory consumption . 60
4.3.5 Compilation time . 60

5 Optimizing Multimethods with Static Type Inference 62
5.1 Existing approaches . 63

5.1.1 The Visitor design pattern 63
5.1.2 Runtime type inspection 65
5.1.3 Reflection . 66
5.1.4 Hybrid typing . 67

5.2 Static type checking of dynamically typed code 68
5.2.1 Method specialization . 69

5.3 Evaluation . 71
5.3.1 Methodology . 71
5.3.2 Runtime performance . 72
5.3.3 Memory consumption . 77

6 Conclusions 79
6.1 Future Work . 80

A Evaluation data of the DLR optimizations 81

B Evaluation data of the SSA optimizations 85

C Evaluation data for the multiple dispatch optimizations 89

D Publications 95

References 97

v

List of Figures

1.1 Hybrid static and dynamic typing example in C#. 2

2.1 Type inference of var and dynamic references. 6
2.2 Static duck typing. 7
2.3 Static var reference. 8
2.4 Implicitly typed parameters. 9
2.5 Implicitly typed attributes. 10
2.6 Alias analysis. 11

3.1 Example VB program with (right-hand side) and without (left-
hand side) DLR optimizations. 21

3.2 Architecture of the two optimization approaches. 24
3.3 Transformation of common expressions. 25
3.4 Transformation of common type conversions. 26
3.5 Transformation of indexing operations. 27
3.6 Transformation of method invocation and field access. 28
3.7 Optimization of Boo basic expressions and type conversions. . . . 30
3.8 Optimization of Boo invocations, indexing and member access. . . 31
3.9 Cobra optimization rules. 32
3.10 Fantom optimization rules. 33
3.11 StaDyn optimization rules. 34
3.12 Class diagram of the binary program transformation tool. 35
3.13 Start-up performance improvement for Pybench. 40
3.14 Start-up performance improvement. 41
3.15 Steady-state performance improvement. 42
3.16 Memory consumption increase. 43

4.1 The dynamically typed reference number holds different types in
the same scope. 45

4.2 Type conversions must be added when number is declared as object. 46
4.3 A SSA transformation of the code in Figure 4.1. 46
4.4 CFG for the code in Figure 4.5 (left) and its SSA form (right). . . 47
4.5 An iterative Fibonacci function using dynamically typed variables. 48
4.6 SSA transformation of a sequence of statements. 50
4.7 SSA transformation of statements. 50
4.8 SSA transformation of expressions. 50
4.9 Original CFG of an if-else statement (left) and its SSA form

(right). 51

vi

List of Figures

4.10 SSA transformation of if-else statements. 52
4.11 Original CFG of a while statement (left), and intermediate SSA

representation (middle) and its final SSA form (right). 53
4.12 SSA transformation of while statements. 54
4.13 A simplification of the StaDyn compiler architecture [1]. 55
4.14 Type inference of the SSA form. 55
4.15 Start-up performance of Pybench, relative to StaDyn without SSA. 58
4.16 Start-up performance of all the benchmarks, relative to StaDyn

without SSA. 58
4.17 Steady-state performance of all the benchmarks, relative to C#. . 59
4.18 Memory consumption. 60
4.19 Compilation time relative to StaDyn without SSA. 61

5.1 Modularizing each operand and operator type combination. 63
5.2 Multiple dispatch implementation with the statically typed ap-

proach (ellipsis obviates repeated members). 64
5.3 Multiple dispatch implementation using runtime type inspection

with the is operator (ellipsis is used to obviate repeating code). . 66
5.4 Multiple dispatch implementation using reflection. 67
5.5 Multiple dispatch implementation with the hybrid typing approach. 68
5.6 Multiple dispatch implementation with StaDyn approach. 69
5.7 StaDyn program specialized for the program in Figure 5.6. 70
5.8 Start-up performance (in ms) for 5 different concrete classes, in-

creasing the number of iterations; linear (left) and logarithmic
(right) scales. 73

5.9 Steady-state performance (in ms) for 5 different concrete classes,
increasing the number of iterations; linear (left) and logarithmic
(right) scales. 74

5.10 Start-up performance (in ms) for 100K iterations, increasing the
number of concrete classes; linear (left) and logarithmic (right)
scales. 75

5.11 Steady-state performance (in ms) for 100K iterations, increasing
the number of concrete classes; linear (left) and logarithmic (right)
scales. 76

5.12 Memory consumption (in MB) for 100K iterations, increasing the
number of concrete classes. 78

vii

Chapter 1

Introduction

1.1 Motivation

Dynamic languages have turned out to be suitable for specific scenarios such as
rapid prototyping, Web development, interactive programming, dynamic aspect-
oriented programming, and runtime adaptive software [2]. An important benefit
of these languages is the simplicity they offer to model the dynamicity that is
sometimes required to build high context-dependent software. Some features
provided by most dynamically typed languages are meta-programming, variables
with different types in the same scope, high levels of reflection, code mobility,
and dynamic reconfiguration and distribution [3].

For example, in the Web development scenario, Ruby [4] is used for the rapid
development of database-backed Web applications with the Ruby on Rails frame-
work [5]. This framework has confirmed the simplicity of implementing the DRY
(Do not Repeat Yourself) [6] and the Convention over Configuration [5] princi-
ples in a dynamic language. Nowadays, JavaScript [7] is being widely employed
to create interactive Web applications [8], while PHP is one of the most pop-
ular languages for developing Web-based views. Python [9] is used for many
different purposes; two well-known examples are the Zope application server [10]
(a framework for building content management systems, intranets and custom
applications) and the Django Web application framework [11].

On the contrary, the type information gathered by statically typed languages is
commonly used to provide two major benefits compared with the dynamic typing
approach: early detection of type errors and, usually, significantly better runtime
performance [12]. Statically typed languages offer the programmer the detection
of type errors at compile time, making it possible to fix them immediately rather
than discovering them at runtime –when the programmer efforts might be aimed
at some other task, or even after the program has been deployed [13]. Moreover,
avoiding the runtime type inspection and type checking performed by dynamically
typed languages commonly involve a runtime performance improvement [14, 15].

Since both approximations offer different benefits, some existing languages
provide hybrid static and dynamic typing, such as Objective-C, Visual Basic,

1

1.1. Motivation

class Triangle {

 internal int[] edges;

 public Triangle(int edge1, int edge2, int edge3) {
 this.edges = new int[] { edge1, edge2, edge3};

 }

}

class Square {

 internal int[] edges;

 public Square(int edge) {

 this.edges = new int[] { edge, edge, edge, edge};

 }

}

class Circumference {
 internal int radius;

 public Circumference(int radius) {

 this.radius = radius;

 }

}

class Program {

 static double TrianglePerimeter(Triangle poly) {

 double result = 0;

 foreach (var edge in poly.edges)

 result += edge;

 return result;
 }

 static double PolygonPerimeter(dynamic poly){
 double result = 0;

 foreach(var edge in poly.edges)

 result += edge;

 return result;

 }

 static void Main() {

 double perimeter;

 Triangle triangle = new Triangle(3, 4, 5);

 Square square = new Square(3);

 Circumference circ = new Circumference(4);

 perimeter = TrianglePerimeter(triangle);

 // compiler error

 perimeter = TrianglePerimeter(square);

 perimeter = PolygonPerimeter(triangle);

 perimeter = PolygonPerimeter(square);

 // runtime error

 perimeter = PolygonPerimeter(circ);

 }

}

Figure 1.1: Hybrid static and dynamic typing example in C#.

Boo, StaDyn, Fantom and Cobra. Additionally, the Groovy dynamically typed
language has recently become hybrid, performing static type checking when the
programmer writes explicit type annotations (Groovy 2.0) [16]. Likewise, the
statically typed C# language has included the dynamic type in its version 4.0 [17],
indicating the compiler to postpone type checks until runtime.

The example hybrid statically and dynamically typed C# code in Figure 1.1
shows the benefits and drawbacks of both typing approaches. The statically
typed TrianglePerimeter method computes the perimeter of a Triangle as
the sum of the length of its edges. The first invocation in the Main function is
accepted by the compiler; whereas the second one, which passes a Square object
as argument, produces a compiler error. This error is produced even though the
execution would produce no runtime error, because the perimeter of a Square can
also be computed as the sum of its edges. In this case, the static type system is
too restrictive, rejecting programs that would run without any error.

The PolygonPerimeter method implements the same algorithm but using
dynamic typing. The poly parameter is declared as dynamic, meaning that type
checking is postponed until runtime. The flexibility of dynamic typing supports
duck typing [18]: any object that provides a collection of numeric edges can be
passed as a parameter to PolygonPerimeter. Therefore, the first two invocations
to PolygonPerimeter are executed without any error. However, the compiler
does not type-check the poly parameter, and hence the third invocation to this
method produces a runtime error (the class Circumference does not provide an
edges property).

As mentioned, the poly.edges expression in the PolygonPerimeter method
is an example of duck typing, an important feature of dynamic languages. C#,
and most hybrid languages for .Net and Java, implement this runtime type
checking using introspection, causing a performance penalty [18]. In general, the
runtime type checks implemented by dynamic languages generally cause runtime

2

1.2. Contributions

performance costs [19]. To minimize the use of these introspection services, some
techniques may be used.

In this dissertation, we propose some different techniques to optimize dynam-
ically typed code. We discuss the use of runtime caches for optimizing typical
dynamically typed operations, gathering type information of dynamically typed
variables, using the Single Static Assignment (SSA) form to allow variables with
different types in the same scope, and performing method specialization to op-
timize multi-methods. We have included these optimizations in the open source
StaDyn programming language for the .Net platform.

1.2 Contributions

These are the major contributions of this dissertation:

1. Optimization of the common dynamically typed operations of dynamic typ-
ing languages using a runtime cache. This optimization is based on the
idea that most of the times a dynamically typed variable holds the same
dynamic type. If that is the case, we can cache the type and avoid the use
of reflection, obtaining important performance gains.

2. Using SSA transformations to efficiently support variables with different
types in the same scope. These transformations are implemented in the
StaDyn compiler. Similar to the Java platform, .Net does not allow one
variable to have different types in the same scope (object must be used).
The code generated by our compiler performs significantly better than the
use of dynamic in C#, avoiding unnecessary type conversions and reflective
invocations.

3. Optimization of multiple dispatch methods by using information gathered
from dynamically typed code. Multiple dispatch allows determining the
actual method to be executed, depending on the dynamic types of its argu-
ments. Using dynamic typing, the implementation of multiple dispatch is
an easy task for those languages that provide method overload resolution
at runtime. Instead of using introspection, we propose the generation of
nested type method inspections depending on the possible types a dynam-
ically typed variable may hold.

4. Including the optimizations in a full-fledged programming language. The
proposed optimizations are included in the existing StaDyn programming
language. This language is an extension of C# that gathers type informa-
tion of dynamic references. This type information is used to perform some
of the optimizations detailed in this PhD dissertation.

5. A tool to optimize binary .Net files compiled from the existing hybrid
typing languages. That tool takes binary .Net code and produces new
binary files with the same behavior and better runtime performance. The
files to be optimized should be generated from one of the existing hybrid
languages for the .Net platform.

3

1.3. Structure of the document

6. Evaluation of runtime performance and memory consumption. A compar-
ison of all the existing hybrid static and dynamic typing languages imple-
mented for the .Net platform is presented. This comparison empirically
shows the benefits and drawbacks of our optimizations.

1.3 Structure of the document

This PhD thesis is structured as follows. The next chapter presents related work,
including a brief description of the StaDyn language (Section 2.1). Chapter 3
describes the first optimization, based on caching the common dynamically typed
operations. Chapter 4 presents the second optimization, a set of SSA transfor-
mations to efficiently support variables with different types in the same scope.
Chapter 5 describes the last optimization: multiple dispatch using information
gathered for dynamic references. Different evaluations of runtime performance
and memory consumption are presented in Sections 3.4, 4.3 and 5.3. Chapter 6
presents the conclusions and future work.

Appendixes A, B and C contain the complete tables of execution times and
memory consumptions measured. Appendix D presents the list of publications
derived from this PhD.

4

Chapter 2

Related Work

This section describes the existing research works related to this PhD disser-
tation. We start describing the StaDyn programming language, since that is
the language implementation where we included all the proposed optimizations.
Then, we describe the existing optimizations for hybrid static and dynamic lan-
guages (StaDyn is a hybrid typing language). Since we define optimizations
performed at runtime, we also discuss the existing optimizations included in cur-
rent dynamically typed platforms (Section 2.3). We then analyze the use of SSA
form to obtain runtime performance optimizations. Finally, Section 2.5 describes
the existing works in optimizing multi-methods.

2.1 The StaDyn programming language

The StaDyn programming language is an extension of C# 3.0 [20]. It extends
the behavior of the var and dynamic keywords to provide both static and dy-
namic typing. We have used StaDyn because we know the internals of its imple-
mentation, but the work presented in this dissertation could be applied to any
object-oriented hybrid typing language. In StaDyn, the type of references can
be explicitly declared, while it is also possible to use the var keyword to declare
implicitly typed references. StaDyn includes this keyword as a new type (it can
be used to declare local variables, fields, method parameters and return types),
whereas C# only provides its use in the declaration of initialized local references.
Therefore, var references in StaDyn are more powerful than implicitly typed
local variables in C#.

The dynamism of var references can be placed in a separate file (an XML
document) [21]. The programmer does not need to manipulate these XML docu-
ments directly, leaving this task to the StaDyn IDE [22]. When the programmer
(un)sets a reference as dynamic, the IDE transparently modifies the correspond-
ing XML file. Depending on the dynamism of a var reference, type checking and
type inference is performed pessimistically (for static references) or optimistically
(for dynamic ones) –detailed in Section 2.1.3. Since the dynamism concern is not
explicitly stated in the source code, StaDyn facilitates the conversion of dynamic

5

2.1.2. Duck typing

class Test {

 public static void Main() {

 var v;

 dynamic myObject;

 v = new int[10];

 int sum = 0;
 for (int i = 0; i < 10; i++) {

 v[i] = i+1;

 sum += v[i]; // No compiler error

 }

 myObject = "StaDyn";

 System.Console.Write(myObject*2); // Compiler error

 }

}

Figure 2.1: Type inference of var and dynamic references.

references into static ones, and vice versa [23]. This separation facilitates the
process of turning rapidly developed prototypes into final robust and efficient ap-
plications [24]. It is also possible to make parts of an application more adaptable,
maintaining the robustness and runtime performance of the rest of the program.

C# 4.0 added the dynamic type to its static type system, supporting the safe
combination of dynamically and statically typed code [17]. In C#, type checking
of the references defined as dynamic is deferred until runtime. Following the C#
approach, StaDyn also added dynamic to the language. The behavior is exactly
the same as using a var variable set as dynamic in the XML document described
in the previous paragraph.

2.1.1 Type inference

StaDyn provides type inference (type reconstruction) for var and dynamic vari-
ables. It defines an implicit parametric polymorphic type system [25], imple-
menting the Hindley-Milner type inference algorithm to infer the types of local
variables [26]. This algorithm was modified to perform type reconstruction of
var and dynamic parameters and attributes (fields) [27].

The StaDyn program shown in Figure 2.1 is an example of this capability.
The v variable is declared with no type, and the StaDyn compiler infers its
type to int[]. Therefore, the use of v to compute sum produces no compiler
error. Similarly, the type of myObject is inferred to string. Thus, the StaDyn
compiler detects an error in the myObject*2 expression, even though myObject

was declared as dynamic.

2.1.2 Duck typing

Duck typing1 [4] is a property of dynamic languages meaning that an object is
interchangeable with any other object that implements the same dynamic inter-

1It receives its name from the idiom if it walks like a duck and quacks like a duck, it must
be a duck.

6

2.1.2. Dynamic and static typing

 var reference;

 if (new Random().NextDouble() < 0.5)

 reference = new StringBuilder("A string builder");

 else

 reference = "A string";

 Console.WriteLine(reference.Length);

Figure 2.2: Static duck typing.

face, regardless of whether those objects have a related inheritance hierarchy or
not. Duck typing is a powerful feature offered by most dynamic languages.

There exist statically typed programming languages such as Scala [28] or
OCaml [29] that offer structural typing, providing part of the benefits of duck
typing. However, the structural typing implementation of Scala is not implicit,
forcing the programmer to explicitly declare part of the structure of types. In
addition, intersection types should be used when more than one operation is ap-
plied to a variable, making programming more complicated. Although OCaml
provides implicit structural typing, variables should only have one type in the
same scope, and this type is the most general possible (principal) type [30]. Prin-
cipal types are more restrictive than duck typing, because they do not consider
all the possible (concrete) values a variable may hold.

The StaDyn programming language offers static duck typing. The benefit
provided by StaDyn is not only that it supports (implicit) duck typing, but also
that it is provided statically. Whenever a var or dynamic reference points to a
potential set of objects that implement a public m method, the m message could
be safely passed. These objects do not need to implement a common interface or
a (abstract) class with the m method. Since this analysis is performed at compile
time, the programmer benefits from both early type error detection and runtime
performance.

The static duck typing of StaDyn makes its static type system flow-sensitive.
This means that it takes into account the flow context of each var reference. It
gathers concrete type information (opposite to classic abstract type systems) [31]
knowing all the possible types a var or dynamic reference may hold. Instead of
declaring a reference with an abstract type that embraces all the possible concrete
values, the compiler infers the union of all possible concrete types a var reference
may point to. Notice that different types depending on flow context could be
inferred for the same reference, using the type inference mechanism mentioned
above.

Code in Figure 2.2 shows this feature. reference may point to either a
StringBuilder or a String object. Both objects have the Length property
and, therefore, it is statically safe to access to this property. It is not necessary
to define a common interface or class to pass this message.

The key technique used to obtain this concrete-type flow-sensitiveness is union
types [32]. Concrete types are first obtained by the abovementioned unification
algorithm (applied in assignments and method calls). Whenever a branch is
detected, a union type is created with all the possible concrete types inferred.

7

2.1.3. Dynamic and static typing

using System;

using System.Text;

public class Test {

 public static int g(string str) {

 dynamic reference;

 switch(Random.Next(1,3)) {

 case 1: reference=new StringBuilder(str); break;

 case 2: reference = str; break;

 default: reference = new Exception(str);

 }

 return reference.Lenght; // Compiler error

 }

}

 Figure 2.3: Static var reference.

Type checking of union types depends on the dynamism concern (next section).

2.1.3 Dynamic and static typing

StaDyn permits the use of both statically and dynamically typed references.
Explicitly, the programmer may use, respectively, the var and the dynamic key-
words. Depending on their dynamism, type checking and type inference would
be more pessimistic (static) or optimistic (dynamic), but the dynamic semantics
of the programming language is not changed (i.e., program execution does not
depend on its dynamism).

The source code in Figure 2.3 defines a g method, where reference may
point to a StringBuilder, String or Exception object. However, even though
reference is declared as dynamic, the compiler shows the following error mes-
sage:

Error No Type Has Member (Semantic error). The dynamic type
‘
∨

([Var(8)=StringBuilder] ,[Var(7)=String] ,[Var(6)=Exception])’ has
no valid type type with ‘Lenght’ member.

The error is produced because no public Lenght property (it is misspelled)
is implemented in the String, StringBuffer or Exception classes. This mes-
sage shows how type-checking is performed at compile time, even in dynamic
scenarios, providing early type error detection. This feature improves the way
most dynamic languages work. For example, the erroneous use of the dynamic

myObject reference in Figure 2.1 is detected by the StaDyn compiler; whereas
C# shows no type error at compile time, but the program shows a type error at
runtime.

In StaDyn, setting a reference as dynamic does not imply that every message
could be passed to that reference; static type-checking is still performed. The
major change is that the type system is more optimistic when dynamic references
are used. The dynamism concern implies a modification of type checking over
union types. If the implicitly typed reference inferred with a union type is declared

8

2.1.4. Implicitly typed parameters

public static var upper(var parameter) {

 return parameter.ToUpper();

}

public static var getString(var parameter) {

 return parameter.ToString();

}

Figure 2.4: Implicitly typed parameters.

as var, type checking is performed over all its possible concrete types. However,
if the reference is dynamic, type checking is performed over those concrete types
that do not produce a type error; if none exists, then a type error is shown –this
semantics is formalized in [33].

Once the programmer founds out the misspelling error, he or she will modify
the source code to correctly access the Length property, and the executable file
will be generated. In this case, the compiler accepts passing the Length message,
because both String and StringBubuilder (but not Exception) types offer that
property. With dynamic references, type checking succeeds if at least one of the
types that compose the union type is valid. The actual type will be discovered at
runtime, checking that the Length property can be actually accessed, or throwing
MissingMethodException otherwise.

The generated g function program will not produce any runtime type error
because the random number that is generated will be either 1 or 2. However, if the
programmer, once the prototype is tested, wants to compile the application with
static typing, dynamic may be replaced with var. In this case, the compilation of
the g method will produce an error message saying that Length is not a property
of Exception. The programmer should then modify the source code to compile
this program with the robustness and efficiency of a static type system, but
without requiring to translate the source code to a new programming language
since StaDyn provides both approaches.

2.1.4 Implicitly typed parameters

Concrete type reconstruction is not limited to local variables. StaDyn performs a
global flow-sensitive analysis of implicit var references. The result is an implicit
parametric polymorphism [25], more straightforward for the programmer than
the one offered by Java, C# (F-bounded) and C++ (unbounded) [34].

Implicitly typed parameter references cannot be unified to a single concrete
type. Since they represent any actual type of an argument, they cannot be
inferred the same way as local references. This issue is shown in the source
code of Figure 2.4. Both methods require the parameter to implement a specific
method, returning its value. In the getString method, any object could be
passed as a parameter because every object accepts the ToString message. In
the upper method, the parameter should be any object implementing a ToUpper

message. Depending on the type of the actual parameter, the StaDyn compiler
generates the corresponding compilation error.

9

2.1.5. Implicitly typed attributes

public class Node {

 private var data;

 private var next;

 public Node(var data, var next) {

 this.data = data;

 this.next = next;

 }

 public var getData() {

 return data;

 }

 public void setData(var data) {

 this.data = data;

 }

}

public class Test {

 public static void Main() {

 var node = new Node(1, 0);

 int n = node.getData();

 bool b = node.getData(); // Error

 node.setData(true);

 int n = node.getData(); // Error

 bool b = node.getData();

 }

}

Figure 2.5: Implicitly typed attributes.

For this purpose the StaDyn type system was extended to be constraint-
based [35]. Types of methods in StaDyn hold an ordered set of constraints
specifying the set of restrictions that must be fulfilled by the parameters [36]. In
our example, the type of the upper method is:

∀αβ.α→ β|α : Class (ToUpper : void→ β)

This means that the type of the parameter (α) should implement a public
ToUpper method with no parameters, and the type returned by ToUpper (β) will
be also returned by upper. Therefore, if an integer is passed to the upper method,
a compiler error is shown. However, if a string is passed instead, the compiler
not only reports no error, but also infers the resulting type as a string. Type
constraint fulfillment is, thus, part of the type inference mechanism (the concrete
algorithm can be consulted in [36]).

2.1.5 Implicitly typed attributes

StaDyn also provides the use of the var type in class fields (attributes). With
implicitly typed attribute references, it is possible to create the generic Node class
shown in Figure 2.5. The Node class can hold any data of any type. Each time
the setData method is called, the new concrete type of the parameter is saved
as the data field type. By using this mechanism, the two lines with comments
report compilation errors. This coding style is polymorphic and it is more legible
that the parametric polymorphism used in C++ and much more straightforward
than the F-bounded polymorphism offered by Java and C#. At the same time,
runtime performance is equivalent to explicit type declaration [1]. Since the
possible concrete types of var and dynamic references are known at compile time,
the compiler has more opportunities to optimize the generated code, improving
runtime performance [1].

Implicitly typed attributes extend the constraint-based behavior of parameter
references in the sense that the concrete type of the implicit object parameter
(the object used in every non-static method invocation) could be modified on a
method invocation expression. In our example, the type of the data attribute is

10

2.1. Implementation

public class List {

 private var list;

 public List(Node node) {

 this.list = node;

 }

public static void Main() {

 Node node = new Node(true, 0);

 var aList = new List(node);

 bool b1 = aList.list.getData();

 node.setData(1);

 bool b2 = aList.list.getData(); // Error

 int n = aList.list.getData();

 }

}

Figure 2.6: Alias analysis.

modified each time the setData method (and the constructor) is invoked. This
does not imply a modification of the whole Node type, only the type of the single
Node object –due to the concrete type system employed.

For this purpose, a new kind of assignment constraint was added to the type
system [36]. Each time a value is assigned to a var or dynamic field, an assignment
constraint is added to the method being analyzed. This constraint postpones the
unification of the concrete type of the attribute to be performed later, when an
actual object is used in the invocation. Therefore, the unification algorithm is
used to type-check method invocation expressions, using the concrete type of the
actual object (a detailed description of the unification algorithm can be consulted
in [36]).

2.1.6 Alias analysis for concrete type evolution

The problem of determining if a storage location may be accessed in more than
one way is called alias analysis [37]. Two references are aliased if they point
to the same object. Although alias analysis is mainly used for optimizations,
StaDyn uses it to know the concrete types of the objects a reference may point
to.

Code in Figure 2.6 uses the Node class previously shown in Figure 2.5. Initially,
the aList reference points to a node whose data is a boolean. If we get the data

inside the Node object inside the List object, we get a bool. Then, the node

is modified to hold an integer value. Repeating the previous access to the data

inside the Node object inside the List object, an int is then obtained.

The alias analysis algorithm implemented by StaDyn is type-based (uses type
information to decide alias) [38], inter-procedural (makes use of inter-procedural
flow information) [37], context-sensitive (differentiates between different calls to
the same method) [39], and may-alias (detects all the objects a reference may
point to; opposite to must point to) [40].

2.1.7 Implementation

The StaDyn programming language is implemented over the .Net Framework
platform, using C#. The compiler is a multiple-pass language processor that fol-

11

2.2. Hybrid static and dynamic typing languages

lows the Pipes and Filters architectural pattern [41]. It uses the AntLR language
processor tool to implement lexical and syntactic analysis [42]. Abstract Syntax
Trees (ASTs) are implemented following the Composite design pattern [43] and
each pass over the AST implements the Visitor design pattern [43].

The compiler implements the following AST visits: two visitors to load types
into the types table; one visitor for symbol identification [44] and another one for
type inference [45, 46]; and two visitors to generate code. The type system was
implemented following the guidelines described in [47], and the code generation
module follows the design in [24].

StaDyn generates .Net intermediate language and then assembles it to pro-
duce the binaries. At present, it uses the CLR 2.0 as the unique back-end.
However, the code generator module follows the Parallel Hierarchies design pat-
tern [24, 48] to add new back-ends, such as the DLR (Dynamic Language Run-
time) [49] (Chapter 3) and the zRotor [50] platforms.

A brief description of the StaDyn programming language has been presented
in this section. A formal specification of its type system is depicted in [36] and
its semantics is presented in [27].

2.2 Hybrid static and dynamic typing languages

There are different works aimed at optimizing hybrid static and dynamic typing
languages. The theoretical works of quasi-static typing [51], hybrid typing [52]
and gradual typing [53] perform implicit conversions between dynamically and
statically typed code, employing the subtyping relation in the case of quasi-static
and hybrid typing, and a consistency relation in gradual typing. The gradual type
system for the λ?

→ functional calculus provides the flexibility of dynamic typing
when type annotations are omitted by the programmer, and the benefits of static
typing when all the function parameters are annotated [53]. Gradual typing has
also been defined for object-based languages, showing that gradual typing and
subtyping are orthogonal and can be combined [54]. The gradually typed lambda
calculus λ?

→ was also extended with type variables, integrating unification-based
type inference and gradual typing to aid programmers in adding types to their
programs [55].

Strongtalk was one of the first programming language implementation that
included both dynamic and static typing in the same programming language.
Strongtalk is a major re-thinking of the Smalltalk-80 programming language [56].
It retains the basic Smalltalk syntax and semantics [57], but a type system
is added to provide more reliability and a better runtime performance. The
Strongtalk type system is completely optional, following the pluggable type sys-
tem approach [58]. The programmer selects the robustness and efficiency of a
static type system, or the adaptiveness and expressiveness of dynamically typed
code. This assumes that it is the programmer’s responsibility to ensure that types
are sound in regard to dynamic behavior. Type checking is performed at compile-
time, but it does not guarantee an execution without type errors. Although, its

12

2.2. Hybrid static and dynamic typing languages

type system is not completely safe, it has been used to perform performance
optimizations, implying a significant improvement.

Dylan is a high-level programming language, designed to allow efficient com-
pilation of features commonly associated with dynamic languages [59]. Dylan
permits both explicit and implicit variable declaration. It also supports two
compilation scenarios: production and interactive. In the interactive mode, all
the types are ignored and no static type checking is performed. This behavior is
similar to the one offered by dynamic languages. When the production configura-
tion is selected, explicitly typed variables are checked using a static type system.
However, types of generic references (references without type declaration) are not
inferred at compile time –they are always checked at runtime. The two modes of
compilation proposed in Dylan are aimed at converting rapidly developed proto-
types into robust and efficient production applications, reducing the changes to
be done in the source code.

Boo is an object-oriented programming language that is both statically and
dynamically typed, with a Python inspired syntax [60]. In Boo, references may
be declared without specifying its type and the compiler performs type inference.
Opposite to Python, references could only have one unique type in the same scope.
In Boo, fields and parameters could not be declared without specifying its type.
Boo offers dynamic type inference with a special type called duck. Any operation
could be performed over a duck reference –no static typing is performed. Any
dynamic reference is converted into a static one without a cast. The Boo compiler
also provides a ducky option that interprets the Object type as if it was duck.
This ducky option allows the programmer to test out the code more quickly, and
makes coding in Boo feel much more like coding in a dynamic language. So, when
the programmer has tested the application, he or she may wish to turn the ducky
option back off and add various type declarations and casts.

Visual Basic for .Net also incorporates both dynamic and static typing [61].
Its dynamic type system supports duck typing, but no static type inference is
performed over dynamic references. Every type can be converted to a dynamic
one, and vice versa. Therefore, all the type checking of dynamic references is
performed at runtime. At the same time, dynamic references do not produce any
type error at compile time. Dynamic references are declared using the Dim re-
served word and the variable identifier, omitting the As keyword and the variable
type. Function parameters and class fields can also be declared as dynamic.

Objective-C is a general-purpose object-oriented extension of the C program-
ming language [62]. It is commonly compiled into a native format, without re-
quiring any virtual machine. Objective-C has recently grown in popularity due
to its relation with the development of iOS and OS X applications. According
to the Tiobe raking [63], in March 2016 Objective-C was the 15th most used pro-
gramming language; whereas it was the 45th in March 2008. One of the main
differences with C++ is that Objective-C is hybrid statically and dynamically
typed. Method execution is based on message passing (between [and]) that
performs no static type checking (duck typing). If the object to which the message
is directed does not provide a suitable method, an NSInvalidArgumentException

13

2.3. Optimizations of dynamically typed virtual machines

is raised. Besides, Objective-C also provides an id type to postpone the static
type checking until runtime.

Thorn is a programming language that allows the combination of dynamically
and statically typed code [64]. Thorn offers like types, an intermediate point
between static and dynamic types [65]. Occurrences of like types variables are
checked statically within their scope but, as they may be bound to dynamic val-
ues, their usage must be still checked at runtime. like types increase the robust-
ness of the Thorn programming language, and programs developed using like

types have been assessed to be about 3x and 6x faster than using dynamic [65].

C# 4.0 added the dynamic type to its static type system, supporting the safe
combination of dynamically and statically typed code. In C#, type checking of
the references defined as dynamic is deferred until runtime [17]. This hybrid type
system was formalized by Bierman et al., defining a core fragment of C# that is
translated to a simplification of the DLR [17]. The operational semantics of the
target language reuse the compile-time typing and resolution rules, implying that
the dynamic code fragments are type-checked and resolved using the same rules
as the statically typed code [17]. The cache implemented by the DLR provides
significant runtime performance benefits compared to the use of reflection [66].

Cobra is another hybrid static and dynamic typing programming language for
the .Net platform [67]. The language is compiled to .Net assemblies. Although
it is object oriented, it also supports functional features such as lambda expres-
sions, closures, list comprehensions and generators. It provides first class support
of unit tests and contracts. The way Cobra provides dynamic typing is similar
to C# 4.0, offering a new dynamic type. Any expression is implicitly coerced to
dynamic type, and the other way round.

The Fantom programming language generates both JVM and .Net code, pro-
viding a hybrid dynamic and static type system [68]. Instead of adding a new
type, dynamic typing is provided with the -> dynamic invocation operator. Un-
like the dot operator, the dynamic invocation operator does not perform compile-
time checking. In order to obtain duck typing over language operators, operators
can be invoked as if they were methods. For instance, to evaluate a+b with dy-
namic typing, the Fantom programmer writes a->plus(b). The returned type is
the object top type (Obj in Fantom), so dynamically typed expressions are not
implicitly converted into statically typed ones.

Groovy is a dynamically typed language for the Java platform. Groovy has
included static typing in its version 2.0 [16]. The programmer can write ex-
plicit type annotations in Groovy 2.0, and force static type checking with the
@TypeChecked and @CompileStatic annotations. If that is the case, some type
errors are detected by the compiler, and significantly better runtime performance
is obtained [69].

14

2.3. Optimizations of dynamically typed virtual machines

2.3 Optimizations of dynamically typed virtual

machines

Other research works are aimed at optimizing some specific features of dynamic
languages at the virtual machine level. Smalltalk is a class-based dynamically
typed programming language [57]. Although the initial implementations were
based on byte-code interpreters, some later versions included JIT compilation
to native code (e.g., VisualWorks, VisualAge and Digital) [70]. JIT compilation
provided important performance benefits, making VisualWorks to be, on average,
3 times faster than GNU Smalltalk [3].

Self is a dynamic prototype-based object-oriented language supported by a
JIT-compiler virtual machine [71]. When a dynamic method is executed, run-
time type information is gathered to perform type specialization of method in-
vocations, using the specific types inferred for each argument [72]. The overhead
of dynamically bound message passing is reduced by means of inline caches [70],
introducing polymorphic inline caches (PIC) for polymorphic invocations [73].
Some other adaptive optimization strategies where implemented to improve the
performance of hotspot functions while the program is running [74].

These JIT-compiler adaptive optimizations have been recently added to Java-
Script virtual machines. V8 is the Google JavaScript engine used in Chrome,
which can run standalone and embedded into C++ applications [75]. V8 uses a
quick response JIT compiler to generate native code. For hotspot functions de-
tected at runtime, a high performance JIT compiler applies aggressive optimiza-
tions. These optimizations include inline caches, type feedback, customization,
control flow graph optimizations and dead code elimination [75].

SpiderMonkey is the new JavaScript engine of Mozilla, currently included in
the Firefox Web browser and the GNOME 3 desktop [76]. It uses three opti-
mization levels: an interpreter, the baseline JIT-compiler, and the IonMonkey
compiler for more powerful optimizations. The slow interpretation collects profil-
ing and runtime type information. The baseline compiler generates binary code
dynamically, collecting more accurate type information and applying basic opti-
mizations. Finally, IonMonkey is only triggered for hotspot functions, providing
optimizations such as type specialization, function inlining, linear-scan register
allocation, dead code elimination, and loop-invariant code motion [76].

zRotor is an extension of the .Net SSCLI virtual machine implementa-
tion that provides JIT-compilation of the structural reflective primitives provided
by dynamic languages [3]. A hybrid class- and prototype-based object-oriented
model is formally described, and then implemented as part of a shared source
release of the .Net CLI [18]. On average, zRotor performs 4 times better than
the DLR, consuming 65% fewer memory resources [77].

The work of Würthinger et al. modifies an implementation of the Java Virtual
Machine to allow arbitrary changes to the definition of loaded classes, providing
dynamic inheritance [78]. The static type checking of Java is maintained; and the
dynamic verification of the current state of the program ensures the type safety

15

2.4. Optimizations based on the SSA form

of the changes in the class hierarchy. Runtime performance after code evolution
implies an approximate performance penalty of 15%, but the slowdown of the next
run after code evolution was measured to be only about 3% [79]. This system is
currently the reference implementation of the hot-swapping feature (JSR 292) of
the Da Vinci Machine project [80].

2.4 Optimizations based on the SSA form

This PhD dissertation uses the Single Static Assignment (SSA) form to optimize
the use of local variables with different types in the same scope (Chapter 4).
The SSA form is a property of a program representation (commonly intermediate
representations), which requires that each variable is assigned exactly once, and
every variable is defined before it is used. SSA form was developed by Wegman,
Zadeck, Alpern and Rosen for efficient computation of dataflow problems [81,
82]. The SSA form is used in global value numbering, congruence of variables,
aggressive dead-code removal and constant propagation with conditional branches
[83]. An efficient computation of the SSA form was developed by Ron Cytron et
al. using dominance frontiers [84].

These popular optimizations have been included in both commercial and open-
source compilers [85]. They use the SSA form as an intermediate representation
during the optimization phases. Sometimes, some optimizations may introduce
new variables, and hence additional transformations are performed to preserve
the SSA form [86, 87].

The SSA form is also used in Just-in-time (JIT) compilation. In this case,
the transformation to the SSA form is done at runtime [88, 89]. Examples of
JIT compilers that use the SSA form are the V8 JavaScript Engine [88], the Java
Virtual Machine (JVM) [90, 91], PyPy [92] and Lua JIT [89].

PyPy is an alternative implementation of Python that provides JIT compi-
lation, memory usage optimizations, and full compatibility with CPython [93].
PyPy implements a tracing JIT compiler to optimize program execution at run-
time, generating dynamically optimized machine code for the hot code paths of
commonly executed loops [93]. The flow-graph generated in the object space
is in SSA form [94]. The optimization techniques implemented have made PyPy
outperform the rest of Python implementation in many different benchmarks [15].

Although SSA form was initially developed for optimizing imperative pro-
grams, other works apply SSA transformations to functional programming [95].
Richard A. Kelsey transforms Continuation Passing Style (CPS) functional pro-
grams into SSA form and vice versa [96]. He also provides a transformation for
analyzing loops that are expressed as recursive procedures. This allows simplify-
ing the optimizations and avoids interprocedural analysis.

There are also works on combining type systems and SSA form. SafeTSA ex-
tends the internal SSA representation used by JVM, adding type information [97].
This information is used to prevent malicious code and check referential integrity.

16

2.5. Multiple dispatch (multi-methods)

Matsuno and Ohori propose a type inference algorithm to produce SSA-equivalent
type information [98]. Their type system allows type-directed optimizations with-
out requiring an intermediate transformation of the original code.

Brian Hackett and Shu-yu Guo define a hybrid static and dynamic type infer-
ence algorithm for JavaScript based on points-to analysis [99]. They propose a
constraint-based type system to unsoundly infer type information statically. Type
information is extended with runtime semantic triggers to generate sound type
information at runtime, as well as type barriers to efficiently handle polymorphic
code. The proposed system was implemented and integrated in the JavaScript
JIT compiler inside Firefox. The performance improvement on major benchmarks
and JavaScript-heavy websites was up to 50% [99].

2.5 Multiple dispatch (multi-methods)

One of the optimizations proposed in this dissertation is aimed at improving
multiple dispatch methods, also known as multi-methods [100]. This feature
allows the runtime association of a message to a specific method, based on the
runtime type of all its arguments. At runtime, the dynamic types of the arguments
are inspected and the appropriate implementation of an overloaded method is
invoked.

There exist some programming languages that provide multiple dispatch. CLOS
[101] and Clojure [102] are examples of dynamically typed languages that include
multi-methods in their semantics. Clojure has recently created a port for .Net
that makes use of the DLR [103]. Clojure supports multiple dispatch on argument
types and values. A Clojure multi-method is a combination of a dispatching func-
tion (defined with defmulti), and one or more method implementations (using
defmethod). When a multi-method is called, the dispatch function is transpar-
ently invoked with the same arguments. The value returned by the dispatch
function, called the dispatch value, is used to select the appropriate method im-
plementation to be invoked. This approach is fully dynamic, detecting all the
type errors at runtime.

Xtend is a Java extension that, among other features, provides statically typed
multiple dispatch [104]. Method resolution and method binding in Xtend are
done at compile time, as in Java. Dylan [105], Cecil [100] and Groovy 2 [16]
are programming languages that provide both dynamic and static typing, and
dynamically typed multi-methods (multiple dispatch).

Many different approaches exist to provide multiple dispatch to the Java plat-
form. One of the first works is Runabout, a library to support two-argument
dispatch (i.e., double dispatch) for Java [106]. Runabout is based on improv-
ing a previous reflective implementation of the Visitor pattern called Walka-
bout [107]. Double dispatch is achieved without modifying the existing classes
(e.g., the Visitor pattern requires adding an accept method to a class hierarchy).
The programmer specifies the different visit method implementations in a class,
extending the provided Runabout class. The appropriate method implementation

17

2.5. Multiple dispatch (multi-methods)

is found via reflection, but method invocation is performed by generating Java
bytecode at runtime. The generated bytecode does not use reflection and it is op-
timized by the just-in-time compiler just like the rest of the application, implying
a significant runtime performance improvement compared to Walkabout [107].

Dynamic Dispatcher is a double-dispatch framework for Java [108]. Three
different dispatch methods are provided: SCDispatcherFactory, which uses re-
flection to analyze the visit methods and writes a temporary Java class im-
plementing a runtime type inspection dispatcher (using the instanceof oper-
ator); BCDispatcherFactory, similar to SCDispatcherFactory but generates
Java bytecode; and ReflectiveDispatcherFactory, that uses reflection to in-
voke the appropriate method, without generating any code. Dynamic Dispatcher
provides the generalization of multi-method parameters by means of polymor-
phism.

Sprintabout is another double-dispatch alternative for Java, provided as a li-
brary [109]. Sprintabout uses a naming convention to identify multi-methods:
any abstract method whose name ends with Appropriate can be considered as
a multi-method. The different concrete implementations of the multi-method
are implemented using method overload (named with the multi-method identi-
fier, removing Appropriate). An instance of a multi-method is built calling the
createVisitor method, which dynamically generates a dispatch object imple-
menting a runtime type inspection dispatch (using the GetType approach dis-
cussed in Section 5.1.2). The dispatch object implements a cache to efficiently
obtain the different method implementations at runtime, avoiding the use of re-
flection. The current implementation of Sprintabout does not permit built-in
types as arguments.

MultiJava is a backward-compatible extension of Java that supports any dis-
patch dimension (not just double dispatch) [110]. Argument types of multi-
method parameters are declared as StaticType@DynamicType to extend the sin-
gle dynamic dispatching semantics of Java. The left-hand side of the type denotes
the static type of the argument, whereas the right-hand side indicates its dynamic
type used for the dynamic method selection. Given a set of multi-method im-
plementations, the MultiJava compiler produces a single Java dispatch method
containing the bodies of the set of multi-method implementations. The generated
dispatch method implements the runtime type inspection approach described in
this dissertation, using the instanceof Java operator (is operator in C#).

The Java Multi-Method Framework (JMMF) uses reflection to provide multi-
ple dispatch for Java [111]. Multi-methods can be defined in any class and with
any name. JMMF is provided as a library; it proposes neither language extensions
nor virtual machine modifications. It implements a two-step multiple dispatch
algorithm. The first step is multi-method creation, which performs a reflection-
based analysis computing several data structures to be used upon multi-method
invocation. The second step is multi-method execution, which invokes the appro-
priate method depending on the actual type of the arguments. If no such method
exists, an exception is thrown.

PolyD is aimed at providing a flexible multiple dispatch technique for Java [112].

18

2.5. Multiple dispatch (multi-methods)

PolyD generates Java bytecodes dynamically, and allows the user to define cus-
tomized dispatching policies (e.g., those analyzed in this Chapter 5). PolyD uses
Java 1.5 annotations to identify the selected dispatch mechanism (@Dispatch-
ingPolicy). No restriction on the number of arguments, the type of the return
value, or the use of primitive types is imposed. Three standard dispatching poli-
cies are available in PolyD: multiple dispatching (cached GetType runtime type
inspection), overloading (static method overload) and a ’non-subsumptive’ policy
(only calls a method if the classes of the arguments match exactly those of the
method parameters; i.e. no parameter generalization). Moreover, it is possible
to define personalized dispatching policies using its API.

19

Chapter 3

Optimizing Dynamically Typed
Operations with a Type Cache

Dynamically typed code has become popular in scenarios where high flexibility
and adaptability are important issues. For this reason, there has been an increase
in the use of dynamic languages in the last years [113]. Statically typed code also
provides important benefits such as earlier type error detection and, usually,
better runtime performance. Therefore, hybrid statically and dynamically typed
languages are aimed at providing the benefits of both approaches, combining
the adaptability of dynamic typing and the robustness and performance of static
typing.

The dynamically typed code of hybrid languages is type checked at run-
time [114]. The lack of compile-time type information involves fewer opportunities
for compiler optimizations, and the extra run-time type checking commonly im-
plies performance costs [70]. In addition, dynamically typed code for .Net and
Java commonly employs the introspective services of the platforms, causing sig-
nificant performance penalties [18]. The additional information kept around at
runtime to enable type checking can also increase the memory resources required
at runtime [113].

In this chapter, we propose a set of optimizations for the common dynamically
typed operations of hybrid typing languages for the .Net platform using the
Dynamic Language Runtime (DLR). We evaluate the runtime performance gain
obtained, and the additional memory resources required. We have built a tool that
processes binary .Net files compiled from the existing hybrid typing languages
for that platform, and produces new binary files with the same behavior and
better runtime performance. Our system has been used to optimize 37 programs
in 5 different languages, obtaining significant runtime performance improvements.
We have also included the proposed optimizations in the implementation of the
open source StaDyn compiler, obtaining similar results.

20

3.1. Multiple dispatch (multi-methods)

Public Module Callsites

Function Add(param1, param2)

Return param1 + param2

End Function

Sub Show(output, message)

output.WriteLine(message)

End Sub

Sub Main()

Show(Console.Out, "JS&S" +

Add("20", "15"))

End Sub

End Module

Public callSite0 As CallSite(Of…) = CallSite(Of…)

.Create(Binder.BinaryOperation(

ExpressionType.Add))

Public Function Add(param1, param2)

Return callSite0.Target(callSite0, param1, param2)

End Function

Public callSite1 As CallSite(Of…) = CallSite(Of…)

.Create(Binder.InvokeMember("WriteLine")

Public Sub Show(output, mesage)

callSite1.Target(callSite1, output, message)

End Sub

Figure 3.1: Example VB program with (right-hand side) and without (left-hand side) DLR
optimizations.

3.1 The Dynamic Language Runtime

The Dynamic Language Runtime (DLR) is a set of libraries included in the .Net
Framework 4 to support the implementation of dynamic languages [115]. The
DLR is built on the top of the Common Language Runtime (CLR), the virtual
machine of the .Net Framework. The DLR provides high-level services and opti-
mizations common to most dynamic languages, such as a dynamic type checking,
dynamic code generation and a runtime cache to optimize dynamic dispatch and
method invocation [115]. Therefore, it facilitates the development of dynamic lan-
guages for the .Net platform, and provides interoperability among them. The
DLR services are currently used in the implementation of the IronPython 2+,
IronRuby and PowerShell dynamic languages. It is also used in C# 4+ to sup-
port the new dynamic type. This section briefly describes the components of the
DLR used in our work; more detailed information can be consulted in [115].

The key elements of the DLR are call-sites, binders and its runtime cache. A
call-site is any expression with (at least) one dynamically typed operand. The
DLR adds the CallSite class to the .Net Framework to provide the dynamic
typing services and optimizations for dynamically typed expression. Figure 3.11

shows two examples of dynamically typed operations executed with (right-hand
side) and without (left-hand side) DLR CallSites.

Figure 3.1 shows how a new CallSite instance is created for each single dy-
namically typed expression (the addition in Add and the method invocation in
Show). Every CallSite receives a CallSiteBinder as an argument upon con-
struction. A CallSiteBinder encapsulates the specific kind of expression repre-
sented by a CallSite (e.g., binary addition and method invocation). With this
information, the CallSiteBinder dynamically generates a method that computes
that expression. Since the method is generated at runtime, the particular dynamic
types of the operands are known. Therefore, the generated code does not need
to consult the operand types, implying a runtime performance benefit [15, 115].
The types of the operands are stored in a cache implemented by the CallSite.

1The VB code has been simplified the following way: 1) CallSite type definitions are
shortened, 2) lazy initializations of CallSites have been replaced by initializations in the
declaration; and 3) arguments of CallSiteBinders have been omitted.

21

3.2. Multiple dispatch (multi-methods)

Later invocations to the CallSite may produce a cache hit, if the operand types
remain unchanged. Otherwise, a cache miss is produced; and another method
is generated by the CallSiteBinder. CallSites implement three distinct cache
levels, using introspection upon the third cache miss [115].

Table 3.1 shows the list of dynamically typed expressions that can be repre-
sented with DLR CallSites [115]. In this case, we use C# instead of VB because
some of the DLR call-sites cannot be used from VB (e.g., the InvokeConstruc-

tor binder for overloaded constructors). There is one row for each binder. The
column in the middle shows C# fragments where dynamically typed expressions
are used. The corresponding C# code that uses the DLR call-sites is detailed
in the last column –in fact, that code was obtained by decompiling the binary
assemblies. For the sake of legibility, the code shown is simplified the following
way: 1) CallSite type definitions are shortened, 2) the lazy initialization for
CallSites has been replaced by initializations in the declaration; and 3) argu-
ments of CallSiteBinders have been omitted.

We previously measured that the runtime cache provided by the DLR provides
a significant performance improvement compared to the use of introspection [18].
The key insight behind our work is to replace the dynamically typed operations
(including the introspective ones) used by .Net languages with DLR CallSites,
and evaluate if the new code provides significant performance improvements.
Besides, we should measure the cost of the dynamic code generation method
implemented by the DLR, because it may incur a performance penalty at start-up.
The additional memory resources consumed by the DLR must also be evaluated.

3.2 Optimization of .Net hybrid typing languages

As mentioned, we optimize the existing hybrid typing languages for the .Net
platform, using the services provided by the DLR. These optimizations have been
applied to the language implementations following the two different approaches
shown in Figure 3.2: as an optimizer of .Net executable files (Figure 3.2.a), and
as part of an open source compiler (Figure 3.2.b).

Figure 3.2.a shows the binary optimization approach implemented for pro-
grams coded in VB, Boo, Cobra and Fantom. Using the Microsoft Research
Common Compiler Infrastructure (CCI) [116], the Abstract Syntax Trees (ASTs)
of binary files (i.e., assemblies) are obtained. Our optimizer traverses each AST,
searching for dynamically typed expressions. Those expressions are replaced by
semantically equivalent expressions that use DLR CallSites. Finally, the ASTs
are saved as new optimized binary files that use the DLR.

The proposed optimizations have also been included in the StaDyn compiler
(Figure 3.2.b) –StaDyn was described in Section 2.1. We have modified its ex-
isting implementation [117]. The StaDyn compiler performs type inference with
5 traversals of the AST [1]. Afterwards, the code generation phase generates
binary files for the CLR. We have added a new server command-line option
to the compiler. When this option is passed, we optimize the only dynamically

22

3.2. Multiple dispatch (multi-methods)

Binder name Dynamically typed expressions Explicit use of the DLR services

Binary

Operation
dynamic Add(dynamic a,

dynamic b) {

return a + b;

}

static CallSite<...> p_Site1 = CallSite<...>.Create(

Binder.BinaryOperation(ExpressionType.Add));

dynamic Add(dynamic a, dynamic b) {

return p_Site1.Target(p_Site1, a, b);

}

Unary

Operation
dynamic Negation(dynamic a) {

return -a;

}

static CallSite<...> p_Site2 = CallSite<...>.Create(

Binder.UnaryOperation(ExpressionType.Negate));

dynamic Negation(dynamic a){

return p_Site2.Target(p_Site2, a);

}

Convert T CastToType<T>(dynamic obj) {

return (T)obj;

}

static CallSite<...> p_Site3=CallSite<...>.Create(

Binder.Convert(typeof(T));

T CastToType<T>(dynamic obj) {

return p_Site3.Target(p_Site3, obj);

}

GetIndex dynamic GetPosition(dynamic v,

dynamic i) {

return v[i];

}

static CallSite<..> p_Site4=CallSite<...>.Create(

Binder.GetIndex());

dynamic GetPosition(dynamic v, dynamic i) {

return p_Site4.Target(p_Site4, v, i);

}

SetIndex void SetPosition(dynamic v,

dynamic i,

dynamic val) {

v[i] = val;

}

static CallSite<...> p_Site5 = CallSite<...>.Create(

Binder.SetIndex());

void SetPosition(dynamic v, dynamic i, dynamic val) {

p_Site5.Target(p_Site5, v, i, val);

}

GetMember dynamic GetName(dynamic obj) {

return obj.Name;

}

static CallSite<...> p_Site6=CallSite<...>.Create(

Binder.GetMember("Name"));

dynamic GetName(dynamic obj) {

return p_Site6.Target(p_Site6, obj);

}

SetMember void SetName(dynamic obj,

dynamic val) {

obj.Name = val;

}

static CallSite<...> p_Site7 = CallSite<...>.Create(

Binder.SetMember("Name"));

static void SetName(dynamic obj, dynamic val) {

p_Site7.Target(p_Site7, obj, val);

}

Invoke dynamic Invoke(dynamic fun,

dynamic a,

dynamic b) {

return fun(a, b);

}

static CallSite<...> p_Site8=CallSite<...>.Create(

Binder.Invoke());

dynamic Invoke(dynamic fun, dynamic a, dynamic b) {

return p_Site8.Target(p_Site8, fun, a, b);

}

Invoke

Constructor
Decimal DecimalFactory(

dynamic argument) {

return new Decimal(argument);

}

static CallSite<...> p_Site9=CallSite<...>.Create(

Binder.InvokeConstructor());

decimal DecimalFactory(dynamic argument) {

return p_Site9.Target(p_Site9, typeof(decimal),

argument);

}

Invoke

Member
dynamic InvokePrint(dynamic o,

dynamic arg) {

return o.Print(arg);

}

static CallSite<...> p_Site10=CallSite<...>.Create(

Binder.InvokeMember("Print"));

dynamic InvokePrint(dynamic o, dynamic arg) {

return p_Site10.Target(p_Site10, o, arg);

}

Table 3.1: Call-sites provided by the DLR (coded in C#).

23

3.2. Multiple dispatch (multi-methods)

…

AST with CallSites

CLR

Executable

D
e

co
m

p
il

a
ti

o
n

DLR

Executable

AST

Transformation

…

AST with dynamic

operations

CCI

A
S

T

G
e

n
e

ra
ti

o
n

CCI

Compilation

CCI

a) Optimization of binary .Net files (assemblies)

b) Optimization as part of a compiler implementation

Le
x
in

g

…

Tokens
P

a
rs

in
g

…

AST

A
S

T
 D

e
co

ra
ti

o
n

…

AST with Type

Information

DLR

Executable

Compiler

Options
CLR

Executable

Source

Code

Code

Generation

Figure 3.2: Architecture of the two optimization approaches.

typed references that the StaDyn compiler does not manage to infer: dynamic

method arguments (3.2.5). Otherwise, the types of the dynamic parameters are
inspected using introspection –the types of local variables and fields are inferred
by the compiler using union and intersection types [27].

3.2.1 VB optimizations

In this section, we formalize the performance optimizations implemented for VB,
which follow the .Net binary optimization approach presented in Figure 3.2.a.
Sections 3.2.2, 3.2.3 and 3.2.4 detail the binary optimizations for Boo, Cobra and
Fantom, respectively. Section 3.2.5 presents the optimizations included in the
StaDyn compiler, following the architecture presented in Figure 3.2.b.

Figure 3.2 shows how every optimization is based on the idea of replacing an
AST with another AST that uses the DLR services. Figures 3.3 to 3.6 present
the most significant inference rules used to optimize VB. An example of these
transformations is replacing the program in the left-hand side of Figure 3.1 with
the code in the right-hand side. This AST transformation is denoted by , so
that e1 e2 represents that the AST of the expression e1 is replaced with the
AST of e2.

The meta-variables e range over expressions; C, f , m and ω range over class,
field, method and member names, respectively; and T ranges over types. e:T
denotes that the e expression has the T type. For the two architectures showed
in Figure 3.2 (binary code transformation and compiler internals), our transfor-
mations can make use of the types of expressions. In the binary code trans-
formation scenario, the CCI tool provides us this information (Section 3.3); for
the compiler approach, we obtain expression types from the annotated AST [1].
C×T1×. . .×Tn → Tr represents the type of a (instance or static) method of the
C class, receiving n parameters of T1, . . . , Tn types, and returning Tr. TL−built−in
represents the built-in types of the L language1, and we use the dynamic type to

1For VB, the types in TVB−built−in are Boolean, Byte, Char, Date, Decimal, Double,
Integer, Long, SByte, Short, Single, String, UInteger, ULong and UShort.

24

3.2. Multiple dispatch (multi-methods)

(BinaryOp)

e1 : dynamic ∨ e2 : dynamic ⊕ ∈ {+, -, *, /, Mod, ==, <>, >, >=, <, <=, And, Or, Xor}
callsite = New CallSite(Binder.BinaryOperation(ExpressionType.⊕)

e1 ⊕ e2 callsite.Target(callsite, e1, e2)

(UnaryOp)

e : dynamic 	 ∈ {Not, -}
callsite = New CallSite(Binder.UnaryOperation(ExpressionType.)

	 e callsite.Target(callsite, e)

Figure 3.3: Transformation of common expressions.

indicate that an expression is dynamically typed (although VB represent dynamic
types by removing type annotations –as shown in Figure 3.1).

Figure 3.3 shows the proposed optimizations for arithmetic expressions. Bina-
ryOp optimizes binary expressions when at least one of the operands is dynami-
cally typed; similarly, UnaryOp optimizes unary dynamically typed expressions.
In both cases, a fresh CallSite object is created for each expression, passing the
operator as an argument (⊕ and 	 represent the VB binary and unary operators,
respectively). Then, original dynamically typed expressions are replaced with an
invocation to the Target method of the new CallSite object, passing the two
operands as arguments.

Figure 3.4 shows different optimizations when a type conversion is required,
using the Convert binder provided by the DLR [115]. CCast describes explicit
type conversion (casting) for built-in types. In VB, the CType function explicitly
converts the type of an expression1. When the expression is dynamically typed,
we replace the operation with the appropriate Convert binder provided by the
DLR.

When a dynamically typed expression is assigned to a statically typed one,
CAssign replaces the dynamic type conversion with a DLR operation. As with
CCast, this optimization is only performed when the type of the left-hand side
expression is built-in. CFunction converts a dynamically typed argument into
the built-in type of the corresponding parameter. In CFunction, e represents
any expression evaluated as a method, since VB provides methods as first class
entities (the so-called delegates) [61].

The conversion of a dynamically typed expression into a non-built-in type
is done by VB with just one castclass instruction of the IL assembly lan-
guage [118]. Since the implementation of that instruction is so efficient, the DLR
does not provide any optimization for non-built-in type conversions (Table 3.1).
Therefore, the explicit conversions in CCast, CAssign and CFunction are
only applied to built-in types.

1Although VB provides additional conversion functions (CBool, CByte, CChar, CDate, CDec,
CDbl, CInt, CLng, CSByte, CShort, CSng, CStr, CUInt, CULng and CUShort), all of them can
be expressed with CType.

25

3.2. Multiple dispatch (multi-methods)

(CCast)

e : dynamic
T ∈ TVB−built−in callsite = New CallSite(Binder.Convert(T))

CType(e, T) callsite.Target(callsite, e)

(CAssign)

e1 : T T ∈ TVB−built−in
e2 : dynamic callsite = New CallSite(Binder.Convert(T))

e1=e2 e1=callsite.Target(callsite, e2)

(CFunction)

ei : dynamic e : C × T1 × . . .× Ti × . . .× Tn → Tr
Ti ∈ TVB−built−in callsite = New CallSite(Binder.Convert(Ti))

e(e1, . . . , ei, . . . , en) e(e1, . . . , callsite.Target(callsite, ei), . . . , en)

(CIf)

e : dynamic callsite = New CallSite(Binder.Convert(Boolean))

If e Then stmt+if (Else stmt+else)
? End If

If callsite.Target(callsite, e) Then stmt+if (Else stmt+else)
? End If

(CDWhile)

e : dynamic callsite = New CallSite(Binder.Convert(Boolean))

Do While e stmt+do Loop Do While callsite.Target(callsite, e) stmt+do Loop

(CRWhile)

e : dynamic callsite = New CallSite(Binder.Convert(Boolean))

Do stmt+do Loop While e Do stmt+do Loop While callsite.Target(callsite, e)

(CDUntil)

e : dynamic callsite = New CallSite(Binder.Convert(Boolean))

Do Until e stmt+do Loop Do Until callsite.Target(callsite, e) stmt+do Loop

(CRUntil)

e : dynamic callsite = New CallSite(Binder.Convert(Boolean))

Do stmt+do Loop Until e Do stmt+do Loop Until callsite.Target(callsite, e)

(CIndex)

e1 : T1 T1 6= dynamic
e2 : dynamic callsite = New CallSite(Binder.Convert(Integer))

e1(e2) e1(callsite.Target(callsite, e2))

Figure 3.4: Transformation of common type conversions.

26

3.2. Multiple dispatch (multi-methods)

(GetIndex)

e1 : dynamic callsite = New CallSite(Binder.GetIndex))

e1(e2) callsite.Target(callsite, e1, e2)

(SetIndex)

e1 : dynamic callsite = New CallSite(Binder.SetIndex))

e1(e2)=e3 callsite.Target(callsite, e1, e2, e3)

Figure 3.5: Transformation of indexing operations.

VB requires the type of the expression in a conditional statement to be Boolean.
CIf performs this type conversion when the condition is dynamically typed. Fig-
ure 3.4 also shows similar inference rules for typical do-while (CDWhile and
CRWhile) and repeat-until (CDUntil and CRUntil) loops. Likewise, CIn-
dex performs the same optimization for array indexing expressions, converting
the index to Integer.

Figure 3.5 shows the optimization of array indexing operations, when arrays
are dynamically typed. In VB, parentheses are used for both array indexing and
method invocation. However, the CCI generates different ASTs for each kind
of operations, facilitating us the transformation of programs. VB provides the
indexing operation not only for arrays, but also for other types such as dictio-
naries, lists and strings (i.e., any type that implements indexer properties [61]).
When the collection is dynamically typed, the GetIndex binder is used for reading
operations and SetIndex for writing.

IOIMethod in Figure 3.6 shows the optimization of instance method invo-
cation, when the method may be overloaded and one of the arguments (ei) is
dynamically typed. Method overloading is represented with intersection types:
the type of an overloaded method is an intersection type holding all the types of its
different implementations [32]. The ∀ T ji . T

j
i 6= dynamic j ∈ 1...m condition checks

that at all the method implementations declare a statically typed ith parameter.
Otherwise, no optimization is done (the dynamically typed method overload is
invoked). Unlike CFunction in Figure 3.4, the generated InvokeMember call-
site receives the object and all the parameters to resolve method overloading at
runtime [66].

IOCMethod provides the optimization of class methods (i.e., shared in VB,
or static in C# and Java), when the method may be overloaded and one of the
arguments (ei) is dynamically typed. This rule is quite similar to IOIMethod in
Figure 3.6. In this case, the second parameter of the Target method is Nothing,
indicating that there is no implicit object, since the method is shared.

IMethod optimizes an instance method invocation when the object that re-
ceives the message is dynamically typed. The number of parameters must be
greater than zero, because field access and zero-argument method invocation is
performed with the same low-level operation in VB (parenthesis are not required
to invoke a method with no arguments). LateGet represents this special case

27

3.2. Multiple dispatch (multi-methods)

(IOIMethod)

m : C × T 1
1 × . . .× T 1

i × . . .× T 1
n → T 1

r ∧ . . . ∧ C × Tm1 × . . .× Tmi × . . .× Tmn → Tmr
e : C ei : dynamic ∀ T ji . T ji 6= dynamic j ∈ 1...m

callsite = New CallSite(Binder.InvokeMember(m))

e.m(e1, . . . , ei, . . . , en) callsite.Target(callsite, e, e1, . . . , ei, . . . , en)

(IOCMethod)

m : C × T 1
1 × . . .× T 1

i × . . .× T 1
n → T 1

r ∧ . . . ∧ C × Tm1 × . . .× Tmi × . . .× Tmn → Tmr
ei : dynamic ∀ T ji . T ji 6= dynamic j ∈ 1...m

callsite = New CallSite(Binder.InvokeMember(m))

C.m(e1, . . . , ei, . . . , en) callsite.Target(callsite, Nothing, e1, . . . , ei, . . . , en)

(IMethod)

e : dynamic n > 0 callsite = New CallSite(Binder.InvokeMember(m))

e.m(e1, . . . , en) callsite.Target(callsite, e, e1, . . . , en)

(LateGet)

e : dynamic callsite1 = New CallSite(Binder.GetMember(ω))
callsite2 = New CallSite(Binder.InvokeMember(ω))

e.ω LateGet Utils.HandleCallSiteCall(e, ω, callsite1, callsite2)

(SetMember)

e1 : dynamic callsite = New CallSite(Binder.SetMember(f))

e1.f = e2 callsite.Target(callsite, e1, e2)

Figure 3.6: Transformation of method invocation and field access.

28

3.2. Multiple dispatch (multi-methods)

scenario. Since we do not have enough information to know if the expression is
either a zero-argument method invocation or a member access, we perform addi-
tional runtime checks. We statically create two different call-sites for each alter-
native: GetMember and InvokeMember. Then, the HandleCallSiteCall method
of the LateGet Utils class calls the appropriate call-site depending on the dy-
namic type of ω (field or method). Our implementation of HandleCallSiteCall
includes a runtime cache storing the type of each member [119].

SetMember in Figure 3.6 optimizes the assignment of fields and properties,
when the object is dynamically typed. A SetMember call-site binder is created
for this purpose.

3.2.2 Boo optimizations

Figures 3.7 and 3.8 show the transformation rules implemented to optimize Boo
programs. Although the Boo language provides the duck keyword for dynamically
typed variables, we keep using the dynamic type for consistency. ⊕Boo and 	Boo

represent, respectively, the optimized binary and unary Boo operators. We also
transform explicit (CCastBoo) and implicit (CAssignBoo, CFunctionBoo and
CMethodBoo) type conversions. CMethodBoo optimizes the type conversion of
methods. When the method is overloaded, the types of the ith parameter must
be equal to be able to perform the type conversion. In case it is dynamic, no
conversion is required.

As for VB, we also optimize indexing operations (GetIndexBoo and Set-
IndexBoo in Figure 3.8), method invocations (IMethodBoo) and member ac-
cesses (GetMemberBoo and SetMemberBoo). In Boo, we add two optimiza-
tions not implemented in VB. The first one, IDelegateBoo, is the use of dynam-
ically typed delegates; i.e., methods and functions variables. In this language,
function and methods are first-class entities, and they can also be dynamically
typed –in VB, they must be called with the invoke method. The second new
optimization is the invocation of constructors with (at least) one of its parameters
dynamically typed (IConstructorBoo). In that case, the expression is replaced
with an InvokeConstructor call-site.

3.2.3 Cobra optimizations

Figure 3.9 shows the optimization rules for Cobra. This programming language
does not support type conversions for dynamically typed expressions. As for Boo,
IConstructorCobra optimizes constructor invocation when one of the arguments
is dynamically typed.

3.2.4 Fantom optimizations

In Fantom, all the optimizations are done when the -> operator is used. This
operator sends a message to an object, but no static type checking is performed.

29

3.2. Multiple dispatch (multi-methods)

(BinaryOpBoo)

e1 : dynamic ∨ e2 : dynamic
⊕Boo ∈ {+, -, *, /, %, ==, !=, >, >=, <, <=, <<, >>, &, |, ^, and, or}

callsite = CallSite(Binder.BinaryOperation(ExpressionType.⊕Boo)

e1 ⊕Boo e2 callsite.Target(callsite, e1, e2)

(UnaryOpBoo)

e : dynamic 	Boo ∈ {not, -}
callsite = CallSite(Binder.UnaryOperation(ExpressionType.	Boo)

	Boo e callsite.Target(callsite, e)

(CCastBoo)

e : dynamic T 6= dynamic callsite = CallSite(Binder.Convert(T))

e cast T callsite.Target(callsite, e)

(CAssignBoo)

e1 : T
T 6= dynamic e2 : dynamic callsite = CallSite(Binder.Convert(T))

e1=e2 e1=callsite.Target(callsite, e2)

(CFunctionBoo)

e : T 1
1 × . . .× T 1

i × . . .× T 1
n → T 1

r ∧ . . . ∧ T j1 × . . .× T ji × . . .× T jn → T jr ∧ . . .
. . . ∧ Tm1 × . . .× Tmi × . . .× Tmn → Tmr ei : dynamic

T 1
i = . . . = Tmi = T 6= dynamic callsite = CallSite(Binder.Convert(T))

e(e1, . . . , ei, . . . , en) e(e1, . . . , callsite.Target(callsite, ei), . . . , en)

(CMethodBoo)

e : C ei : dynamic

m : C × T 1
1 × . . .× T 1

i × . . .× T 1
n → T 1

r ∧ . . . ∧ C × T j1 × . . .× T ji × . . .× T jn → T jr ∧ . . .
. . . C × ∧Tm1 × . . .× Tmi × . . .× Tmn → Tmr

T 1
i = . . . = Tmi = T 6= dynamic callsite = CallSite(Binder.Convert(T))

e.m(e1, . . . , ei, . . . , en) e.m(e1, . . . , callsite.Target(callsite, ei), . . . , en)

Figure 3.7: Optimization of Boo basic expressions and type conversions.

30

3.2. Multiple dispatch (multi-methods)

(GetIndexBoo)

e1 : dynamic callsite = CallSite(Binder.GetIndex())

e1[e2] callsite.Target(callsite, e1, e2)

(SetIndexBoo)

e1 : dynamic callsite = CallSite(Binder.SetIndex())

e1[e2]=e3 callsite.Target(callsite, e1, e2, e3)

(IMethodBoo)

e : dynamic callsite = CallSite(Binder.InvokeMember(m))

e.m(e1, . . . , en) callsite.Target(callsite, e, e1, . . . , en)

(IDelegateBoo)

e : dynamic callsite = CallSite(Binder.Invoke())

e(e1, . . . , en) callsite.Target(callsite, e, e1, . . . , en)

(IConstructorBoo)

∃ ei . ei : dynamic i ∈ 1...n callsite = CallSite(Binder.InvokeConstructor())

C(e1, . . . , en) callsite.Target(callsite, C, e1, . . . , en)

(GetMemberBoo)

e : dynamic callsite = CallSite(Binder.GetMember(ω))

e.ω callsite.Target(callsite, e)

(SetMemberBoo)

e1 : dynamic callsite = CallSite(Binder.SetMember(ω))

e1.ω = e2 callsite.Target(callsite, e1, e2)

Figure 3.8: Optimization of Boo invocations, indexing and member access.

31

3.2. Multiple dispatch (multi-methods)

(BinaryOpCobra)

e1 : dynamic ∨ e2 : dynamic
⊕Cobra ∈ {+, -, *, /, %, <<, >>, &, |, ^, ==, <>, <, <=, >, >=, +=, -=, *=, /=, %=, &=, |=, ^=}

callsite = CallSite(Binder.BinaryOperation(ExpressionType.⊕Cobra)

e1 ⊕Cobra e2 callsite.Target(callsite, e1, e2)

(UnaryOpCobra)

e : dynamic 	Cobra ∈ {not, ~}
callsite = CallSite(Binder.UnaryOperation(ExpressionType.	Cobra)

	Cobra e callsite.Target(callsite, e)

(GetIndexCobra)

e1 : dynamic callsite = CallSite(Binder.GetIndex())

e1[e2] callsite.Target(callsite, e1, e2)

(SetIndexCobra)

e1 : dynamic callsite = CallSite(Binder.SetIndex())

e1[e2]=e3 callsite.Target(callsite, e1, e2, e3)

(IMethodCobra)

e : dynamic callsite = CallSite(Binder.InvokeMember(m))

e.m(e1, . . . , en) callsite.Target(callsite, e, e1, . . . , en)

(IConstructorCobra)

∃ ei . ei : dynamic i ∈ 1...n callsite = CallSite(Binder.InvokeConstructor())

C(e1, . . . , en) callsite.Target(callsite, C, e1, . . . , en)

(GetMemberCobra)

e : dynamic callsite = CallSite(Binder.GetMember(f))

e.f callsite.Target(callsite, e)

(SetMemberCobra)

e1 : dynamic callsite = CallSite(Binder.SetMember(f))

e1.f = e2 callsite.Target(callsite, e1, e2)

Figure 3.9: Cobra optimization rules.

32

3.3. Multiple dispatch (multi-methods)

(IMethodFantom)

m ∈Moperators ⇒ T /∈ TFantom−built−in
callsite = CallSite(Binder.InvokeMember(m))

e->m(e1, . . . , en) callsite.Target(callsite, e1, . . . , en)

where Moperators ∈ { negate, increment, decrement, toFloat, toDecimal, upper,
lower, toStr, chars, size, typeof, sqrt, tan, sin, plus, minus, mult,
div, mod, div, mod, pow, compare, equals, getRange, removeAt, size,
get, set } and

TFantom−built−in = { Bool, Long, Double, BigDecimal }

Figure 3.10: Fantom optimization rules.

Therefore, Fantom does not define a dynamic type. All the dynamically typed
expressions are expressed with the -> operator. Consequently, the Fantom opti-
mizations transform method invocation expressions into InvokeMember call-sites
(Figure 3.10).

Fantom represents language operators as methods, so that the 1->plus(2)

dynamically typed expression corresponds to the 1+2 statically typed one. Con-
sequently, IMethodFantom optimizes both methods and operators. However,
when the method represents the operator of a built-in type (e.g., 1->plus(2)),
Fantom calls a class method that performs nested type inspections that can-
not be optimized by the DLR [66]. To detect this special case, the premise
m ∈ Moperators ⇒ T /∈ TFantom−built−in checks that, when m is an operator, T
must not be a built-in type.

3.2.5 StaDyn optimizations

Figure 3.11 shows the optimization rules included in the StaDyn compiler. StaDyn
infers type information of all the dynamically typed references but method argu-
ments. Therefore, the expressions in our formalization are dynamic only when
they are built from a dynamic argument. We optimize method (IMethodStaDyn)
and constructor (IConstructorStaDyn) invocations, and field accesses (Get-
MemberStaDyn and SetMemberStaDyn). The rest of transformations are not
applicable to StaDyn because it already optimizes the generated code by imple-
menting the type system rules in the generated code [1].

3.3 Implementation

3.3.1 Binary program transformation

As mentioned, our .Net binary transformation tool has been developed using the
Microsoft Common Compiler Infrastructure (CCI). The CCI libraries offer ser-
vices for building, analyzing and modifying .Net assemblies [116]. Figure 3.12

33

3.3. Multiple dispatch (multi-methods)

(IMethodStaDyn)

e : dynamic callsite = new CallSite(Binder.InvokeMember(m))

e.m(e1, . . . , en) callsite.Target(callsite, e, e1, . . . , en)

(IConstructorStaDyn)

∃ ei . ei : dynamic i ∈ 1...n

callsite = new CallSite(Binder.InvokeConstructor())

new C(e1, . . . , en) callsite.Target(callsite, C, e1, . . . , en)

(GetMemberStaDyn)

e : dynamic callsite = new CallSite(Binder.GetMember(f))

e.f callsite.Target(callsite, e)

(SetMemberStaDyn)

e1 : dynamic callsite = new CallSite(Binder.SetMember(f))

e1.f = e2 callsite.Target(callsite, e1, e2)

Figure 3.11: StaDyn optimization rules.

shows the design class diagram of the binary optimization tool (classes provided
by the CCI are represented with the CCI stereotype). First, our DLROptimizer

class uses a CCI PEReader to read each program assembly, returning an IAssembly

instance. Each IAssembly object represents an AST. The second step is trans-
forming the ASTs into optimized ones, following the Visitor design pattern [43].
Finally, the modified ASTs are saved as new assemblies with PEWriter.

In the general process described above, the most complex task is the AST
transformation algorithm, which is divided in three different phases. First, the
dynamically typed expressions to be optimized are identified, traversing the AST.
For each language, we implement a Visitor class (e.g., VBCodeVisitor and Boo-

CodeVisitor) that identifies the expressions to be optimized, following the spe-
cific language optimization rules described in this dissertation. For each ex-
pression, the corresponding call-site pattern is stored in a CallSiteContainer

object. Second, the code that instantiates the CallSites is generated. As shown
in Figure 3.1 and Table 3.1, an instance of the DLR CallSite class must be cre-
ated for each optimized expression collected in CallSiteContainer. The code
that creates these call-site instances is generated by the DLROptimizer, using
the CodeDOM API [120]. Finally, the OptimizerCodeRewriter class traverses
the original IAssembly AST, returning the optimized one, where the dynami-
cally typed expressions are replaced with appropriate invocations to the call-sites
created.

3.3.2 Compiler optimization phase

The optimization of StaDyn programs have been implemented as part of the
compiler internals. After lexical and syntax analysis, the StaDyn compiler per-

34

3.4. Multiple dispatch (multi-methods)

DLROptimizer

«CCI»
PEReader

«CCI»
PEWriter

«CCI»
IAssembly

«CCI»
CodeVisitor

OptimizerCodeVisitor

VBCodeVisitor BooCodeVisitor CobraCodeVisitor FantomCodeVisitor

OptimizerCodeRewriter

CodeDOMCompiler

CallSiteContainer

CallSite

1 1

1

1

1

*

1

1 1

Figure 3.12: Class diagram of the binary program transformation tool.

forms type inference in 5 phases [1]. Code generation is performed afterwards,
traversing the type-annotated AST and following the Visitor design pattern [43].
Originally, the existing code generator produced .Net assemblies for the CLR
(Figure 3.2.b). We have added code generation for the DLR using the Parallel
Hierarchies design pattern [24]. The optimizations proposed are applied when
the server command-line option is passed to the compiler. The code generation
templates of dynamically typed expressions are detailed in 3.2.5.

3.4 Evaluation

In this section, we evaluate the runtime performance gains of the proposed op-
timizations. We measure the execution time and memory consumption of the
original programs, and compare them with the optimized versions. We mea-
sure different benchmarks executed in all the existing hybrid static and dynamic
programming languages for the .Net platform.

3.4.1 Methodology

This section comprises a description of the languages and the benchmark suites
used in the evaluation, together with a description of how data is measured and

35

3.4. Multiple dispatch (multi-methods)

analyzed. Many elements of the methodology described here will be used for
evaluating the optimizations presented in the two following chapters.

3.4.1.1 Selected languages

We have considered the existing hybrid typing languages for the .Net platform,
excluding C# that already uses the DLR:

– Visual Basic 11. The VB programming language supports hybrid typ-
ing [61]. A dynamic reference is declared with the Dim reserved word,
without setting a type. With this syntax, the compiler does not gather
any type information statically, and type checking is performed at runtime.

– Boo 0.9.4.9. An object-oriented programming language for the CLI with
Python inspired syntax. It is statically typed, but also provides dynamic
typing by using its special duck type [60]. Boo has been used to create
views in the Brail view engine of the MonoRail Web framework [121], to
program the Specter object-behavior specification framework [122], in the
implementation of the Binsor domain-specific language for the Windsor
Inversion of Control container for .Net [123], and in the development of
games and mobile apps with Unity [124].

– Cobra 0.9.6. A hybrid statically and dynamically typed programming lan-
guage. It is object-oriented and provides compile-time type inference [67].
As C#, dynamic typing is provided with a distinctive dynamic type. Cobra
has been used to develop small projects and to teach programming following
the test-driven development and the design by contract approaches [67].

– Fantom 1.0.64. Fantom is an object-oriented programming language than
generates code to the Java VM, the .Net platform, and JavaScript. It is
statically typed, but provides the dynamic invocation of methods with the
specific -> message-passing operator [68]. The Fantom language provides
an API that abstracts away the differences between the Java and .Net plat-
forms. Fantom has been used to develop some projects such as the Kloudo
integrated business organizer [125], the SkySpark analytics software [126],
and the netColarDB object-relational mapping database [127].

– StaDyn. The hybrid static and dynamic typing object-oriented language
for .Net described in Section 2.1.

3.4.1.2 Selected benchmarks

We have used different benchmark suites to evaluate the performance gain of our
implementations:

– Pybench. A Python benchmark designed to measure the performance of
standard Python implementations [128]. Pybench is composed of a col-
lection of 52 tests that measure different aspects of the Python dynamic
language.

36

3.4. Multiple dispatch (multi-methods)

– Pystone. This benchmark is the Python version of the Dhrystone bench-
mark [129], which is commonly used to compare different implementations
of the Python programming language. Pystone is included in the standard
Python distribution.

– A subset of the statically typed Java Grande benchmark implemented in
C# [130], including large scale applications:

◦ Section 2 (Kernels). FFT, one-dimensional forward transformation of
n complex numbers; Heapsort, the heap sort algorithm over arrays of
integers; and Sparse, management of an unstructured sparse matrix
stored in compressed-row format with a prescribed sparsity structure.

◦ Section 3 (Large Scale Applications). RayTracer, a 3D ray tracer of
scenes that contain 64 spheres, and are rendered at a resolution of
25× 25 pixels.

– Points. A hybrid static and dynamic typing program designed to measure
the performance of hybrid typing languages [27]. It computes different
properties of two- and three-dimensional points.

We have taken Python (Pybench and Pystone) and C# (Java Grande and
Points) programs, and manually translated them into the rest of languages. Al-
though this translation might introduce a bias in the runtime performance of
the translated programs, we have thoroughly checked that the same operations
were executed in all the implementations. We have verified that the benchmarks
compute the same results in all the programs.

Those tests that use a specific language feature not provided by the other
languages (i.e., tuples, dynamic code evaluation, and Python-specific built-in
functions) have not been considered. We have not included those that use any
input/output interaction either. Therefore, 31 tests of the 52 programs of the
Pybench benchmark have been measured [119]. All the references in the programs
have been declared as dynamically typed.

3.4.1.3 Data analysis

We have followed the methodology proposed in [131] to evaluate the runtime
performance of applications, including those executed on virtual machines that
provide JIT-compilation. In this methodology, two approaches are considered:
1) start-up performance is how quickly a system can run a relatively short-
running application; 2) steady-state performance concerns long-running appli-
cations, where start-up JIT compilation does not involve a significant variability
in the total running time.

For start-up, we followed the two-step methodology defined to evaluate short-
running applications:

1. We measure the elapsed execution time of running multiple times the same
program. This results in p (we have taken p = 30) measurements xi with
1 ≤ i ≤ p.

37

3.4. Multiple dispatch (multi-methods)

2. The confidence interval for a given confidence level (95%) is computed to
eliminate measurement errors that may introduce a bias in the evaluation.
The confidence interval is calculated using the Student’s t-distribution be-
cause we took p = 30 [132]. Therefore, we compute the confidence interval
[c1, c2] as:

c1 = x− t1−α/2;p−1
s√
p

c2 = x+ t1−α/2;p−1
s√
p

Where x is the arithmetic mean of the xi measurements; α = 0.05(95%); s
is the standard deviation of the xi measurements; and t1−α/2;p−1 is defined
such that a random variable T , which follows the Student’s t-distribution
with p − 1 degrees of freedom, obeys Pr[T ≤ t1−α/2;p−1] = 1 − α/2. In
the subsequent figures, we show the mean of the confidence interval plus
the width of the confidence interval relative to the mean (bar whiskers).
If two confidence intervals do not overlap, we can conclude that there is a
statistically significant difference with a 95% (1 - α) probability [131].

The steady-state methodology comprises the following four steps:

1. Each application (program) is executed p times (p = 30), and each execution
performs at least k (k = 10) different iterations of benchmark invocations,
measuring each invocation separately. We refer xij as the measurement of
the jth benchmark iteration of the ith application execution.

2. For each i invocation of the benchmark, we determine the si iteration where
steady-state performance is reached. The execution reaches this state when
the coefficient of variation (CoV , defined as the standard deviation divided
by the mean) of the last k iterations (from si−k+1 to si) falls below a thresh-
old (2%).

To avoid an influence of the previous benchmark execution, a full heap
garbage collection is done before performing every benchmark invocation.
Garbage collection may still occur at benchmark execution, and it is in-
cluded in the measurement. However, this method reduces the non-determinism
across multiple invocations due to garbage collection kicking in at different
times across different executions.

3. For each application execution, we compute the xi mean of the k benchmark
iterations under steady state:

xi =

si∑
j=si−k+1

xij

k

4. Finally, we compute the confidence interval for a given confidence level
(95%) across the computed means from the different application invoca-
tions using the Student’s t-statistic described above. The overall mean is
computed as x =

∑p
i=1 xi/p. The confidence interval is computed over the

xi measurements.

38

3.4. Multiple dispatch (multi-methods)

3.4.1.4 Data measurement

To measure the execution time of each benchmark invocation, we have instru-
mented the applications with code that registers the value of high-precision
time counters provided by the Windows operating system. This instrumenta-
tion calls the native function QueryPerformanceCounter of the kernel32.dll

library. This function returns the execution time measured by the Performance
and Reliability Monitor of the operating system [133]. We measure the difference
between the beginning and the end of each benchmark invocation to obtain the
execution time of each benchmark run.

The memory consumption has been also measured following the same method-
ology to determine the memory used by the whole process. For that purpose, we
have used the maximum size of working set memory employed by the process
since it was started (the PeakWorkingSet property). The working set of a pro-
cess is the set of memory pages currently visible to the process in physical RAM
memory. These pages are resident and available for an application to be used
without triggering a page fault. The working set includes both shared and pri-
vate data. The shared data comprises the pages that contain all the instructions
that the process executes, including those from the process modules and the sys-
tem libraries. The PeakWorkingSet has been measured with explicit calls to the
services of the Windows Management Instrumentation infrastructure [134].

All the tests were carried out on a 3.30 GHz Intel Core i7-4500U system with
8 GB of RAM, running an updated 64-bit version of Windows 8.1 and the .Net
Framework 4.5.1 for 32 bits. The benchmarks were executed after system reboot,
removing the extraneous load, and waiting for the operating system to be loaded.

If the P1 and P2 programs run the same benchmark in T and 2.5×T millisec-
onds, respectively, we say that runtime performance of P1 is 150% (or 1.5 times)
higher than P2, P1 is 150% (or 1.5 times) faster, P2 requires 150% (or 1.5 times)
more execution time than P1, or the performance benefit of P1 compared to P2

is 150% –the same for memory consumption. To compute average percentages,
factors and orders of magnitude, we use the geometric mean.

All the data discussed in the following subsections are detailed in Appendix A.

3.4.2 Start-up performance

Figures 3.13 and 3.14 show the start-up performance gains obtained with our
optimizations, relative to the original program. First, we analyze the results of
the Pybench micro-benchmark (Figure 3.13) to examine how the optimizations
introduced may improve the runtime performance of each language feature. Af-
terwards, we analyze more realistic applications in Figure 3.14.

The average runtime performance gains in Pybench range from the 141% im-
provement for VB up to the 891% benefit obtained for the Fantom language.
The proposed optimizations speed up the average execution of Boo, StaDyn and
Cobra programming languages in 190%, 252% and 772%, respectively.

39

3.4. Multiple dispatch (multi-methods)

0%

500%

1.000%

1.500%

P
e

r
fo

r
m

a
n

c
e

 G
a

in

VB Boo Fantom Cobra StaDyn

3,629%
2,294%

2,730%
9,574%

Figure 3.13: Start-up performance improvement for Pybench.

Figure 3.14 shows the start-up performance improvements for all the programs
–average results for Pybench are included. Our optimizations show the best
performance gains for Fantom, presenting a 915% average speedup. For Cobra,
StaDyn, VB and Boo, the average performance improvements are 406%, 120.5%,
87.4% and 44.6%, respectively.

3.4.2.1 Discussion

Analyzing the previous start-up performances, we can identify different discus-
sions. Considering the different kind of operations in Figure 3.13, Boo, Fan-
tom and Cobra obtain the highest performance improvements when running the
programs that perform arithmetic and comparison computation, and string ma-
nipulations (arithmetic, numbers and strings). For these operations, the three
languages use reflection, which is highly optimized by the DLR cache [18]. Thus,
the DLR provides important performance benefits for introspective operations.

For arithmetic operations, VB and StaDyn show little improvement compared
to the rest of languages (Figure 3.13). Both languages already support an opti-
mization based on nested dynamic type inspections, avoiding the use of reflec-
tion [1] –unlike StaDyn, VB also provides this optimization for number com-
parisons (the numbers test). Fantom, Cobra and StaDyn do not provide any
runtime cache for dynamically typed method invocation (calls), and vector (lists)
and map (dicts) indexing, causing high performance gains –VB and Boo show
lower improvements because they implement their own caches. So, when the lan-
guage implementation provides other runtime optimizations to avoid the use of
reflection, the performance gains of using the DLR are decreased.

Exceptions, instances and new instances are the programs for which our op-
timizations show the lowest performance gains. This inferior performance edge
is because almost no dynamically typed reference is used in these tests. For ex-
ample, the exceptions test has the loop counter as the only dynamically typed
variable (for Fantom and Cobra, the benefit is higher than for the rest of languages

40

3.4. Multiple dispatch (multi-methods)

0%

200%

400%

600%

Pybench FFT HeapSort SparseMatmult RayTracer Points Pystone

P
e

r
fo

r
m

a
n

c
e

 G
a

in

VB Boo Fantom Cobra StaDyn

884% 873%
780%

885%
1,380%

2,000%

703%

Figure 3.14: Start-up performance improvement.

because their runtimes do not implement a cache for dynamic types). Therefore,
the DLR provides little performance improvement when just a few dynamically
typed references are used.

In the execution of the RayTracer and Points programs (Figure 3.14), the
performance gains for Boo are just 6.84% and 5.12%, respectively. These two
programs execute a low number of DLR call-sites, and hence the DLR cache does
not provide significant performance improvements. The initialization of the cache,
together with the dynamic code generation technique used to generate the cache
entries [115], incur a performance penalty that reduces the global performance
gain. As we analyze in the following subsection, for long-running applications
(steady-state methodology) this performance cost is almost negligible.

3.4.3 Steady-State performance

We have executed the same programs following the steady-state methodology
described in Section 3.4.1.3. Figure 3.15 shows the runtime performance im-
provements for all the programs. In this scenario, the performance gains for
every language are higher than those measured with the start-up methodology.
The lowest average improvement is 244% for VB; the greatest one is 1,113%,
for Cobra. We speed up Boo, StaDyn and Fantom in 322%, 368% and 1,083%,
respectively.

3.4.3.1 Discussion

Table 3.2 compares the performance improvements of short- and long-running
applications (start-up and steady-state). It shows how the proposed optimizations
provide higher performance gains for long-running applications than for sort-
running ones, in all the benchmarks.

Boo and VB are the two languages that show the highest performance dif-
ference depending on the methodology used. Average steady-state performance

41

3.4. Multiple dispatch (multi-methods)

0%

200%

400%

600%

800%

1.000%

Pybench FFT HeapSort SparseMatmult RayTracer Points Pystone

P
e

r
fo

r
m

a
n

c
e

 G
a

in

VB Boo Fantom Cobra StaDyn

1,141%

2,503%
2,104%

1,281%
2,003%

1,312%

2,752%

1,500%

2,145%
1,801%

Figure 3.15: Steady-state performance improvement.

improvements are 758% (Boo) and 442% (VB) higher than the start-up ones.
This dependency is because both languages implement their own dynamic type
cache, reducing the benefits of the DLR optimizations in start-up. As the num-
ber of DLR cache hits increases in steady-state, the performance edge is also
improved. Therefore, the DLR increases the steady-state performance gains of
languages that provide their own type cache, compared to start-up.

Table 3.2 shows how Fantom is the language with the smallest steady-state
performance gain compared to the start-up one. The average steady-state ben-
efit (1,897%) is 107% higher than the start-up one (915%). In the Fantom lan-
guage, every dynamically typed operation generates the same type of call-site:
InvokeMember (detailed in 3.2.4). Since the DLR creates a different cache for each
type of call-site [115], the optimized code for Fantom incurs lower performance
penalties caused by cache initialization in start-up. Therefore, in languages that
use the same type of call-site for many different operations, the start-up perfor-
mances may be closer to the steady-state ones.

When analyzing the performance gains per application, Pybench shows the
lowest performance improvements across methodologies (Table 3.2). The syn-
thetic programs of the Pybench benchmark perform many iterations over the
same code (i.e., call-sites). This causes many cache hits, bringing the steady-state
performance gains closer to the start-up ones. So, the important steady-state per-
formance improvements are applicable not only to long-running applications, but
also to short-running ones that perform many iterations over the same code.

3.4.4 Memory consumption

Figure 3.16 (and Table 3.3) shows the memory consumption increase introduced
by our performance optimizations. For each language and application, we present
the memory resources used by the optimized programs (DLR), relative to the
original ones (CLR). Optimized Fantom, Boo, StaDyn, Cobra and VB programs
consume 6.42%, 45.32%, 53.75%, 57.67% and 64.48% more memory resources

42

3.4. Multiple dispatch (multi-methods)

Benchmark VB Boo Fantom Cobra StaDyn

Pybench
(startup) 149% 228% 884% 885% 288%
(steady) 203% 307% 947% 1,141% 377%

FFT
(startup) 24% 70% 2,000% 540% 179%
(steady) 370% 415% 2,503% 916% 423%

HeapSort
(startup) 56% 37% 1,380% 703% 187%
(steady) 325% 202% 2,104% 1,281% 426%

Sparse (startup) 27% 106% 781% 188% 61%
Matmult (steady) 583% 817% 2,003% 542% 237%

RayTracer
(startup) 378% 7% 873% 307% 44%
(steady) 1,312% 731% 2,752% 877% 518%

Points
(startup) 246% 5% 531% 262% 104%
(steady) 964% 250% 1,500% 847% 215%

Pystone
(startup) 75% 161% 608% 358% 136%
(steady) 297% 312% 2,155% 1,801% 227%

Table 3.2: Performance benefits for both start-up and steady-state methodologies.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Pybench FFT HeapSort RayTracer SparseMatmult Points Pystone

M
e

m
o

ry
 C

o
n

su
m

p
ti

o
n

 I
n

c
re

a
se

VB Boo Fantom Cobra StaDyn

Figure 3.16: Memory consumption increase.

than the original applications.

3.4.4.1 Discussion

We compare the memory consumption increase caused by the DLR (Figure 3.16)
with the corresponding performance gains (Figures 3.14 and 3.15). In both start-
up and steady-state scenarios, performance benefits are significantly higher than
the corresponding memory increase, for all the languages measured.

Fantom is the language with the smallest memory increase. Table 3.3 shows
how Fantom is the language that originally requires more memory resources,
hence reducing the relative memory increase value. Additionally, in the previous
section we mentioned that Fantom uses the same type of DLR call-site for every
dynamic operation. Since the DLR has a shared cache for each type of call-
site [115], Fantom does not consume the additional resources of the rest of call-
sites. Therefore, the memory increase introduced by the DLR may depend on
the number of services used.

43

3.4. Multiple dispatch (multi-methods)

VB Boo Fantom Cobra StaDyn
CLR DLR CLR DLR CLR DLR CLR DLR CLR DLR

Pybench 13.93 22.58 14.03 20.99 22.29 23.30 13.67 21.65 19.06 23.43
FFT 15.00 26.18 15.02 23.12 22.94 24.89 15.54 24.79 17.66 22.67
HeapSort 14.31 24.61 14.67 23.01 22.23 24.29 14.10 24.30 11.94 21.97
RayTracer 14.87 27.40 16.96 24.88 23.73 26.50 15.68 26.35 13.78 22.54
SparseMatmult 14.47 25.21 14.79 23.09 23.34 24.31 15.43 24.58 14.07 22.29
Points 19.72 22.97 20.59 22.79 23.42 24.13 17.26 23.09 14.35 21.58
Pystone 14.65 26.21 15.55 23.24 23.36 24.31 16.05 24.95 12.27 22.01

Table 3.3: Memory consumption expressed in MBs.

Analyzing the applications in Figure 3.16, the Points program shows the low-
est average memory increase. This application also presents the smallest average
start-up and steady-state performance gains (Sections 3.4.2 and 3.4.3). As dis-
cussed in the previous paragraph, Points is the application that executes the
smallest number of DLR call-sites, causing the lowest performance and memory
increases.

44

Chapter 4

Optimizations based on the SSA
form

Most dynamic languages allow variables to have different types in the same scope.
Figure 4.1 shows an example C# program where the dynamically typed variable
number has different types in its scope [17]. First, a string is assigned to number

(line 2), representing a real number in the scientific format; then, the string is
converted into a double (line 3); and it is finally converted into a floating-point
format string with the appropriate number of decimals (line 5).

Unlike dynamic languages, most statically typed languages force a variable to
have the same type within its scope. Even languages with static-type inference
(type reconstruction) such as ML [135] and Haskell [136] do not permit the as-
signment of different types to the same reference in the same scope. This also
happens in the Java and .Net platforms. At the virtual machine level, assembly
variables should be defined with a single type in their scope. If we want a vari-
able to hold different types (as dynamic languages do), the general Object type
should be used.

Different issues appear when dynamically typed variables are declared as object
(Figure 4.2 shows an example). The compiler must generate conversion opera-
tions (casts) to change the type of the expression (from object to the expected
type) [54]. Lines 3, 4 and 5 in Figure 4.2, show how casts should be added when
the number variable is used. If the casts are not added, the expressions cannot
be executed by the virtual machine. For instance, the ToString message passed
to number in line 5 cannot be invoked without the cast, because Object does not
provide a ToString method receiving the string format as a parameter.

01: Console.Write("Scientific format: ");
02: dynamic number = Console.ReadLine();
03: number = Double.Parse(number);
04: int decimalDigits = NumberOfDecimalDigits(number);
05: number = number.ToString("F" + decimalDigits);
06: Console.WriteLine("Fixed point format: {0}.", number);

Figure 4.1: The dynamically typed reference number holds different types in the same scope.

45

4.1. Multiple dispatch (multi-methods)

01: Console.Write("Scientific format: ");
02: object number = Console.ReadLine();
03: number = Double.Parse((string)number);
04: int decimalDigits = NumberOfDecimalDigits((double)number);
05: number = ((double)number).ToString("F" + decimalDigits);
06: Console.WriteLine("Fixed point format: {0}.", number);

 Figure 4.2: Type conversions must be added when number is declared as object.

01: Console.Write("Scientific format: ");
// number0 is inferred to string

02: dynamic number0 = Console.ReadLine();
// number1 is inferred to double

03: dynamic number1 = Double.Parse(number0);
04: int decimalDigits = NumberOfDecimalDigits(number1);

// number2 is inferred to string

05: dynamic number2 = number1.ToString("F" + decimalDigits);
06: Console.WriteLine("Fixed point format: {0}.", number2);

Figure 4.3: A SSA transformation of the code in Figure 4.1.

Another issue with object references is that the type conversions imply an im-
portant runtime performance penalty [137]. A cast operation checks the dynamic
type of an expression, analyzing whether the runtime conversion is feasible. This
runtime type inspection consumes significant execution time in both the Java [15]
and .Net [66] platforms. Sometimes, the compiler does not infer the type of a
reference (e.g., a dynamic parameter). In these cases, reflection is used and the
performance penalty is even higher [15, 138, 139].

Therefore, we propose an alternative approach to compile dynamically typed
local references, avoiding the performance cost of casts and reflection. Programs
are transformed so that each dynamically typed reference is statically assigned
at most once, as shown in Figure 4.3. Three different number variables with
three different types are declared. The Abstract Syntax Tree (AST) is modified
and passed to the type inference phase of an existing compiler, before generat-
ing binary code for the .Net platform. The generated code avoids type casts
and reflective calls, providing better runtime performance (Section 4.3). The
AST transformations proposed are a modification of the classical Static Single
Assignment (SSA) transformation used for compiler optimizations [84].

Figure 4.3 shows a simple case, where the execution flow is sequential. How-
ever, the transformation into SSA form must also consider conditional and itera-
tive control flow structures, where dynamically typed variables may have different
types depending on the execution flow [22] –detailed in Section 4.2.

In this chapter, we use SSA transformations to efficiently support variables
with different types in the same scope, as dynamic languages do. These transfor-
mations have been include in the StaDyn programming language implementation,
which generates code for the .Net framework. Similar to the Java platform, .Net
does not allow one variable to have different types in the same scope (object must
be used). The code generated by our compiler performs significantly better than
the use of dynamic in C#, avoiding unnecessary type conversions and reflective
invocations.

46

4.1. Multiple dispatch (multi-methods)

i0 = 0;

res0 = "0";

a0 = 1;

b0 = 1;

(i? < n0)?

(i? < 2)?

res2 = a? + b?;

b1 = a?;

a1 = res2;

res1 = 1;

i1 = i? + 1;

return res?;

true

true

false

false

i0 = 0;

res0 = "0";

a0 = 1;

b0 = 1;

(i2 < 2)?

res2 = a3 + b3;

b1 = a3;

a1 = res2;

res1 = 1;

res3 = Φ(res1, res2)

a2 = Φ(a3, a1)

b2 = Φ(b3, b1)

i1 = i2 + 1;

return res4;

true

true

false

false

i2 = Φ(i0, i1)

res4 = Φ(res0, res3)

a3 = Φ(a0, a2)

b3 = Φ(b0, b2)

(i2 < n0)?

Figure 4.4: CFG for the code in Figure 4.5 (left) and its SSA form (right).

4.1 SSA form

A program is in SSA form if every variable is statically assigned at most once [84].
The SSA form is used in modern compilers to facilitate code analysis and op-
timizations. Examples of such optimizations are elimination of partial redun-
dancies [82], constant propagation [83] and increase of parallelism in imperative
programs [140].

In code within a basic block (a straight-line code sequence with no branches),
the transformation into SSA form is quite simple. First, a new variable is created
when an expression is assigned to it. The code in Figure 4.1 is transformed to
the one in Figure 4.3, creating new numberi variables in lines 2, 3 and 5. Second,
the use of each variable is renamed to the last “version” of that variable. For
instance, the use of number in line 4 of Figure 4.1 is replaced with number1 in
Figure 4.3.

This simple algorithm cannot be applied to code with branches. Conditional
and loop statements define different execution flow paths, making it more difficult
to decide which variable version must be used. This is shown in the left-hand
side of Figure 4.4, the Control Flow Graph (CFG) of the program in Figure 4.51.

1The aim of assigning an initial "0" string value to res is to later explain flow-sensitive
types: how a variable may have two different types (string and int) depending on the execution
flow.

47

4.2. Multiple dispatch (multi-methods)

01: dynamic Fibonacci(dynamic n) {
02: dynamic i = 0, res = "0";
03: dynamic a = 1, b = 1;
04: while (i < n) {
05: if(i < 2)
06: res = 1;
07: else {
08: res = a + b;
09: b = a;
10: a = res;
11: }
12: i = i + 1;
13: }
14: return res;
15: }

Figure 4.5: An iterative Fibonacci function using dynamically typed variables.

Variables i, a and b have different versions, and their use in some expressions
depends on the execution flow (represented as i?, a? and b? in the left-hand side
of Figure 4.4). For instance, the use of the i variable in the while condition may
be referring to the initial i0 variable or to i1 defined at the end of the loop.

To solve this problem, the CFG of the program (left-hand side of Figure 4.4) is
processed, inserting invocations to a fictitious Φ-function at the beginning of join
nodes (right-hand side of Figure 4.4). The assignment i2=Φ(i0,i1) generates a
new definition for i2 by choosing either i0 or i1 depending on the execution path
taken (control comes from the first basic block or the loop, respectively)1. The
following accesses of the i variable will use the i2 version (in the while and if

conditions), until a new assignment is done (the last line in the loop).

4.2 SSA form to allow multiple types in the

same scope

As mentioned, the SSA form is commonly used to optimize programs perform-
ing intermediate code transformations. In this dissertation, we adapt the SSA
transformations to allow dynamic variables to have multiple types in the same
scope. The SSA form facilitates the inference of a single type for each variable
version, representing flow sensitive types with union types [33]. We first describe
the SSA transformation for basic blocks (Section 4.2.1), and then for conditional
(Section 4.2.2) and iterative (Section 4.2.3) statements. Flow sensitive types are
discussed in Section 4.2.4 and Section 4.2.5 describes the implementation.

1The Φ-function is a notational fiction used for type inference purposes (Section 4.2.4).
To implement such a function that knows which execution path is taken at runtime, we add
additional move statements in the transformed program (Section 4.2.2).

48

4.2. Multiple dispatch (multi-methods)

4.2.1 Basic blocks

A basic block is a straight-line code sequence with no branches. Statements in
a basic block are executed sequentially, following a unique execution path in the
CFG. Since no jump occurs in a basic block, no Φ-function is needed in its SSA
form.

Figure 4.6 shows the algorithm proposed to transform a sequence of state-
ments into its SSA form. The first parameter is the sequence of statements to be
transformed (its Abstract Syntax Tree, AST). The second parameter holds the
last version of each variable: a map that associates to each dynamic local variable
in the statements (including the function parameters) one integer representing its
last version number. The transformed AST and one map with the new variable
versions are returned.

The meta-variables var range over variables; i, j, k and n range over integers;
and exp and stmt range over expressions and statements, respectively. Maps
(association lists) are represented as {key1 7→ content1, . . . , keyn 7→ contentn},
where n is the number of pairs in the map. The empty map is represented through
{}. If m is one map, then m[var 7→ i] is a new map identical to m except that
var is overridden/added by i. The m[var] expression represents the lookup of
the value associated with the var key. Fixed-length font code (e.g., while exp

block) represent ASTs. The term [stmt 7→ stmtout]block denotes the AST
obtained by replacing all the occurrences of stmt in block by stmtout.

SSAstmts in Figure 4.6 calls SSAif (Section 4.2.2) or SSAwhile (Section 4.2.3)
when, respectively, an if-else or while statement is analyzed. Otherwise, the
SSAstmt function is called for the rest of statements. The transformed statement
(stmtout) replaces the previous statement (stmt) in the returned AST (blockout).

Figure 4.7 shows the SSA transformation of any statement but if-else and
while. If a dynamic variable is defined, the 0 version of that variable is added
to the output map. In the returned SSA form, the variable is replaced with its 0
version. If the declaration has an initialization expression, that expression must
also be transformed. An example is shown in line 2 of Figure 4.1, where number

declaration is replaced by number0.

The statement in SSAstmt may not be a variable definition (Figure 4.7). In
that case, all the expressions in the statement are transformed by SSAexp. Then,
all the occurrences of the original expression (exp) in the statement (stmtout) are
replaced by the transformed ones (expout). This is the case of line 3 in Figure 4.1,
replacing the argument number by number0.

SSAexp in Figure 4.8 transforms the expressions. When the expression is an
assignment and the left-hand side is a dynamic variable (it was included in mapin
by SSAstmt), the variable is replaced with a new version (i+ 1). The right-hand
side of the assignment is replaced with its SSA form (expout). For example, in
line 5 of Figure 4.1 number on the right is replaced with number1, and a new
version is set to the variable on the left (number2). For the rest of expressions,
SSAexp replaces variables with their last version.

49

4.2. Multiple dispatch (multi-methods)

SSAstmts(blockin,mapin) → block,map
mapout ← mapin
blockout ← blockin
for all stmt in blockout do

if stmt is if exp block true (else block false)? then
stmtout,mapout ← SSAif (exp, blocktrue, blockfalse,mapout)

else if stmt is while exp block then
stmtout,mapout ← SSAwhile(exp, block,mapout)

else
stmtout,mapout ← SSAstmt(stmt,mapout)

end if
blockout ← [stmt 7→ stmtout]blockout

end for
return blockout,mapout

end

Figure 4.6: SSA transformation of a sequence of statements.

SSAstmt(stmtin,mapin) → stmt,map
if stmt is dynamic var (=exp)? then

expout,mapout ← SSAexp(exp,mapin)
mapout ← mapout[var 7→ 0]
return dynamic var 0(=exp out)?,mapout

else
mapout ← mapin
stmtout ← stmtin
for all exp in stmtin do

expout,mapout ← SSAexp(exp,mapout)
mapout ← [exp 7→ expout]stmtout

end for
return stmtout,mapout

end if
end

Figure 4.7: SSA transformation of statements.

SSAexp(expin,mapin) → exp,map
if expin is var =exp 1 and mapin = {. . . , var 7→ j, . . .} then

expout,mapout ← SSAexp(exp1,mapin)
i← mapout[var]
return var i+1 =exp out ,mapout[var 7→ i + 1]

else
expout ← expin
for all var 7→ i in mapin do

expout ← [var 7→ vari]expin
end for
return expout,mapin

end if
end

Figure 4.8: SSA transformation of expressions.

50

4.2. Multiple dispatch (multi-methods)

(i < 2)?

res = a + b;

b = a;

a = res;

res = 1;

...

true false

(i0 < 2)?

res2 = a0 + b0;

b1 = a0;

a1 = res2;

res3 ⇐ res2
a2 ⇐ a1
b2 ⇐ b1

res1 = 1;

res3 ⇐ res1
a2 ⇐ a0
b2 ⇐ b0

res3 = Φ(res1, res2)

a2 = Φ(a0, a1)

b2 = Φ(b0, b1)

...

true false

Figure 4.9: Original CFG of an if-else statement (left) and its SSA form (right).

4.2.2 Conditionals statements

As discussed in Section 4.1, conditional statements define different execution
paths. The fictitious Φ-function knows which execution path is taken. The
Φ-function may be implemented by adding move statements to each incoming
edge [85], as shown in the right of Figure 4.91. The res3 ⇐ res1 move state-
ment means that the value of res1 is stored in res3. Then, if the if or the else

block is executed, the respective res3 ⇐ res1 or res3 ⇐ res2 statement will be
executed, making res3 = Φ(res1, res2) assign the appropriate value to res3.

Figure 4.10 shows the algorithm of the if-else statement transformation.
The condition and if and else blocks are transformed. block3 represents the join
block in Figure 4.9, which is initialized to an empty list ([]). All the dynamic

variables used in the statement (in mapin) are analyzed. If the variable version
after the condition (i) is different to the one after the if-else statement (k),
then that variable is assigned in the if or the else block. If so, the variable may
be assigned in the if (j = k) or in the else block (otherwise).

When the variable is assigned in the else body, its version is incremented,
and a new Φ-function is added to the join block (block3) –list :: stmt represents
a new list where stmt has been appended to list. The new version of the variable
(k + 1) is computed from the one in the if (j) and the else (k) blocks using
a Φ-function. In the example in Figure 4.9, res3 = Φ(res1, res2) is added to
the join block, since res is assigned in both if and else blocks. For the same
reason, two move statements (res3 ⇐ res1 and res3 ⇐ res2) are added at the
end of the if (block1) and else (block2) blocks. The case when one variable is
only assigned in the if block (the case where i = j and j 6= k in Figure 4.10) is
quite similar –there is no example of this case in Figure 4.9.

The SSAif algorithm returns the transformed AST of the if-else statement
and the variable versions in map3. A new join block (block3) is added after

1For the sake of brevity, the initialization of i0, res0, a0 and b0 is not shown.

51

4.2. Multiple dispatch (multi-methods)

SSAif (expcond, blocktrue, blockfalse,mapin) → stmt,map
expout,map1 ← SSAexp(expcond,mapin)
block1,map2 ← SSAstmts(blocktrue,map1)
block2,map3 ← SSAstmts(blockfalse,map2)
block3 ← []
for all var in mapin do

i← map1[var]
j ← map2[var]
k ← map3[var]
if i 6= k then // variable assigned in if or else block

if j = k then // variable assigned in if block but not in else

map3 ← map3[var 7→ k + 1]
block3 ← block3 :: var k+1 =Φ(var j ,var i)

block1 ← block1 :: var k+1 ⇐ var j

block2 ← block2 :: var k+1 ⇐ var i

else// variable assigned in else block

map3 ← map3[var 7→ k + 1]
block3 ← block3 :: var k+1 =Φ(var j ,var k)

block1 ← block1 :: var k+1 ⇐ var j

block2 ← block2 :: var k+1 ⇐ var k

end if
end if

end for
return if(exp out)block 1 else block 2 ;block 3 ,map3

end

Figure 4.10: SSA transformation of if-else statements.

the transformed AST, holding the necessary Φ-function statements added by the
SSAif algorithm (bottom right block in Figure 4.9).

4.2.3 Loop statements

We define the SSA transformation for while statements –other loops follow a
similar approach [141]. Figure 4.11 shows how the CFG has a join block at the
beginning of the while statement. This block can be reached from the previous
block outside the while loop (the first block in Figure 4.11), and from the block
of the while body. Since there are two edges pointing to the block, Φ-functions
must be added before the condition (right-hand side of Figure 4.11). Similarly,
move statements must be placed at the end of the two blocks preceding the
condition block (the first block and the while body in Figure 4.11).

Figure 4.12 details the algorithm for while statements. The condition and
body blocks are first transformed into their SSA form. Then, all the dynamic

variables are analyzed. If there is an assignment in the condition or the while

body (i 6= k), a new version is created to hold the new value. When the variable
is assigned in the while body (i = j), a Φ-function is added at the beginning
of the condition block (blockcond1). An example is the i2=Φ(i0,i1) statement
shown in Figure 4.11.

52

4.2. Multiple dispatch (multi-methods)

i = 0;

...

i = i + 1;

...

true false

(i < n)?

i0 = 0;

i2 ⇐ i0

...

i1 = i2 + 1;

i2 ⇐ i1

...

true false

i2 = Φ(i0, i1)

(i2 < n0)?

i0 = 0;

i2 ⇐ i0

...

i1 = i0 + 1;

i2 ⇐ i1

...

true

i2 = Φ(i0, i1)

(i0 < n0)?

false

Figure 4.11: Original CFG of a while statement (left), and intermediate SSA representation
(middle) and its final SSA form (right).

For the special case that one dynamic variable is assigned in the while condi-
tion, a Φ-function with 3 parameters is used: one for the version outside the loop
(vari); another one for the new version in the condition (varj); and the last one,
in case the variable is also assigned in the body block (vark).

As mentioned, move statements must be placed at the end of the blocks pre-
ceding the Φ-functions. Therefore, if a variable is assigned in the condition or
the body, one move is added at the end of the block before the while state-
ment (blockbefore), and another one at the end of the while body (blockbody)

1. In
Figure 4.11, these two move statements are i2 ⇐ i0 and i2 ⇐ i1, respectively.

We have seen how Φ-functions are added before the loop condition. In the
middle of Figure 4.11, the new i2=Φ(i0,i1) statement sets to i2 the appropriate
value of the i variable. Therefore, the subsequent uses of i in the condition
and body must be replaced with i2. However, the existing CFG (in the middle
of Figure 4.11) uses i0, whereas i2 must be used instead (right-hand side of
Figure 4.11). This behavior is defined in the two last assignments of the algorithm
in Figure 4.12. In the AST of the condition (expcond), the original variable version
(vari) is substituted by the new one (vark+1). The same substitution is applied
to the while body (blockbody).

4.2.4 Union types

Figure 4.13 shows the architecture of the StaDyn compiler. After the SSA trans-
formation, a type inference phase annotates the AST with types. In StaDyn, one
dynamic variable may have different types in the same scope. The SSA phase
creates a new variable version for each assignment. Therefore, in basic blocks a
different type is inferred for each dynamic variable. This is the case of the i, a

1For assignments in the condition, an additional move is required at the end of the condition
block (blockcond2).

53

4.2. Multiple dispatch (multi-methods)

SSAwhile(expcond, blockin,mapin) → stmt,map
expcond,map1 ← SSAexp(expin,mapin)
blockbody,map2 ← SSAstmts(blockin,map1)
blockbefore ← []
blockcond1 ← []
blockcond2 ← []
for all var 7→ i in mapin do

j ← map1[var]
k ← map2[var]
if i 6= k then // variable assigned in the condition or the body

map2 ← map2[var 7→ k + 1]
if i = j then // variable assigned in the body

blockcond1 ← blockcond1 :: var k+1 =Φ(var i ,var k)

else // variable assigned in the condition

blockcond1 ← blockcond1 :: var k+1 =Φ(var i ,var j ,var k)

blockcond2 ← blockcond2 :: var k+1 ⇐ var j

end if
blockbefore ← blockbefore :: var k+1 ⇐ var i

blockbody ← blockbody :: var k+1 ⇐ var k

// the initial version is replaced with the LHS of the Φ-function

expcond ← [vari 7→ vark+1]expcond
blockbody ← [vari 7→ vark+1]blockbody

end if
end for
return block before ;while(block cond 1 ;exp cond ;block cond 2)block body ,map2

end

Figure 4.12: SSA transformation of while statements.

54

4.2. Multiple dispatch (multi-methods)

Source
Code To

ke
n

s

A
S
Ts

A
S
Ts

w
it

h

in
fe

rr
e

d
 t

y
p

e
s

Target
Code

A
S
Ts

(s
in

g
le

 s
ta

ti
c

a
ss

ig
n

m
e

n
t)

Lexing Parsing SSA
Code

Generation

Type

Inference

Figure 4.13: A simplification of the StaDyn compiler architecture [1].

(i < 2)?

res = a + b;

b = a;

a = res;

res = 1;

...

true false

(i0 < 2)?

res2 = a0 + b0;

b1 = a0;

a1 = res2;

res3 ⇐ res2
a2 ⇐ a1
b2 ⇐ b1

res1 = 1;

res3 ⇐ res1
a2 ⇐ a0
b2 ⇐ b0

res3 = Φ(res1, res2)

a2 = Φ(a0, a1)

b2 = Φ(b0, b1)

...

true false

Figure 4.14: Type inference of the SSA form.

and b variables in Figure 4.14. This figure shows an extension of the SSA form
with type annotations.

However, in conditional and loop statements, dynamic variables may have
different types depending on the execution flow. In the example in Figure 4.14, if
the first evaluation of the condition in the while loop is false, the returned value
is string; otherwise, the result is an integer number. To represent these context
sensitive types, we use union types [27].

A union type T1∨T2 denotes the ordinary union of the set of values belonging
to T1 and the set of values belonging to T2 [142], representing the least upper
bound of T1 and T2 [143]. A union type holds all the possible types a variable
may have. The operations that can be applied to a union type are those accepted
by every type in the union type. For instance, since res4 in Figure 4.14 has the
string∨ int type, the + operator may be applied to it, but no the division [27].

The way union types are inferred is straightforward thanks to the Φ-function.
Anytime a var1 = Φ(var2, var3) statement is analyzed, the type of var1 is inferred
to a union type collecting the types of var2 and var3. In Figure 4.14, the type
of res4 is string ∨ int, since the types of res0 and res3 are string and int,
respectively –notice that T ∨ T = T .

4.2.5 Implementation

The SSA transformations proposed in this article have been included in the
StaDyn compiler [144] following the Visitor design pattern [43]. Each visit

55

4.3. Multiple dispatch (multi-methods)

method of the SSAVisitor class traverses one type of node in the AST, following
the algorithms described in the previous subsections. The visit methods return
the SSA form of the traversed AST node.

The unique parameter of the visit method is an instance of the SSAMap

class, which provides the different services of the map abstraction used in our
algorithms. The parameter is modified inside the visit method, so we clone it
before each invocation to save its original state.

Variables in the AST were added an integer field representing its version. The
SSAVisitor class modifies these versions accordingly to the proposed algorithms.
In the code generation phase, a different variable is generated for each different
variable version. We generate a var__n variable for varn. In the generated code,
most variables are declared with one single type because of the SSA transforma-
tion. Only those variables inferred as union types are declared as object and
optimized with nested type inspections [1, 66].

A new PhiStatement was added to the AST. Its only purpose is to infer union
types (Section 4.2.4) in the type inference phase. No code is generated for the
PhiStatement. We also added a MoveStatement, which is translated into an
assignment statement.

4.3 Evaluation

We evaluate the runtime performance benefit of using the SSA form to efficiently
support variables with different types in the same scope. We measure the exe-
cution time and memory consumption of StaDyn programs compiled with and
without the SSA phase, and compare it to C#. We also measure the compilation
time consumed by the SSA algorithm.

4.3.1 Methodology

We followed the methodology described in Section 3.4.1 for data analysis (Sec-
tion 3.4.1.3) and measurement (Section 3.4.1.4). We measured runtime execution,
memory consumption and compilation time of the Pybench, Pystone, Points and
the C# Java Grande benchmarks described in Section 3.4.1.2.

In this case, we measured the following language implementations:

– StaDyn. The statically and dynamically typed language described in Sec-
tion 2.1. It implements the SSA transformation algorithms described in
this chapter, gathering type information of dynamic references. This type
information is used to improve compile-time error detection and runtime
performance [141].

– StaDyn without SSA. This is the previous version of StaDyn, where the
SSA transformations were not supported. In this case, dynamic variables
are translated to object references. When arithmetic, comparison or logic

56

4.3. Multiple dispatch (multi-methods)

operators are used with dynamic variables, the compiler generates nested
type inspections and casts [66]. For method invocation, field access and
array indexing, introspection is used.

– C# 4.5.2. This version of C# combines static and dynamic typing. It gen-
erates code for the DLR, released as part of the .Net Framework 4+ [115].
The DLR optimizes the use of dynamic references implementing a three-
level runtime cache [145].

We also measured the compilation time of the existing C# compilers, to com-
pare them to the StaDyn compiler:

– CSC (CSharp Compiler) 4.5.2, the proprietary C# compiler developed by
Microsoft and shipped with the .Net Framework.

– Roselyn, the code name for the .Net Compiler Platform [146]. It pro-
vides open-source compilation services and code analysis APIs for C# and
Visual Basic .Net. As StaDyn, it was developed in C#, over the .Net
Framework.

– Mono C# compiler 4.2, another open source C# compiler developed by
Xamarin [147]. It was written in C# and it follows the ECMA 334 C#
language specification [148].

– The StaDyn compiler, with and without the SSA phase.

All the measurements are detailed in the tables included in Appendix B.

4.3.2 Start-up performance

Figure 4.15 shows the start-up performance for the Pybench micro-benchmark.
StaDyn is the language implementation that requires the lowest execution time
for all the tests. If no SSA phase is used to infer the types of local variables,
execution time is 13 times higher. This shows the impact of inferring the type
of variables statically, instead of using type casts and introspection. The C#
approach uses the DLR runtime type cache. This option requires, on average, 33
times more execution time than the StaDyn programs.

The DLR cache shows better performance than the use of object (StaDyn
without SSA) in dynamically typed method invocations (calls) and map indexing
operations (dicts). In these two programs, all the operations against dynamic ref-
erences are translated to introspection calls, when the StaDyn compiler does not
implement the SSA transformation. This shows how the DLR provides important
performance benefits compared to reflection [145]. The constructs, lists, lookups
and strings programs also utilize introspection. Figure 4.15 shows how, in these
programs, the difference between C# and StaDyn without SSA is not as high
as for those programs that just generate nested type inspections [14] (arithmetic
and numbers).

On the contrary, the instances, new instances and exceptions C# programs
show the worst relative performances. Since these programs have almost no

57

4.3. Multiple dispatch (multi-methods)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Arithmetic Calls Constructs Dicts Exceptions Instances Lists Lookups NewInstances Numbers Strings

E
xe

cu
ti

o
n

 t
im

e
 r

e
la

ti
v

e
 t

o
 S
ta
D
y
n

w
it

h
o

u
t

S
S

A

C# StaDyn without SSA StaDyn

6.30
4.44

11.47

4.95
10.88

4.82

1.62

Figure 4.15: Start-up performance of Pybench, relative to StaDyn without SSA.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Pybench FFT HeapSort SparseMatmult RayTracer Points Pystone

E
xe

cu
ti

o
n

 t
im

e
 r

e
la

ti
v

e
 t

o
 S
ta
D
y
n

w
it

h
o

u
t

S
S

A

C# StaDyn without SSA StaDyn

1.92
2.29

2.23

Figure 4.16: Start-up performance of all the benchmarks, relative to StaDyn without SSA.

dynamic references, the DLR initialization penalty is more significant (and the
cache benefits are negligible).

Figure 4.16 shows the start-up performance for all the programs described
in Section 3.4.1.2 –average results for Pybench are also included. As for Py-
bench, StaDyn obtains the best runtime performance in all the benchmarks.
The StaDyn version without SSA requires 6.38 times more execution time. On
average, C# is 6.8 factors slower than StaDyn.

FFT, HeapSort and SparseMatmult make intensive use of array operations. In
this case, StaDyn without SSA uses reflective calls, performing worse than the
DLR (C#). The rest of programs (RayTracer, Points, Pystone and Pybench) per-
form many arithmetical operations, offsetting the use of reflection. This common
characteristic of these programs make the StaDyn version without SSA perform
faster than C#.

58

4.3. Multiple dispatch (multi-methods)

0.0

0.5

1.0

1.5

2.0

Pybench FFT HeapSort SparseMatmult RayTracer Points Pystone

E
xe

cu
ti

o
n

 t
im

e
 r

e
la

ti
v

e
 t

o
 C

#

C# StaDyn without SSA StaDyn

4.00 4.38

12.30

8.20
9.37

Figure 4.17: Steady-state performance of all the benchmarks, relative to C#.

4.3.3 Steady-state performance

We executed the same programs following the steady-state methodology described
in Section 3.4.1.3. Figure 4.17 shows the runtime performance of all the bench-
marks relative to the C# language. With this methodology, StaDyn is also the
language with the best performance. It is on average 4.5 and 21.7 times faster
than C# and StaDyn without SSA, respectively.

In steady state, the DLR cache used by C# shows a significant improvement.
In this case, C# is faster than StaDyn, if the SSA transformation is not provided.
With this methodology, the DLR cache is able to predict the dynamic type of
many variables, since the same code is executed many times.

Table 4.1 shows the steady-state performance relative to the startup-up one.
C# is the language that shows the best improvement due to its runtime cache.
Steady-state programs in C# are from 130% to 2,410% faster than its start-up
version. As discussed, the C# cache initialization penalty is obviated in the
steady-state methodology.

StaDyn without SSA shows the lowest performance improvements, ranging
from 2.59% to 59%. This language implementation has no initialization penalty,
since it does not provide any cache. The slight steady-state improvement is
caused by the runtime optimizations implemented by the CLR. StaDyn is in the
middle of both approaches. It uses the runtime cache of the DLR for dynamic

arguments; the exact type for dynamic local references with one type; and object

with dynamic type inspections for union types (Section 4.2.4). Indeed, the two
programs with more dynamic parameters (Pystone and Raytracer) are those with
the highest performance gains.

59

4.3. Multiple dispatch (multi-methods)

C#
StaDyn

StaDyn
without SSA

Pybench 227.48% 28.15% 64.62%
FFT 487.76% 56.36% 128.57%
HeapSort 218.90% 13.20% 369.39%
RayTracer 130.13% 2.59% 482.22%
SparseMatmult 2,410.43% 59.01% 1,678.48%
Points 358.94% 4.83% 61.41%
Pystone 2,333.77% 16.69% 701.20%

Table 4.1: Steady-state runtime performance gain, relative to start-up.

0

10

20

30

40

50

Pybench FFT HeapSort SparseMatmult RayTracer Points Pystone

M
e

m
o

ry
 c

o
n

su
m

p
ti

o
n

 i
n

 M
B

CSharp StaDyn without SSA StaDyn

Figure 4.18: Memory consumption.

4.3.4 Memory consumption

Figure 4.18 shows the memory consumed by all the programs. The SSA transfor-
mation helps the compiler to infer the types of local variables, making StaDyn
the language implementation with the lowest memory consumption. It avoids the
use of reflection and runtime type inspections done by the previous implementa-
tion, which consumes 34.7% more memory. The DLR cache used by C# requires
86.8% more memory than StaDyn.

In the FFT program, C# consumes less memory resources than StaDyn with-
out SSA. This program performs many computations over different variables. The
nested type inspections and casts generated for these computations require signif-
icantly more code that the DLR approach. In fact, the executable file generated
by StaDyn without SSA is 66.7% bigger than the generated by C#.

4.3.5 Compilation time

The StaDyn compiler provides runtime performance benefits by transforming
programs into their SSA form, facilitating type inference of dynamic references.
This process provides significant benefits in runtime performance (Sections 4.3.2
and 4.3.3), but requires more compilation time. To evaluate this cost, we measure

60

4.3. Multiple dispatch (multi-methods)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

C
o

m
p

il
a

ti
o

n
 t

im
e

s
re

la
ti

v
e

 t
o

 S
ta
D
y
n

w
it

h
o

u
t

S
S

A

CSC Roslyn Mono StaDyn without SSA StaDyn

Figure 4.19: Compilation time relative to StaDyn without SSA.

compilation time of StaDyn with and without the SSA phase. We also measure
the compilation time of the CSC commercial compiler developed in C, and its
open source C# version (Roslyn). We use the start-up methodology described in
Section 3.4.1.3.

Figure 4.19 shows the average compilation time for all the benchmarks. The
StaDyn compiler requires 13% more compilation time when the SSA phase is
enabled. This value is the compilation time cost of the SSA transformations
proposed in this article. The native CSC requires 13% the compilation time
used by StaDyn. When comparing the compilers implemented over the .Net
framework (in C#), the StaDyn compiler is 308% and 167% faster than Mono
and Roslyn, respectively.

61

Chapter 5

Optimizing Multimethods with
Static Type Inference

Object-oriented programming languages provide dynamic binding as a mechanism
to implement maintainable code. Dynamic binding is a dispatching technique
that postpones until runtime the process of associating a message to a specific
method. Therefore, when the toString message is passed to a Java object, the
actual toString method called is that implemented by the dynamic type of the
object, discovered by the virtual machine at runtime.

Although dynamic binding is a powerful tool, widespread languages such as
Java, C# and C++ only support it as a single dispatch mechanism: the actual
method to be invoked depends on the dynamic type of a single object. In these
languages, multiple-dispatch is simulated by the programmer using specific design
patterns, inspecting the dynamic type of objects, or using reflection.

In languages that support multiple-dispatch, a message can be dynamically
associated to a specific method based on the runtime type of all its arguments.
These multiple-dispatch methods are also called multi-methods [100]. For ex-
ample, if we want to evaluate binary expressions of different types with differ-
ent operators, multi-methods allow modularizing each operand-operator-operand
combination in a single method. In the example C# code in Figure 5.1, each
Visit method implements a different kind of operation for three concrete types,
returning the appropriate value type. As shown in Figure 5.2, the values and
operators implement the Value and Operator interface, respectively. Taking two
Value operands and an Operator, a multi-method is able to receive these three
parameters and dynamically select the appropriate Visit method to be called.
It works like dynamic binding, but with multiple types. In our example, a triple
dispatch mechanism is required (the appropriate Visit method to be called is
determined by the dynamic type of its three parameters).

Polymorphism can be used to provide a default behavior if one combination of
two expressions and one operator is not provided. Since Value and Operator are
the base types of the parameters (Figure 5.2), the last Visit method in Figure 5.1
will be called by the multiple dispatcher when there is no other suitable Visit

method with the concrete dynamic types of the arguments passed. An example

62

5.1.1. The Visitor design pattern

public class EvaluateExpression {

 // Addition
 Integer Visit(Integer op1, AddOp op, Integer op2) { return new Integer(op1.Value + op2.Value); }
 Double Visit(Double op1, AddOp op, Integer op2) { return new Double(op1.Value + op2.Value); }
 Double Visit(Integer op1, AddOp op, Double op2) { return new Double(op1.Value + op2.Value); }
 Double Visit(Double op1, AddOp op, Double op2) { return new Double(op1.Value + op2.Value); }
 String Visit(String op1, AddOp op, String op2) { return new String(op1.Value + op2.Value); }
 String Visit(String op1, AddOp op, Value op2) { return new String(op1.Value + op2.ToString()); }

 String Visit(Value op1, AddOp op, String op2) { return new String(op1.ToString() + op2.Value); }

 // EqualsTo
 Bool Visit(Integer op1, EqualToOp op, Integer op2) { return new Bool(op1.Value == op2.Value); }
 Bool Visit(Double op1, EqualToOp op, Integer op2) { return new Bool((int)(op1.Value) == op2.Value); }
 Bool Visit(Integer op1, EqualToOp op, Double op2) { return new Bool(op1.Value == ((int)op2.Value)); }
 Bool Visit(Double op1, EqualToOp op, Double op2) { return new Bool(op1.Value == op2.Value); }
 Bool Visit(Bool op1, EqualToOp op, Bool op2) { return new Bool(op1.Value == op2.Value); }
 Bool Visit(String op1, EqualToOp op, String op2) { return new Bool(op1.Value.Equals(op2.Value)); }

 // And
 Bool Visit(Bool op1, AndOp op, Bool op2) { return new Bool (op1.Value && op2.Value); }

 // The rest of combinations
 Value Visit(Value op1, Operator op, Value op2) { return null; }

 }

Figure 5.1: Modularizing each operand and operator type combination.

is evaluating the addition (AddOp) of two Boolean (Bool) expressions.

In this chapter, we analyze the common approaches programmers use to sim-
ulate multiple dispatch in those widespread object-oriented languages that only
provide single dispatch (e.g., Java, C# and C++) [66]. Afterwards, we propose
an alternative approach, implemented as part of the StaDyn programming lan-
guage [117]. All the alternatives are qualitatively compared considering factors
such as software maintainability and readability, code size, parameter general-
ization, and compile-time type checking. A quantitative assessment of runtime
performance and memory consumption is also presented. We also discuss the ap-
proach of hybrid dynamic and static typing languages, such as C#, Objective-C,
Boo and Cobra [14].

5.1 Existing approaches

5.1.1 The Visitor design pattern

The Visitor design patter is a very common approach to obtain multiple dispatch
in object-oriented languages than do not implement multi-methods [43]. By using
method overloading, each combination of non-abstract types is implemented in a
specific Visit method (Figure 5.1). Static type checking is used to modularize
each operation in a different method. The compiler solves method overloading
by selecting the appropriate implementation depending on the static types of
the parameters. Suppose an n-dispatch scenario: a method with n polymorphic
parameters, where each parameter should be dynamically dispatched considering
its dynamic type (i.e., multiple dynamic binding). In this n-dispatch scenario,
the n parameters belong to the H1, H2, . . . , Hn hierarchies, respectively. Under
these circumstances, there are potentially

∏n
i=1CCi Visit methods, CCi being

the number of concrete (non-abstract) classes in the Hi hierarchy.

63

5.1.1. The Visitor design pattern

Integer

+ Value: int

+ Accept(op:Operator, op2:Value, v:Visitor) : Value
+ Accept3(op1:Integer, op:AddOp, v:Visitor):Value

«interface»

Value

+ Accept(Operator, Value, Visitor) : Value
+ Accept3(Integer, AddOp, Visitor) : Value
+ Accept3(Double, AddOp, Visitor) : Value
+ Accept3(String, AddOp, Visitor) : Value
+ Accept3(Bool, AddOp, Visitor) : Value
+ Accept3(Integer, EqualToOp, Visitor) : Value
+ Accept3(Double, EqualToOp, Visitor) : Value
+ Accept3(String, EqualToOp, Visitor) : Value
+ Accept3(Bool, EqualToOp, Visitor) : Value
+ Accept3(Integer, AndOp, Visitor) : Value
+ Accept3(Double, AndOp, Visitor) : Value
+ Accept3(String, AndOp, Visitor) : Value
+ Accept3(Bool, AndOp, Visitor) : Value

«interface»

Operator

+ Accept2(Integer, Value, Visitor) : Value
+ Accept2(Double, Value, Visitor) : Value
+ Accept2(String, Value, Visitor) : Value
+ Accept2(Bool, Value, Visitor) : Value

«interface»

Visitor

+ Visit(Integer, AddOp, Integer) : Integer
+ Visit(Integer, AddOp, Double) : Double
+ Visit(Double, AddOp, Integer) : Double

AddOpEqualToOp

AndOp

+ Accept2(op1:Integer,op2:Value,v:Visitor):Value

return op.Accept2(this, op2, v);

return v.visit(op1, op, op2);

return op2.Accept3(op1, this, v);

EvaluateVisitor

+ Visit(Integer, AddOp, Integer) : Integer
+ Visit(Integer, AddOp, Double) : Double
+ Visit(Double, AddOp, Integer) : Double

…

…

…

… …

Double

+ Value: double

…

String

+ Value: string

…

Bool

+ Value: bool

…

Tree Hierarchy

Visitor Hierarchy

Figure 5.2: Multiple dispatch implementation with the statically typed approach (ellipsis obvi-
ates repeated members).

Using polymorphism, parameters can be generalized in groups of shared be-
havior (base classes or interfaces). An example of this generalization is the two
last addition methods in Figure 5.1. They generalize the way strings are concate-
nated with any other Value. This feature that allows grouping implementations
by means of polymorphism is the parameter generalization criterion mentioned
in the previous section.

As shown in Figure 5.2, the Visitor pattern places the Visit methods in
another class (or hierarchy) to avoid mixing the tree structures to be visited
(Value and Operator) with the traversal algorithms (Visitor) [47]. The (sin-
gle) dispatching mechanism used to select the correct Visit method is dynamic
binding [43]. A polymorphic (virtual) method must be declared in the tree hi-
erarchy, because that is the hierarchy the specific parameter types of the Visit

methods belong to. In Figure 5.2, the Accept method in Value provides the
multiple dispatch. When overriding this method in a concrete Value class, the
type of this will be non-abstract, and hence the specific dynamic type of the
first parameter of Visit will be known. Therefore, by using dynamic binding,
the type of the first parameter is discovered. This process has to be repeated
for every parameter of the Visit method. In our example (Figure 5.2), the type
of the second operand is discovered with the Accept2 method in Operator, and
Accept3 in Value discovers the type of the third parameter before calling the
appropriate Visit method.

In this approach, the number of AcceptX method implementations grows ge-
ometrically relative to the dispatch dimensions (i.e., the n in n-dispatch, or the
number of the Visit parameters). Namely, for H1, H2, . . . , Hn hierarchies of
the corresponding n parameters in Visit, the number of Accept methods are
1 +

∑n−1
i=1

∏i
j=1CCj. Therefore, the code size grows geometrically with the num-

64

5.1.3. Reflection

ber of parameters in the multi-method. Additionally, declaring the signature of
each single AcceptX method is error-prone and reduces its readability.

Adding a new concrete class to the tree hierarchy requires adding more AcceptX
methods to the implementation (see the formula in the previous paragraph). This
feature reduces the maintainability of this approach, causing the so-called expres-
sion problem [149]. This problem is produced when the addition of a new type
to a type hierarchy involves changes in other classes.

The Visitor approach provides different advantages. First, the static type
error detection provided by the compiler. Second, this approach provides the
best runtime performance (see Section 5.3). Finally, parameter generalization,
as mentioned, is also supported. A summary of the pros and cons of all the
approaches is presented in Table 5.1, after analyzing all the alternatives.

5.1.2 Runtime type inspection

In the previous approach, the dispatcher is implemented by reducing multiple-
dispatch to multiple cases of single dispatch. Its high dependence on the number
of concrete classes makes it error-prone and reduces its maintainability. This sec-
ond approach implements a dispatcher by consulting the dynamic type of each
parameter in order to solve the specific Visit method to be called. This type
inspection could be performed by either using an is type of operator (e.g., is

in C# or instanceof in Java) or asking the type of an object at runtime (e.g.,
GetType in C# or getClass in Java). Figure 5.3 shows an example implementa-
tion in C# using the is operator. Notice that this single Accept method is part
of the EvaluateExpression class in Figure 5.1 (it does not need to be added to
the tree hierarchy).

Figure 5.3 shows the low readability of this approach for our triple dispatch
example with seven concrete classes. The maintainability of the code is also
low, because the dispatcher implementation is highly coupled with the number
of both the parameters of the Visit method and the concrete classes in the tree
hierarchy. At the same time, the code size of the dispatcher grows with the
number of parameters and concrete classes.

The is operator approach makes extensive use of type casts. Since cast ex-
pressions perform type checks at runtime, this approximation loses the robustness
of full compile-time type checking [150]. The GetType approach also has this lim-
itation together with the use of strings for class names, which may cause runtime
errors when the class name is not written correctly. Parameter generalization
is provided by means of polymorphism. As discussed in Section 5.3, the run-
time performance of these two approaches is not as good as that of the previous
alternative.

65

5.1.4. Hybrid typing

public class EvaluateExpression {
 … // * Selects the appropriate Visit method in Figure 1

 public Value Accept(Value op1, Operator op, Value op2) {
 if (op is AndOp) {
 if (op1 is Bool) {
 if (op2 is Bool) return Visit((Bool)op1, (AndOp)op, (Bool)op2);
 else if (op2 is String) return Visit((Bool)op1, (AndOp)op, (String)op2);
 else if (op2 is Double) return Visit((Bool)op1, (AndOp)op, (Double)op2);
 else if (op2 is Integer) return Visit((Bool)op1, (AndOp)op, (Integer)op2);
 }
 else if (op1 is String) { … }
 else if (op1 is Double) { … }
 else if (op1 is Integer) { … }
 else if (op is EqualToOp) { … }
 else if (op is AddOp) { … }
 Debug.Assert(false, String.Format("No implementation for op1={0}, op={1} and op2={2}",op1,
 op, op2));
 return null;
} }

Figure 5.3: Multiple dispatch implementation using runtime type inspection with the is oper-
ator (ellipsis is used to obviate repeating code).

5.1.3 Reflection

The objective of the reflection approach is to implement a dispatcher that does
not depend on the number of concrete classes in the tree hierarchy. For this pur-
pose, not only the types of the parameters but also the methods to be invoked are
discovered at runtime. The mechanism used to obtain this objective is reflection,
one of the main techniques used in meta-programming [151]. Reflection is the
capability of a computational system to reason about and act upon itself, adjust-
ing itself to changing conditions [152]. Using reflection, the self-representation of
programs can be dynamically consulted and, sometimes, modified [77]. As shown
in Figure 5.4, the dynamic type of an object can be obtained using reflection
(GetType). It is also possible to retrieve the specific Visit method implemented
by its dynamic type (GetMethod), passing the dynamic types of the parame-
ters. It also provides the runtime invocation of dynamically discovered methods
(Invoke).

The code size of this approach does not grow with the number of concrete
classes. Moreover, the addition of another parameter does not involve important
changes in the code. Consequently, as shown in Table 5.1, this approach is more
maintainable than the previous ones. Although the reflective Accept method in
Figure 5.4 may be somewhat atypical at first, we think its readability is certainly
higher than the one in Figure 5.3.

The first drawback of this approach is that no static type checking is per-
formed. If Accept invokes a nonexistent Visit method, an exception is thrown
at runtime, but no compilation error is produced. Another limitation is that
parameter generalization is not provided because reflection only looks for one
specific Visit method. If an implementation with the exact signature specified
does not exist, no other polymorphic implementation is searched (e.g., the last
Visit method in Figure 5.1 is never called). Finally, this approach has showed
the worst runtime performance in our evaluation (Section 5.3).

66

5.1.4. Hybrid typing

public class EvaluateExpression {
 … // * Selects the appropriate Visit method in Figure 1
 public Value Accept(Value op1, Operator op, Value op2) {
 MethodInfo method = this.GetType().GetMethod("Visit", BindingFlags.NonPublic | BindingFlags.Instance,
 null, new Type[] { op1.GetType(), op.GetType(), op2.GetType() }, null);
 if (method == null) {
 Debug.Assert(false,String.Format("No implementation for op1={0}, op={1} and op2={2}",op1,op,op2));
 return null;
 }
 return (Value)method.Invoke(this, new object[] { op1, op, op2 });
} }

Figure 5.4: Multiple dispatch implementation using reflection.

5.1.4 Hybrid typing

Hybrid static and dynamic typing languages provide both typing approaches in
the very same programming language. Programmers may use one alternative or
the other depending on their interests, following the static typing where possible,
dynamic typing when needed principle [12]. In the case of multiple dispatch,
static typing can be used to modularize the implementation of each operand
and operator type combination (Visit methods in Figure 5.1). Aside, dynamic
typing can be used to implement multiple dispatchers that dynamically discover
the suitable Visit method to be invoked [14].

In a hybrid typing language, its static typing rules are also applied at runtime
when dynamic typing is selected. This means that, for instance, method over-
load is postponed until runtime, but the resolution algorithm stays the same [17].
This feature has been identified to implement a multiple dispatcher that discovers
the correct Visit method to be invoked at runtime, using the overload resolu-
tion mechanism provided by the language [153]. At the same time, parameter
generalization by means of polymorphism is also achieved.

Figure 5.5 shows an example of multiple dispatch implementation (Accept
method) in C#. With dynamic, the programmer indicates that dynamic typing
is preferred, postponing the overload resolution until runtime. The first maintain-
ability benefit is that the dispatcher does not depend on the number of concrete
classes in the tree hierarchy (the expression problem) [149]. Besides, another
dispatching dimension can be provided by simply declaring one more parameter,
and passing it as a new argument to Visit. The dispatcher consists in a single
invocation to the overloaded Visit method, indicating which parameters require
dynamic binding (multiple dispatch) with a cast to dynamic. If the programmer
wants to avoid dynamic binding for a specific parameter, this cast to dynamic will
not be used. This simplicity makes the code highly readable and reduces its size
considerably (Table 5.1). At the same time, since the overload resolution mech-
anism is preserved, parameter generalization by means of polymorphism is also
provided (i.e., polymorphic methods like the two last addition implementations
for strings in Figure 5.1).

In C#, static type checking is disabled when the dynamic type is used, lacking
the compile-time detection of type errors. Therefore, declaring the static types of
the Accept parameters using polymorphism is helpful for restricting their types
statically (e.g., Value and Operator in Figure 5.5). Exception handling is another
mechanism that can be used to make the code more robust –notice that parameter

67

5.2. Static type checking of dynamically typed code

public class EvaluateExpression {
 … // * Selects the appropriate Visit method in Figure 1

 public Value Accept(Value op1, Operator op, Value op2) {
 try {
 return this.Visit((dynamic)op1, (dynamic)op, (dynamic)op2);
 } catch (RuntimeBinderException) {
 Debug.Assert(false, String.Format("No implementation for op1={0}, op={1}" +
 " and op2={2}",op1,op,op2));
 }
 return null;
} }

Figure 5.5: Multiple dispatch implementation with the hybrid typing approach.

generalization reduces the number of possible exceptions to be thrown, compared
to the reflection approach.

Finally, this approach shows the second worst runtime performance (see Sec-
tion 5.3). The DLR runtime type cache [3] improves runtime performance of the
reflective approach [50], but it still significantly worse than the rest of approaches
(Section 5.3).

5.2 Static type checking of dynamically typed

code

We have seen how the hybrid typing approach provides important maintainability,
readability, code size, and parameter generalization benefits. However, the use of
dynamic typing also incurs in compile-time type checking, runtime performance
and memory consumption penalties. We now propose an optimization of the dy-
namically typed code in the hybrid approach to avoid the limitations of dynamic
typing, without losing the benefits of the statically typed code. This approach
has been included as an optimization of the StaDyn programming language [144].

Our proposal is based on gathering type information for dynamically typed ref-
erences, and use it to perform static type checking and performance optimizations.
The Accept method of this approach is the simple implementation presented in
Figure 5.6. As shown, it provides the maintainability, readability and code size
of the hybrid typing approach.

When the method is called with three concrete types (first invocation in the
Main method), the appropriate Visit method is invoked. If the specific method
is not implemented for the particular types of the arguments (second invocation),
the generalization of parameters takes place and null is returned. Therefore,
parameter generalization is another benefit of this approach. When no Visit

method is provided for the actual parameters (third invocation), a compiler error
is shown. This is because type information is also gathered for dynamic refer-
ences and statically checked by the compiler. This type information is used to
provide early type error detection, better runtime performance and lower memory
consumption (Table 5.1) –these two last variables are evaluated in Section 5.3.

68

5.2.1. Method specialization

public class EvaluateExpression {
 … // * Selects the appropriate Visit method in Figure 1

 public Value Accept(dynamic op1, dynamic op, dynamic op2) {
 return this.Visit(op1, op, op2);
 }
 … // * Invocation to Accept
 public void Main(string[] args) {
 Integer integer = new Integer(3);
 Double real = new Double(23.34);
 Bool boolean = new Bool(true);
 String str = new String("StaDyn");
 Accept(integer, new AddOp(), str);
 Accept(str, new AndOp(), real);
 Accept(boolean, real, str);
 dynamic union = args.Length>0 ? integer : real;
 Accept(union, new AddOp(), union);
 }
}

Figure 5.6: Multiple dispatch implementation with StaDyn approach.

The last invocation in Main requires a deeper explanation. In this case, the
type of union may be Integer or Double. The compiler manages to detect that
the invocation is correct, since there are four different implementations that pro-
vide the different combinations of the three parameters in the implementation
of Visit. The generated code inspects the dynamic type of the actual parame-
ter, calling the appropriate Visit method, following the runtime type inspection
technique described in Section 5.1.2.

5.2.1 Method specialization

The existing implementation of StaDyn already performs type checking of dynamic
parameters [27]. Therefore, the compile type checking benefit shown in Table 5.1
is a direct benefit of the existing language design. On the contrary, the dynamic

parameters are translated into object references in the existing implementation.
Therefore, execution time of applications increases when dynamic parameters are
used [1].

To avoid this limitation, we have included in StaDyn a method specialization
optimization using the type information inferred for the arguments. Specializa-
tion refers to translation (typically from a language into itself) of a program into
a more specialized version of it, in the hope that the specialized version can be
more efficient than the general one [154]. One form of program specialization
is partial evaluation: it considers partial information about the variables and
propagates them by abstractedly evaluating the program [154].

The StaDyn compiler gathers type information following an abstract inter-
pretation process [117]. It starts analyzing the Main method, inferring the type
of all the arguments before analyzing the invoked method. Then, for the method
invocation expression, a specialized version for the particular types of the argu-
ments is generated, and no type checking needs to be done at runtime –recursion
is detected and handled as a special case [144]. When one parameter may hold

69

5.2.1. Method specialization

public class EvaluateExpression {
 public Value Accept_1(Integer op1, AddOp op, String op2) {

 return this.Visit(op1, op, op2);
 }
 public Value Accept_2(String op1, AndOp op, Double op2) {
 return this.Visit(op1, op, op2);
 }
 public Value Accept_3(object op1, AddOp op, object op2) {
 if (op1 is Integer) {
 if (op2 is Integer) return Visit((Integer)op1, op, (Integer)op2);
 else return Visit((Integer)op1, op, (Double)op2); // op2 is Double
 else // op1 is Double
 if (op2 is Integer) return Visit((Double)op1, op, (Integer)op2);
 else return Visit((Double)op1, op, (Double)op2); // op2 is Double
 }
 public Value Accept(object op1, object op, object op2) {
 return this.Visit((dynamic)op1, (dynamic)op, (dynamic)op2);
 }
 … // * Invocation to Accept

 public void Main(string[] args) {
 Integer integer = new Integer(3);
 Double real = new Double(23.34);
 Bool boolean = new Bool(true);
 String str = new String("StaDyn");
 Accept_1(integer, new AddOp(), str);
 Accept_2(str, new AndOp(), real);
 Accept(boolean, real, str);
 dynamic union = args.Length>0 ? integer : real;
 Accept_3(union, new AddOp(), union);
 }
}

Figure 5.7: StaDyn program specialized for the program in Figure 5.6.

more than one type, union types are used [33].

The code in Figure 5.7 is the specialized program generated by StaDyn for
the input program in Figure 5.6 –actually, we generate assembly code, but we
show high-level C# code for the sake of readability. This specialization is the
optimization we introduced in the compiler. For the first and second invocations,
the Accept_1 and Accept_2 specialized methods are created, receiving the three
particular concrete types. When the arguments may hold more than one type
(union types), another specialized method is generated receiving object types
(Accept_3). In the method body, the different combinations of the possible types
are checked, and cast operations are added to call the precise Visit method. It
is worth noting than only those types in the union type are checked, differently
to the runtime type inspection approach discussed in Section 5.1.2. Finally, a
default implementation with dynamic parameters is kept in case the method is
called from an external assembly written in another language (in that case, the
StaDyn compiler cannot change the invocation for the appropriate specialized
method).

This method specialization technique allows optimizing the generated code by
using the type information gathered by the compiler. Particularly, it generates a
specialized version of a method for the particular types of its arguments. If one
argument has more than one possible type (a union type), the specialized method
performs a runtime type checking analysis for only those types the argument may
be holding. As discussed in Section 5.3, the only alternative to this approach that
provides better runtime performance is the verbose Visitor design pattern, where

70

5.3.1. Methodology

Maintainability Readability
Code Parameter Compile time Runtime Memory
Size Generalization type hecking Performance Consumption

Visitor Pattern X X X X
is Operator X 1/2 X
GetType Method X 1/2 X
Reflection X X X X
Hybrid Typing X X X X
StaDyn X X X X X 1/2 X

Table 5.1: Qualitative evaluation of the approaches.

the programmer has to write much more error-prone code, difficult to maintain
(Section 5.2.1). Furthermore, since a runtime type cache is not required, mem-
ory consumption is similar to the approaches requiring fewer memory resources
(Section 5.3.3).

5.3 Evaluation

In this section, we measure execution time and memory consumption of the dif-
ferent approaches analyzed to justify the performance and memory assessment in
the two last columns of Table 5.1. Detailed data is depicted in Appendix C.

5.3.1 Methodology

In order to compare the performance of all the approaches, we have developed a
set of synthetic micro-benchmarks. These benchmarks measure the influence of
the following variables on runtime performance and memory consumption:

– Dispatch dimensions. We have measured programs executing single, dou-
ble and triple dispatch methods. These dispatch dimensions represent the
number of parameters passed to the Accept method shown in Figures 5.3,
5.4, 5.5 and 5.6.

– Number of concrete classes. This variable is the number of concrete classes
of each parameter of the Accept method. For each one, we define from 1 to
5 possible derived concrete classes. Therefore, the implemented dispatchers
will have to select the correct Visit method out of up to 125 different
implementations (53).

– Invocations. Each program is called an increasing number of times to ana-
lyze their performance in long-running scenarios (e.g., server applications).

– Approach. The same application is implemented using the following ap-
proaches: static typing (Visitor pattern), runtime type inspection (is and
GetType alternatives), reflection, hybrid typing and the proposed optimiza-
tions included in the StaDyn language.

Each program implements a collection of Visit methods that simply incre-
ment a counter field. The idea is to measure the execution time of each dispatch

71

5.3.3. Memory consumption

technique, avoiding additional significant computation –we have previously eval-
uated a more realistic application in [153]. Regarding the data analysis, we follow
the start-up and steady-state methodologies described in Section 3.4.1.3.

5.3.2 Runtime performance

Figure 5.8 and 5.9 show the start-up and steady-state performances, respectively,
of single, double and triple dispatch, when each parameter of the multi-method
has five concrete derived types. Each Visit method is executed at least once.
To analyze the influence of the number of invocations on the execution time, we
invoke multi-methods in loops from 1 to 100,000 iterations. Figure 5.8 shows the
average execution time for a 95% confidence level.

As can be seen in Figure 5.8, all the approaches tend to have a linear influence
of the number of iterations on execution time when the number of iterations is
bigger than 10,000. This trend is even clearer in the steady-state performance
(Figure 5.9). With this methodology, the linear trend is shown from 100 iterations
on.

The dispatch dimension (i.e., the number of parameters passed to the multi-
method) of the analyzed approaches shows a different influence. For single dis-
patch, the hybrid typing is the slowest approach, when a few iterations are exe-
cuted. Then, when the number of iterations increases, the DLR cache seems to
provide the expected benefits, performing better than reflection. As the number
of parameters increases, the benefits of the DLR are shown with a lower num-
ber of iterations. Similarly, steady-state performance shows this trend with a
lower number of iterations, compared to start-up. When differences are linear,
the fastest approach is the Visitor design pattern, followed by our optimization
(134% more execution time), is (192%), GetType (926%), hybrid typing (6,852%)
and reflection (40,693%).

Figures 5.10 and 5.11 shows the start-up and steady-state execution time, when
the number of concrete classes that implement each multi-method parameter
increases (for 100,000 fixed iterations). For each parameter, we increment (from
1 to 5) the number of its derived concrete classes. In the case of triple dispatch
and five different concrete classes, the multiple dispatcher has to select the correct
Visit method out of 125 (53) different implementations.

As in the previous case, differences between the different approaches tend to
be linear when the number of concrete classes increases. There is no significant
difference in the methodology (start-up or steady-state) or the number of concrete
classes. The only exception is only one concrete class in steady-state. In that
case, the DLR cache provides important benefits, making the hybrid approach
perform better than reflection and GetType.

For 5 different classes, the Visitor approach is the only one that performs
better (it is 25% faster) than the proposed optimization included in the StaDyn
language. StaDyn is 22%, 467%, 1,600% and 14,312% faster than is, GetType,
hybrid typing and reflection, respectively.

72

5.3.3. Memory consumption

Single Dispatch

0

1E2

2E2

3E2

4E2

5E2

6E2

7E2

8E2

9E2

1 10 100 1K 10K 100K

1E-1

1E0

1E1

1E2

1E3

1 10 100 1K 10K 100K

Double Dispatch

0

2E3

4E3

6E3

8E3

1E4

1E4

1 10 100 1K 10K 100K

1E0

1E1

1E2

1E3

1E4

1E5

1 10 100 1K 10K 100K

Triple Dispatch

0

5E4

1E5

2E5

2E5

3E5

1 10 100 1K 10K 100K

1E0

1E1

1E2

1E3

1E4

1E5

1E6

1 10 100 1K 10K 100K

1 3 5

HybridTyping Is Reflection Visitor GetType StaDyn

Figure 5.8: Start-up performance (in ms) for 5 different concrete classes, increasing the number
of iterations; linear (left) and logarithmic (right) scales.

73

5.3.3. Memory consumption

Single Dispatch

0

1E2

2E2

3E2

4E2

5E2

6E2

7E2

8E2

9E2

1 10 100 1K 10K 100K

1E-4

1E-3

1E-2

1E-1

1E0

1E1

1E2

1E3

1 10 100 1K 10K 100K

Double Dispatch

0

2E3

4E3

6E3

8E3

1E4

1E4

1 10 100 1K 10K 100K

1E-3

1E-2

1E-1

1E0

1E1

1E2

1E3

1E4

1E5

1 10 100 1K 10K 100K

Triple Dispatch

0

5E4

1E5

2E5

2E5

3E5

1 10 100 1K 10K 100K

1E-2

1E-1

1E0

1E1

1E2

1E3

1E4

1E5

1E6

1 10 100 1K 10K 100K

1 3 5

HybridTyping Is Reflection Visitor GetType StaDyn

Figure 5.9: Steady-state performance (in ms) for 5 different concrete classes, increasing the
number of iterations; linear (left) and logarithmic (right) scales.

74

5.3.3. Memory consumption

Single Dispatch

0

3E2

6E2

9E2

1 2 3 4 5

1E0

1E1

1E2

1E3

1 2 3 4 5

Double Dispatch

0

2E3

4E3

6E3

8E3

1E4

1E4

1 2 3 4 5

1E0

1E1

1E2

1E3

1E4

1E5

1 2 3 4 5

Triple Dispatch

0

5E4

1E5

2E5

2E5

3E5

1 2 3 4 5

1E0

1E1

1E2

1E3

1E4

1E5

1E6

1 2 3 4 5

1 3 5

HybridTyping Is Reflection Visitor GetType StaDyn

Figure 5.10: Start-up performance (in ms) for 100K iterations, increasing the number of concrete
classes; linear (left) and logarithmic (right) scales.

75

5.3.3. Memory consumption

Single Dispatch

0

1E2

2E2

3E2

4E2

5E2

6E2

7E2

8E2

9E2

1 2 3 4 5

1E-1

1E0

1E1

1E2

1E3

1 2 3 4 5

Double Dispatch

0

2E3

4E3

6E3

8E3

1E4

1E4

1 2 3 4 5

1E0

1E1

1E2

1E3

1E4

1E5

1 2 3 4 5

Triple Dispatch

0

5E4

1E5

2E5

2E5

3E5

1 2 3 4 5

1E0

1E1

1E2

1E3

1E4

1E5

1E6

1 2 3 4 5

1 3 5

HybridTyping Is Reflection Visitor GetType StaDyn

Figure 5.11: Steady-state performance (in ms) for 100K iterations, increasing the number of
concrete classes; linear (left) and logarithmic (right) scales.

76

5.3.3. Memory consumption

5.3.3 Memory consumption

We have measured memory consumption, analyzing all the variables mentioned in
the Section 5.3.1. As shown in Figure 5.12, there is no influence of the dimensions
of dispatch, or the number of concrete classes -although they are not shown, there
is no influence of the number of iterations either. The hybrid approach involves
an average increase of 31% compared with the rest of approaches. This difference
is due to the DLR runtime cache [115]. The rest of alternatives, including ours,
consume similar memory resources: the difference is 1%, lower than the error
interval

77

5.3.3. Memory consumption

Single Dispatch

0

2

4

6

8

10

12

14

16

1 2 3 4 5

Double Dispatch

0

2

4

6

8

10

12

14

16

1 2 3 4 5

Triple Dispatch

0

2

4

6

8

10

12

14

16

1 2 3 4 5

135

HybridTyping Is Reflection Visitor GetType StaDyn

Figure 5.12: Memory consumption (in MB) for 100K iterations, increasing the number of
concrete classes.

78

Chapter 6

Conclusions

This dissertation presents three optimization techniques for dynamically typed
code, which can be applied to both dynamic and hybrid typing languages. One
optimization is performed at runtime, and the other two use type information
gathered by the compiler statically. The proposed optimizations are not language
dependent, but we have included them in a hybrid static and dynamic typing
language to measure the runtime performance benefits.

The first optimization is based on caching the dynamic types of objects at
runtime. As the dynamic type of a reference barely changes, the second and
subsequent uses of the same reference commonly produce a cache hit. We used
the DLR of the .Net framework to optimize the existing implementations of the
VB, Boo, Cobra, Fantom and StaDyn languages. For short-running programs,
the performance gain is from 44.6% to 406%; while this benefit increases to the
range of 224% to 1113% for long-running applications. Memory consumption also
grows (from 6.2% to 64%), but significantly less than the performance gain.

The second optimization is based on SSA transformations, aimed at supporting
variables with different types in the same scope. Since SSA transformation creates
new versions of a variable in every new assignment, it facilitates the inference of
a single type for each variable version. Union types are used when a variable may
have different types depending on the execution flow. The average performance
improvements of the SSA transformations range from 6.38 (start-up) to 21.7
(steady-state) factors. The generated code is from 4.5 to 6.8 times faster than
C#. The SSA transformations also reduce memory consumption, but require
13% more compilation time.

Finally, the third optimization proposes the support of multiple dispatch using
the static type information gathered by the compiler. Multiple dispatch is com-
monly supported with dynamic type checking, by choosing the correct method
to invoke at runtime. In our approach, we use the type information gathered
for the arguments. Then, a method specialization technique is used to select the
correct method invocation at compile time. When the arguments are union types,
nested type inspections are employed. Compared to the existing approaches, this
combination of static and dynamic typing provides the highest evaluation rate in
maintainability, readability, code size, parameter generalization, early type error

79

6.1. Future Work

detection and memory consumption. Our approach is the second with the best
runtime performance (out of six), requiring 25% more execution time than the
type safe Visitor design pattern implementation.

6.1 Future Work

The first work to be done is the formalization of our multiple dispatch proposal
(Chapter 5). By specifying the semantics and the type system of the language
core, we can verify the properties of the proposed system [18]. This formal defi-
nition will make it easier to include our system in other programming languages.
Additionally, it will be used to verify the correctness of the proposed optimization.

We also plan to add structural intercession to StaDyn. Structural intercession
is the capability of dynamically adapting the structure of objects and types at
runtime. C# only provides structural intercession for ExpandoObjects [115],
postponing all the type checks until runtime. Besides, any existing class or object
cannot be updated in C#. We plan to use the type-based alias analysis algorithm
in StaDyn to provide structure evolution of both objects and classes [18]. In this
way, many of the type errors could be detected at compile time, and significant
performance optimizations could be applied [155].

After adding structural intercession to StaDyn, we can include the zRotor

(Reflective Rotor) as a new back-end. zRotor is an extension of the Shared
Source Common Language Infrastructure (SSCLI) that provides structural inter-
cession as part of the JIT-compiler primitives [3]. It supports both the class- and
prototype-based object-oriented models, allowing the adaptation of types and
objects. The objective of using zRotor as a new back-end is to obtain better
performance than using the DLR [77].

We also will add dynamic code evaluation to StaDyn. This means allowing the
dynamic generation and evaluation of StaDyn code while the program is running
(a typical feature in dynamically typed languages). This will make StaDyn to
be closer to a dynamic language, but providing the robustness and performance
of a statically typed language. In order to achieve this objective, we plan to
include the compiler as part of the runtime, following the compiler as a service
approach [156]. This way, the compiler and the runtime will share the same type
system [17].

Another future line of work is providing a better battery of hybrid typing
programs to measure runtime performance and memory consumption. The only
program we used to measure hybrid typing code is the Points application (Sec-
tion 3.4.1). We intend to take existing programs we developed in statically typed
languages where we use introspection to simulate duck typing [157, 158, 159],
and translate them to hybrid approaches such as C# and the combination of
Java with invokedynamic [160].

80

Appendix A

Evaluation data of the DLR
optimizations

This appendix details the data obtained when measuring the optimizations of
dynamically typed code using the services of the DLR (Chapter 3).

81

Appendix A. Evaluation data of the DLR optimizations

T
e
s
t

N
a
m

e
V

B
V

B
-o

p
t

B
o
o

B
o
o
-o

p
t

F
a
n
t
o
m

F
a
n
t
o
m

-o
p
t

C
o
b
r
a

C
o
b
r
a
-o

p
t

S
ta
D
y
n

S
ta
D
y
n
-o

p
t

A
ri
th

.S
m
p
lF

lo
a
tA

ri
th

0
.6
2

±
1
.9
%

0
.4
9

±
2
.0
%

1
.6
1

±
1
.4
%

0
.4
9

±
2
.0
%

2
2
.7
2

±
1
2
.0
%

0
.6
1

±
0
.0
%

2
5
.1
8

±
0
.5
%

0
.4
5

±
0
.0
%

2
.3
4

±
0
.0
%

2
.3
4

±
0
.0
%

A
ri
th

.S
m
p
lI
n
te

g
e
rA

ri
th

0
.6
4

±
0
.0
%

0
.5
0

±
0
.0
%

1
.7
3

±
0
.0
%

0
.5
1

±
2
.0
%

2
1
.2
6

±
2
.4
%

0
.5
6

±
0
.0
%

5
9
.9
6

±
1
.7
%

0
.4
7

±
1
.9
%

3
.0
6

±
0
.7
%

3
.0
5

±
0
.3
%

A
ri
th

.S
m
p
lI
n
tF

lo
a
tA

ri
th

0
.6
4

±
1
.9
%

0
.5
1

±
2
.3
%

1
.6
5

±
1
.3
%

0
.4
8

±
0
.0
%

2
0
.7
0

±
0
.0
%

0
.5
6

±
0
.0
%

6
0
.2
5

±
0
.5
%

0
.4
7

±
0
.0
%

0
.0
5

±
0
.0
%

0
.0
5

±
0
.0
%

C
a
ll
s.
F
u
n
c
ti
o
n
C
a
ll
s

0
.2
5

±
0
.0
%

0
.2
5

±
0
.0
%

0
.1
5

±
3
.9
%

0
.1
4

±
0
.0
%

0
.4
1

±
0
.0
%

0
.3
1

±
0
.0
%

1
.3
6

±
0
.0
%

1
.3
6

±
0
.0
%

5
.7
0

±
1
.1
%

0
.5
7

±
1
.9
%

C
a
ll
s.
M

e
th

o
d
C
a
ll
s

1
1
.8
8

±
2
.9
%

0
.7
1

±
2
.0
%

0
.9
6

±
1
.6
%

0
.4
1

±
0
.0
%

3
.1
4

±
1
.9
%

0
.3
0

±
2
.7
%

2
.8
9

±
0
.0
%

0
.7
3

±
0
.0
%

2
.8
3

±
0
.0
%

0
.3
9

±
0
.0
%

C
a
ll
s.
R
e
c
u
rs
io
n

0
.5
8

±
0
.0
%

0
.3
8

±
0
.0
%

1
.7
0

±
0
.0
%

0
.5
0

±
0
.0
%

8
.7
1

±
1
.9
%

0
.4
4

±
0
.0
%

2
1
.0
5

±
1
.7
%

0
.4
1

±
0
.0
%

0
.7
7

±
1
.8
%

0
.1
6

±
0
.0
%

C
o
n
st
.F

o
rL

o
o
p
s

7
.1
3

±
1
.9
%

4
.9
3

±
0
.7
%

4
.6
5

±
1
.6
%

1
.7
3

±
1
.5
%

1
1
5
.4
9

±
1
.8
%

4
.8
2

±
0
.8
%

5
3
.7
0

±
1
.0
%

1
.6
3

±
1
.3
%

0
.0
2

±
2
7
.7
%

0
.0
2

±
2
7
.0
%

C
o
n
st
.I
fT

h
e
n
E
ls
e

0
.3
8

±
0
.0
%

0
.3
0

±
2
.0
%

1
.6
3

±
1
.5
%

0
.5
9

±
1
.9
%

1
.1
1

±
1
.9
%

0
.2
9

±
2
.0
%

1
.2
2

±
0
.0
%

1
.1
7

±
1
.9
%

0
.0
8

±
0
.0
%

0
.0
8

±
0
.0
%

C
o
n
st
.N

e
st
e
d
F
o
rL

o
o
p
s

2
6
.6
2

±
0
.5
%

9
.2
6

±
0
.8
%

3
.2
9

±
1
.1
%

1
.4
6

±
1
.6
%

1
0
4
.7
0

±
0
.1
%

4
.9
2

±
0
.0
%

3
4
.8
5

±
1
.4
%

2
.2
8

±
0
.0
%

2
5
.0
1

±
1
.3
%

4
.2
2

±
0
.8
%

D
ic
ts
.D

ic
tC

re
a
ti
o
n

2
.9
0

±
1
.3
%

1
.0
1

±
1
.8
%

0
.8
9

±
0
.0
%

0
.8
9

±
0
.0
%

5
.8
4

±
0
.0
%

5
.6
9

±
0
.6
%

7
.6
1

±
0
.0
%

0
.9
5

±
1
.8
%

1
.5
1

±
0
.9
%

0
.0
9

±
0
.0
%

D
ic
ts
.D

ic
tW

it
h
F
lo
a
tK

e
y
s

5
.0
5

±
0
.0
%

1
.1
7

±
1
.8
%

4
.5
9

±
0
.0
%

1
.5
6

±
1
.8
%

4
4
.1
1

±
0
.8
%

4
.0
2

±
1
.9
%

6
.9
2

±
0
.1
%

0
.8
6

±
1
.9
%

2
2
.2
8

±
1
.3
%

1
.5
3

±
1
.9
%

D
ic
ts
.D

ic
tW

it
h
In

tK
e
y
s

6
.7
5

±
1
.9
%

1
.5
1

±
1
.7
%

5
.6
7

±
0
.0
%

1
.7
8

±
1
.9
%

1
8
.4
9

±
0
.6
%

0
.7
3

±
0
.0
%

9
.0
9

±
1
.5
%

1
.1
0

±
2
.0
%

2
9
.2
1

±
0
.4
%

1
.7
0

±
1
.5
%

D
ic
ts
.D

ic
tW

it
h
S
tr
K
e
y
s

6
.7
5

±
1
.7
%

1
.5
3

±
0
.0
%

5
.1
8

±
0
.7
%

1
.2
2

±
0
.0
%

1
9
.8
4

±
1
.7
%

2
.4
6

±
1
.7
%

9
.0
8

±
0
.7
%

0
.9
5

±
0
.0
%

2
3
.7
2

±
0
.9
%

1
.9
3

±
3
.0
%

D
ic
ts
.S

m
p
lD

ic
tM

a
n
ip

1
9
.8
5

±
1
.3
%

2
.7
9

±
1
.8
%

6
.7
1

±
1
.1
%

1
.9
9

±
1
.9
%

2
0
.8
7

±
1
.9
%

2
.7
5

±
1
.5
%

1
6
.2
3

±
0
.9
%

1
.9
0

±
2
.0
%

2
3
.3
6

±
0
.9
%

2
.1
5

±
1
.7
%

E
x
c
e
p
t.
T
ry

E
x
c
e
p
t

1
.5
2

±
1
.7
%

1
.4
7

±
1
.5
%

0
.1
5

±
4
.0
%

0
.1
0

±
5
.6
%

0
.3
1

±
0
.0
%

0
.0
5

±
0
.0
%

0
.6
8

±
1
.9
%

0
.0
3

±
0
.0
%

0
.1
1

±
4
.8
%

0
.1
1

±
4
.8
%

E
x
c
e
p
t.
T
ry

R
a
is
e
E
x
c
e
p
t

1
4
6
.0
1

±
0
.6
%

1
4
9
.5
2

±
0
.6
%

8
.4
5

±
1
.5
%

8
.4
6

±
1
.8
%

1
.1
8

±
1
.6
%

1
.1
4

±
1
.9
%

0
.8
1

±
2
.0
%

0
.8
1

±
0
.0
%

0
.7
2

±
0
.0
%

0
.7
2

±
0
.0
%

In
st
.C

re
a
te

In
st
a
n
c
e
s

0
.6
1

±
0
.0
%

0
.5
6

±
0
.0
%

0
.6
1

±
0
.0
%

0
.4
2

±
2
.0
%

1
.7
6

±
1
.9
%

0
.3
3

±
0
.0
%

3
.7
3

±
0
.0
%

0
.2
6

±
2
.2
%

0
.0
3

±
1
3
.2
%

0
.0
3

±
0
.0
%

L
is
ts
.L

is
tS

li
c
in

g
1
.2
2

±
1
.8
%

0
.3
4

±
2
.2
%

0
.9
6

±
1
.6
%

0
.8
4

±
0
.0
%

0
.4
4

±
0
.0
%

0
.1
3

±
4
.2
%

0
.3
0

±
0
.0
%

0
.1
1

±
2
.0
%

0
.2
1

±
2
.6
%

0
.0
8

±
0
.0
%

L
is
ts
.S

m
p
lL

is
tM

a
n
ip

6
.9
1

±
0
.5
%

2
.5
5

±
1
.4
%

4
.4
1

±
1
.8
%

0
.9
4

±
1
.9
%

3
2
.3
9

±
0
.0
%

1
.3
7

±
1
.6
%

1
0
.0
1

±
1
.4
%

0
.7
2

±
1
.8
%

2
5
.4
8

±
1
.4
%

1
.9
2

±
1
.9
%

L
o
o
k
u
p
s.
C
la
ss
A
tt
r

0
.5
2

±
2
.0
%

0
.4
8

±
3
.6
%

0
.1
0

±
5
.0
%

0
.1
7

±
0
.0
%

1
.5
7

±
2
.0
%

1
.3
8

±
1
.8
%

0
.2
3

±
0
.0
%

0
.2
3

±
0
.0
%

0
.0
5

±
1
0
.9
%

0
.0
5

±
0
.0
%

L
o
o
k
u
p
s.
In

st
a
n
c
e
A
tt
r

3
5
.3
7

±
2
.0
%

1
.8
3

±
0
.0
%

3
.4
5

±
0
.0
%

0
.4
2

±
0
.0
%

1
1
.4
7

±
1
.8
%

0
.4
2

±
0
.0
%

5
.4
9

±
1
.7
%

1
.6
9

±
0
.0
%

3
.5
8

±
0
.0
%

0
.4
2

±
0
.0
%

N
e
w
In

st
.C

re
a
te

N
e
w
In

st
6
.4
8

±
1
.9
%

6
.2
4

±
0
.6
%

0
.6
9

±
0
.0
%

0
.4
7

±
0
.0
%

1
.8
3

±
1
.9
%

0
.3
4

±
0
.0
%

3
.8
1

±
0
.0
%

0
.3
0

±
0
.0
%

0
.4
9

±
2
.0
%

0
.4
8

±
0
.0
%

N
u
m
.C

m
p
F
lo
a
ts

0
.8
7

±
1
.8
%

0
.8
0

±
0
.0
%

1
.6
3

±
1
.3
%

0
.7
0

±
1
.9
%

2
2
.8
5

±
2
.0
%

1
.1
4

±
0
.1
%

2
0
.9
5

±
2
.0
%

0
.7
9

±
2
.0
%

1
4
.5
4

±
1
.5
%

0
.8
0

±
0
.0
%

N
u
m
.C

m
p
F
lo
a
ts
In

te
g
e
rs

0
.9
9

±
2
.0
%

0
.9
2

±
1
.9
%

1
.2
5

±
1
.6
%

0
.5
9

±
2
.0
%

3
0
.4
3

±
1
.9
%

1
.2
2

±
0
.0
%

1
6
.9
1

±
0
.0
%

0
.6
7

±
2
.0
%

1
2
.1
0

±
1
.6
%

1
.7
9

±
2
.0
%

N
u
m
.C

m
p
In

te
g
e
rs

1
.1
7

±
0
.0
%

0
.9
9

±
2
.0
%

2
.6
1

±
2
.0
%

0
.8
8

±
2
.3
%

8
5
.4
5

±
1
.9
%

3
.1
1

±
1
.2
%

3
1
.3
8

±
0
.1
%

0
.9
2

±
1
.0
%

2
1
.8
4

±
0
.7
%

0
.9
3

±
1
.8
%

S
tr
.C

m
p
S
tr
in

g
s

7
5
.8
0

±
0
.7
%

4
.8
9

±
1
.9
%

8
.1
2

±
1
.8
%

4
.3
4

±
0
.8
%

1
8
.0
2

±
1
.8
%

0
.7
7

±
0
.1
%

3
2
.5
8

±
0
.9
%

4
.3
6

±
0
.0
%

1
6
.3
1

±
0
.0
%

4
.8
2

±
0
.9
%

S
tr
.C

o
n
c
a
tS

tr
in

g
s

2
.2
7

±
0
.0
%

2
.1
4

±
1
.9
%

1
,0
7
9
.5
5

±
1
.8
%

2
.1
1

±
1
.7
%

1
9
.3
2

±
2
.0
%

2
.5
5

±
0
.0
%

2
2
.2
1

±
0
.6
%

1
.9
8

±
0
.5
%

1
0
.9
8

±
0
.8
%

2
.6
5

±
1
.9
%

S
tr
.C

re
a
te

S
tr
W

it
h
C
o
n
c
a
t

1
.0
5

±
1
.8
%

0
.8
5

±
2
.0
%

1
,0
5
2
.0
1

±
1
.7
%

0
.8
3

±
1
.9
%

1
7
.3
8

±
1
.5
%

1
.4
2

±
0
.1
%

2
0
.5
0

±
1
.4
%

0
.8
0

±
1
.9
%

0
.6
9

±
0
.0
%

0
.6
1

±
0
.0
%

S
tr
.S

tr
in

g
M

a
p
p
in

g
s

1
0
.0
2

±
1
.3
%

1
.6
7

±
0
.5
%

1
.6
8

±
1
.9
%

1
.1
9

±
1
.9
%

6
.2
8

±
1
.7
%

3
.8
1

±
1
.0
%

2
.1
1

±
1
.8
%

1
.6
2

±
1
.8
%

0
.1
9

±
0
.0
%

0
.1
2

±
1
.7
%

S
tr
.S

tr
in

g
P
re

d
ic
a
te

s
1
.3
3

±
0
.0
%

0
.3
1

±
0
.0
%

0
.3
3

±
0
.0
%

0
.2
2

±
0
.0
%

9
.4
0

±
1
.5
%

0
.3
0

±
0
.0
%

0
.5
2

±
0
.0
%

0
.1
3

±
0
.0
%

0
.4
2

±
0
.0
%

0
.1
3

±
4
.2
%

S
tr
.S

tr
in

g
S
li
c
in

g
5
0
.3
8

±
0
.9
%

1
.9
5

±
1
.9
%

4
.0
4

±
1
.8
%

0
.7
8

±
0
.0
%

2
3
.5
8

±
1
.6
%

1
.3
5

±
3
.5
%

1
7
.1
7

±
0
.5
%

1
.4
9

±
1
.7
%

7
.0
2

±
0
.0
%

0
.4
6

±
1
.9
%

T
ab

le
A

.1
:

S
ta

rt
-u

p
p

er
fo

rm
a
n

ce
im

p
ro

ve
m

en
t

fo
r

P
y
b

en
ch

(F
ig

u
re

3
.1

3
).

T
e
s
t

N
a
m

e
V

B
V

B
-o

p
t

B
o
o

B
o
o
-o

p
t

F
a
n
t
o
m

F
a
n
t
o
m

-o
p
t

C
o
b
r
a

C
o
b
r
a
-o

p
t

S
ta
D
y
n

S
ta
D
y
n
-o

p
t

P
y
b
e
n
c
h

3
.2
4

±
1
.1
%

1
.3
0

±
1
.3
%

2
.4
8

±
1
.4
%

0
.7
6

±
1
.2
%

9
.0
5

±
1
.7
%

0
.9
2

±
0
.9
%

6
.9
2

±
0
.8
%

0
.7
0

±
1
.0
%

1
.7
4

±
2
.5
%

0
.4
5

±
1
.9
%

F
F
T
B
e
n
c
h

0
.5
4

±
2
.0
%

0
.4
4

±
1
.9
%

0
.6
1

±
0
.0
%

0
.3
8

±
1
.9
%

3
.2
8

±
0
.0
%

0
.1
6

±
0
.0
%

4
.1
0

±
0
.9
%

0
.6
4

±
0
.0
%

0
.6
1

±
0
.0
%

0
.2
2

±
0
.0
%

H
e
a
p
S
o
rt
B
e
n
c
h

0
.2
8

±
1
.8
%

0
.1
8

±
3
.3
%

0
.1
3

±
0
.0
%

0
.1
1

±
0
.0
%

1
.1
6

±
0
.0
%

0
.0
8

±
0
.0
%

1
.7
5

±
0
.0
%

0
.2
2

±
0
.0
%

0
.4
5

±
2
.0
%

0
.1
6

±
0
.0
%

R
a
y
T
ra

c
e
rB

e
n
c
h

3
.5
8

±
1
.0
%

0
.7
5

±
0
.0
%

0
.5
2

±
0
.0
%

0
.4
8

±
0
.0
%

2
.2
8

±
1
.9
%

0
.2
3

±
0
.0
%

2
.8
0

±
0
.0
%

0
.6
9

±
0
.0
%

0
.3
9

±
0
.0
%

0
.2
7

±
2
.1
%

S
p
a
rs
e
M

a
tm

u
lt
B
e
n
c
h

0
.2
2

±
0
.0
%

0
.1
7

±
0
.0
%

0
.3
0

±
0
.0
%

0
.1
6

±
0
.0
%

0
.5
0

±
0
.0
%

0
.0
6

±
9
.9
%

0
.5
8

±
2
.0
%

0
.2
0

±
0
.0
%

0
.1
2

±
4
.6
%

0
.0
7

±
6
.4
%

p
o
in
ts

0
.4
8

±
0
.0
%

0
.1
4

±
0
.0
%

0
.1
3

±
0
.0
%

0
.1
1

±
0
.0
%

0
.3
5

±
1
.9
%

0
.0
5

±
1
0
.7
%

0
.5
0

±
0
.0
%

0
.1
4

±
2
.8
%

0
.4
2

±
2
.0
%

0
.2
0

±
0
.0
%

p
y
st
o
n
e

0
.7
1

±
1
.9
%

0
.4
1

±
0
.0
%

1
.1
9

±
2
.0
%

0
.4
7

±
0
.0
%

0
.5
5

±
2
.0
%

0
.0
8

±
0
.0
%

0
.9
7

±
1
.6
%

0
.2
1

±
2
.6
%

0
.6
6

±
1
.9
%

0
.2
8

±
0
.0
%

T
ab

le
A

.2
:

S
ta

rt
-u

p
p

er
fo

rm
a
n

ce
im

p
ro

ve
m

en
t

fo
r

a
ll

th
e

b
en

ch
m

a
rk

s
(F

ig
u

re
3
.1

4
).

82

Appendix A. Evaluation data of the DLR optimizations

T
e
s
t

N
a
m

e
V

B
V

B
-o

p
t

B
o
o

B
o
o
-o

p
t

F
a
n
t
o
m

F
a
n
t
o
m

-o
p
t

C
o
b
r
a

C
o
b
r
a
-o

p
t

S
ta
D
y
n

S
ta
D
y
n
-o

p
t

A
ri
th

.S
m
p
lF

lo
a
tA

ri
th

0
.6
0

±
0
.7
%

0
.2
8

±
0
.6
%

1
.5
2

±
1
.9
%

0
.3
2

±
2
.4
%

2
1
.9
0

±
2
.0
%

0
.5
9

±
1
.1
%

2
5
.1
5

±
0
.8
%

0
.2
8

±
1
.3
%

2
.3
4

±
1
.2
%

2
.3
3

±
0
.4
%

A
ri
th

.S
m
p
lI
n
te

g
e
rA

ri
th

0
.6
3

±
0
.7
%

0
.3
1

±
2
.9
%

1
.6
2

±
0
.0
%

0
.3
3

±
1
.3
%

2
0
.8
7

±
1
.7
%

0
.5
4

±
1
.0
%

6
0
.2
8

±
1
.5
%

0
.3
0

±
1
.2
%

3
.0
4

±
0
.4
%

3
.0
4

±
0
.5
%

A
ri
th

.S
m
p
lI
n
tF

lo
a
tA

ri
th

0
.6
3

±
2
.0
%

0
.3
0

±
0
.0
%

1
.7
2

±
0
.8
%

0
.3
3

±
1
.1
%

2
1
.5
7

±
4
.5
%

0
.5
5

±
1
.2
%

6
0
.1
6

±
1
.4
%

0
.3
1

±
2
.2
%

0
.0
3

±
2
.0
%

0
.0
3

±
0
.0
%

C
a
ll
s.
F
u
n
c
ti
o
n
C
a
ll
s

0
.2
4

±
1
.5
%

0
.2
4

±
0
.0
%

0
.1
4

±
1
.9
%

0
.1
4

±
0
.0
%

0
.4
0

±
0
.0
%

0
.2
8

±
0
.0
%

1
.3
5

±
1
.2
%

1
.3
5

±
0
.5
%

5
.6
8

±
0
.9
%

0
.4
2

±
0
.9
%

C
a
ll
s.
M

e
th

o
d
C
a
ll
s

1
1
.5
6

±
1
.6
%

0
.4
0

±
1
.9
%

0
.9
3

±
1
.5
%

0
.2
4

±
2
.2
%

3
.1
3

±
2
.0
%

0
.2
0

±
1
.9
%

2
.8
5

±
0
.6
%

0
.5
5

±
0
.0
%

2
.8
3

±
1
.9
%

0
.2
2

±
2
.0
%

C
a
ll
s.
R
e
c
u
rs
io
n

0
.5
7

±
0
.0
%

0
.3
4

±
0
.0
%

1
.6
4

±
0
.8
%

0
.4
8

±
0
.7
%

8
.7
6

±
1
.8
%

0
.4
4

±
0
.0
%

2
0
.9
2

±
0
.3
%

0
.3
7

±
0
.2
%

0
.7
6

±
1
.2
%

0
.1
1

±
0
.0
%

C
o
n
st
.F

o
rL

o
o
p
s

7
.0
6

±
0
.8
%

4
.7
8

±
0
.6
%

4
.6
5

±
0
.6
%

1
.6
8

±
0
.9
%

1
1
4
.8
9

±
1
.9
%

4
.6
1

±
0
.9
%

5
3
.6
1

±
0
.3
%

1
.5
1

±
0
.9
%

0
.0
1

±
1
3
.4
%

0
.0
1

±
1
3
.4
%

C
o
n
st
.I
fT

h
e
n
E
ls
e

0
.3
6

±
0
.0
%

0
.2
4

±
1
.9
%

1
.7
4

±
2
.0
%

0
.5
2

±
0
.7
%

1
.0
9

±
3
.1
%

0
.2
7

±
1
.5
%

1
.2
6

±
0
.1
%

1
.0
8

±
1
.2
%

0
.0
6

±
0
.0
%

0
.0
6

±
0
.0
%

C
o
n
st
.N

e
st
e
d
F
o
rL

o
o
p
s

2
6
.9
8

±
1
.9
%

9
.2
2

±
0
.9
%

3
.2
9

±
1
.6
%

1
.4
3

±
1
.9
%

1
0
5
.9
5

±
2
.4
%

4
.9
0

±
0
.7
%

3
4
.8
9

±
1
.9
%

2
.3
1

±
0
.2
%

2
5
.1
2

±
0
.4
%

4
.1
9

±
0
.6
%

D
ic
ts
.D

ic
tC

re
a
ti
o
n

2
.8
7

±
1
.1
%

0
.8
1

±
0
.1
%

0
.8
8

±
0
.0
%

0
.9
8

±
0
.1
%

5
.8
6

±
0
.5
%

5
.6
7

±
0
.2
%

7
.5
4

±
0
.8
%

0
.7
7

±
0
.7
%

1
.5
0

±
0
.8
%

0
.0
8

±
0
.9
%

D
ic
ts
.D

ic
tW

it
h
F
lo
a
tK

e
y
s

5
.0
2

±
0
.1
%

1
.0
0

±
1
.9
%

4
.5
4

±
0
.3
%

1
.4
2

±
1
.9
%

4
3
.8
2

±
0
.7
%

3
.9
8

±
0
.7
%

6
.8
7

±
0
.4
%

0
.7
2

±
1
.9
%

2
2
.1
4

±
1
.7
%

1
.3
7

±
1
.4
%

D
ic
ts
.D

ic
tW

it
h
In

tK
e
y
s

6
.7
0

±
0
.6
%

1
.3
6

±
1
.8
%

5
.5
8

±
1
.0
%

1
.6
6

±
0
.1
%

1
8
.0
2

±
0
.1
%

0
.7
0

±
0
.5
%

9
.0
1

±
1
.5
%

0
.9
5

±
1
.6
%

2
9
.1
3

±
0
.0
%

1
.5
4

±
1
.6
%

D
ic
ts
.D

ic
tW

it
h
S
tr
K
e
y
s

6
.6
9

±
0
.4
%

1
.3
3

±
1
.0
%

5
.1
7

±
1
.6
%

1
.1
0

±
0
.0
%

1
9
.8
9

±
1
.0
%

2
.4
4

±
1
.6
%

8
.9
3

±
0
.2
%

0
.8
0

±
1
.5
%

2
5
.3
8

±
2
.0
%

1
.7
3

±
2
.1
%

D
ic
ts
.S

m
p
lD

ic
tM

a
n
ip

1
9
.8
1

±
1
.1
%

2
.5
3

±
0
.5
%

6
.6
4

±
0
.2
%

1
.8
0

±
1
.9
%

2
0
.7
7

±
1
.7
%

2
.6
9

±
0
.6
%

1
6
.1
6

±
0
.0
%

1
.6
7

±
1
.9
%

2
3
.2
4

±
0
.8
%

1
.9
3

±
1
.5
%

E
x
c
e
p
t.
T
ry

E
x
c
e
p
t

1
.4
6

±
1
.9
%

1
.3
7

±
0
.0
%

0
.1
1

±
0
.0
%

0
.0
5

±
2
.0
%

0
.3
1

±
2
.6
%

0
.0
3

±
0
.0
%

0
.6
7

±
1
.9
%

0
.0
1

±
0
.0
%

0
.0
4

±
0
.0
%

0
.0
4

±
2
.1
%

E
x
c
e
p
t.
T
ry

R
a
is
e
E
x
c
e
p
t

1
4
6
.9
4

±
1
.9
%

1
4
9
.3
0

±
0
.6
%

8
.4
0

±
0
.2
%

8
.4
7

±
1
.8
%

1
.1
8

±
1
.8
%

1
.1
3

±
2
.0
%

0
.8
1

±
1
.8
%

0
.8
1

±
1
.6
%

0
.7
1

±
1
.1
%

0
.7
1

±
1
.9
%

In
st
.C

re
a
te

In
st
a
n
c
e
s

0
.5
8

±
0
.6
%

0
.5
4

±
1
.7
%

0
.6
0

±
0
.6
%

0
.3
8

±
1
.8
%

1
.7
7

±
1
.8
%

0
.3
2

±
0
.0
%

3
.8
4

±
1
.1
%

0
.2
2

±
1
.6
%

0
.0
3

±
2
.3
%

0
.0
3

±
2
.4
%

L
is
ts
.L

is
tS

li
c
in

g
1
.2
0

±
0
.0
%

0
.2
7

±
2
.0
%

0
.9
5

±
1
.5
%

0
.8
8

±
1
.5
%

0
.4
3

±
1
.6
%

0
.1
0

±
0
.1
%

0
.2
8

±
0
.0
%

0
.0
5

±
0
.0
%

0
.1
9

±
0
.5
%

0
.0
2

±
0
.0
%

L
is
ts
.S

m
p
lL

is
tM

a
n
ip

6
.8
9

±
0
.2
%

2
.2
5

±
2
.0
%

4
.2
9

±
0
.9
%

0
.7
5

±
1
.0
%

3
2
.7
3

±
1
.9
%

1
.3
5

±
1
.2
%

9
.9
4

±
0
.1
%

0
.5
1

±
2
.4
%

2
5
.4
2

±
0
.0
%

1
.7
1

±
0
.8
%

L
o
o
k
u
p
s.
C
la
ss
A
tt
r

0
.5
1

±
0
.6
%

0
.3
6

±
3
.1
%

0
.0
9

±
0
.0
%

0
.0
9

±
1
.7
%

0
.0
2

±
0
.1
%

0
.0
2

±
0
.1
%

0
.2
3

±
0
.0
%

0
.2
3

±
1
.9
%

0
.0
4

±
2
.0
%

0
.0
4

±
1
.8
%

L
o
o
k
u
p
s.
In

st
a
n
c
e
A
tt
r

3
5
.1
2

±
1
.4
%

1
.5
7

±
1
.2
%

3
.4
1

±
1
.7
%

0
.2
4

±
2
.0
%

1
1
.4
5

±
1
.5
%

0
.3
1

±
0
.0
%

5
.4
4

±
1
.5
%

1
.5
0

±
1
.8
%

3
.5
0

±
1
.7
%

0
.2
2

±
1
.8
%

N
e
w
In

st
.C

re
a
te

N
e
w
In

st
6
.4
1

±
0
.4
%

6
.2
4

±
0
.7
%

0
.6
6

±
0
.9
%

0
.4
6

±
0
.8
%

1
.8
0

±
1
.6
%

0
.3
3

±
0
.0
%

3
.7
5

±
1
.5
%

0
.2
6

±
0
.3
%

0
.4
8

±
0
.8
%

0
.4
8

±
0
.8
%

N
u
m
.C

m
p
F
lo
a
ts

0
.8
5

±
1
.8
%

0
.4
9

±
1
.6
%

1
.5
9

±
1
.6
%

0
.4
4

±
0
.9
%

2
2
.7
0

±
0
.7
%

1
.0
8

±
1
.3
%

2
1
.0
0

±
1
.1
%

0
.5
1

±
1
.4
%

1
4
.4
0

±
1
.4
%

0
.4
8

±
1
.9
%

N
u
m
.C

m
p
F
lo
a
ts
In

te
g
e
rs

0
.9
8

±
0
.0
%

0
.6
4

±
1
.4
%

1
.2
2

±
1
.8
%

0
.3
6

±
1
.9
%

3
0
.3
8

±
1
.9
%

1
.1
5

±
1
.3
%

1
6
.9
6

±
0
.5
%

0
.3
9

±
0
.2
%

1
0
.9
9

±
0
.5
%

0
.7
1

±
1
.9
%

N
u
m
.C

m
p
In

te
g
e
rs

1
.1
6

±
1
.2
%

0
.6
8

±
0
.0
%

2
.6
5

±
0
.5
%

0
.6
5

±
3
.0
%

8
5
.6
0

±
1
.6
%

3
.0
5

±
1
.6
%

3
1
.3
2

±
0
.7
%

0
.6
2

±
0
.1
%

2
1
.6
4

±
0
.3
%

0
.5
9

±
1
.3
%

S
tr
.C

m
p
S
tr
in

g
s

7
5
.6
0

±
1
.7
%

4
.7
5

±
1
.9
%

8
.0
5

±
0
.7
%

4
.1
8

±
1
.7
%

1
8
.6
8

±
1
.4
%

0
.7
5

±
1
.9
%

3
3
.4
4

±
1
.9
%

4
.1
5

±
0
.9
%

1
6
.0
5

±
0
.3
%

4
.6
7

±
0
.4
%

S
tr
.C

o
n
c
a
tS

tr
in

g
s

2
.2
5

±
1
.5
%

1
.9
4

±
0
.7
%

1
,0
8
0
.7
3

±
0
.7
%

2
.1
0

±
1
.8
%

1
9
.1
4

±
0
.0
%

2
.5
4

±
1
.2
%

2
2
.1
4

±
1
.0
%

1
.8
7

±
1
.5
%

1
0
.7
8

±
2
.6
%

2
.2
1

±
1
.0
%

S
tr
.C

re
a
te

S
tr
W

it
h
C
o
n
c
a
t

1
.0
5

±
1
.7
%

0
.7
2

±
2
.0
%

1
,0
5
6
.7
7

±
1
.8
%

0
.7
1

±
0
.0
%

1
7
.7
4

±
1
.7
%

1
.4
2

±
0
.0
%

2
0
.5
7

±
1
.3
%

0
.6
9

±
1
.4
%

0
.6
7

±
1
.4
%

0
.5
7

±
1
.7
%

S
tr
.S

tr
in

g
M

a
p
p
in

g
s

1
0
.0
0

±
1
.0
%

1
.5
7

±
1
.8
%

1
.6
1

±
0
.2
%

1
.1
0

±
1
.2
%

6
.1
5

±
2
.0
%

3
.8
2

±
1
.5
%

2
.0
9

±
0
.6
%

1
.5
2

±
0
.9
%

0
.1
9

±
1
.6
%

0
.1
1

±
1
.2
%

S
tr
.S

tr
in

g
P
re

d
ic
a
te

s
1
.3
3

±
1
.7
%

0
.1
6

±
1
.7
%

0
.2
8

±
0
.0
%

0
.1
7

±
1
.8
%

9
.4
1

±
1
.4
%

0
.2
8

±
0
.1
%

0
.5
0

±
0
.0
%

0
.0
9

±
1
.7
%

0
.4
1

±
0
.9
%

0
.0
8

±
2
.0
%

S
tr
.S

tr
in

g
S
li
c
in

g
5
0
.3
6

±
0
.9
%

1
.7
9

±
1
.9
%

3
.9
8

±
1
.1
%

0
.5
9

±
1
.1
%

2
3
.4
9

±
1
.6
%

1
.3
2

±
0
.6
%

1
7
.1
5

±
1
.2
%

1
.2
9

±
1
.9
%

6
.9
8

±
0
.2
%

0
.3
5

±
1
.1
%

T
ab

le
A

.3
:

S
te

a
d

y
-s

ta
te

p
er

fo
rm

a
n
ce

im
p

ro
ve

m
en

t
fo

r
P

y
b

en
ch

.

T
e
s
t

N
a
m

e
V

B
V

B
-o

p
t

B
o
o

B
o
o
-o

p
t

F
a
n
t
o
m

F
a
n
t
o
m

-o
p
t

C
o
b
r
a

C
o
b
r
a
-o

p
t

S
ta
D
y
n

S
ta
D
y
n
-o

p
t

P
y
b
e
n
c
h

3
.2
4

±
1
.1
%

1
.3
0

±
1
.3
%

2
.4
8

±
1
.4
%

0
.7
6

±
1
.2
%

9
.0
5

±
1
.7
%

0
.9
2

±
0
.9
%

6
.9
2

±
0
.8
%

0
.7
0

±
1
.0
%

1
.7
4

±
2
.5
%

0
.4
5

±
1
.9
%

F
F
T
B
e
n
c
h

0
.5
1

±
0
.7
%

0
.1
1

±
0
.0
%

0
.5
5

±
0
.7
%

0
.1
3

±
1
.8
%

3
.2
5

±
1
.7
%

0
.1
3

±
0
.0
%

4
.0
5

±
0
.3
%

0
.4
0

±
0
.9
%

0
.5
6

±
1
.2
%

0
.1
1

±
1
.8
%

H
e
a
p
S
o
rt
B
e
n
c
h

0
.2
6

±
0
.0
%

0
.0
6

±
0
.0
%

0
.0
9

±
0
.0
%

0
.0
4

±
2
.4
%

1
.1
7

±
1
.2
%

0
.0
5

±
0
.0
%

1
.7
4

±
0
.8
%

0
.1
3

±
0
.0
%

0
.4
3

±
0
.9
%

0
.0
8

±
1
.9
%

R
a
y
T
ra

c
e
rB

e
n
c
h

3
.3
9

±
1
.9
%

0
.2
4

±
0
.0
%

0
.4
4

±
0
.8
%

0
.1
0

±
0
.0
%

2
.2
3

±
1
.3
%

0
.0
8

±
0
.0
%

2
.7
8

±
1
.1
%

0
.2
8

±
0
.0
%

0
.2
7

±
0
.0
%

0
.0
4

±
0
.0
%

S
p
a
rs
e
M

a
tm

u
lt
B
e
n
c
h

0
.2
0

±
1
.6
%

0
.0
3

±
0
.0
%

0
.2
3

±
1
.7
%

0
.0
4

±
0
.0
%

0
.5
0

±
0
.0
%

0
.0
2

±
2
.2
%

0
.5
5

±
1
.3
%

0
.0
9

±
1
.9
%

0
.1
1

±
1
.5
%

0
.0
3

±
2
.9
%

p
o
in
ts

0
.4
6

±
1
.3
%

0
.0
4

±
0
.0
%

0
.0
8

±
1
.9
%

0
.0
3

±
2
.1
%

0
.3
3

±
0
.0
%

0
.0
2

±
0
.0
%

0
.4
8

±
0
.0
%

0
.0
5

±
1
.9
%

0
.3
8

±
0
.2
%

0
.1
2

±
0
.0
%

p
y
st
o
n
e

0
.6
8

±
1
.0
%

0
.1
7

±
1
.3
%

1
.1
1

±
1
.8
%

0
.2
9

±
1
.7
%

0
.5
3

±
1
.4
%

0
.0
2

±
0
.0
%

0
.9
3

±
1
.4
%

0
.0
5

±
1
.9
%

0
.6
1

±
1
.1
%

0
.1
9

±
1
.9
%

T
ab

le
A

.4
:

S
te

ad
y
-s

ta
te

p
er

fo
rm

a
n

ce
im

p
ro

ve
m

en
t

fo
r

a
ll

th
e

b
en

ch
m

a
rk

s
3
.1

3
.

83

Appendix A. Evaluation data of the DLR optimizations

T
e
s
t

N
a
m

e
V

B
V

B
-o

p
t

B
o
o

B
o
o
-o

p
t

F
a
n
t
o
m

F
a
n
t
o
m

-o
p
t

C
o
b
r
a

C
o
b
r
a
-o

p
t

S
ta
D
y
n

S
ta
D
y
n
-o

p
t

A
ri
th

.S
m
p
lF

lo
a
tA

ri
th

1
3
.0
3

±
1
.0
%

2
2
.6
8

±
0
.0
%

1
3
.3
5

±
0
.8
%

2
2
.1
6

±
1
.0
%

2
2
.3
6

±
1
.0
%

2
3
.3
5

±
0
.2
%

1
3
.8
2

±
1
.9
%

2
2
.4
4

±
1
.8
%

1
1
.5
9

±
0
.3
%

1
1
.5
9

±
1
.6
%

A
ri
th

.S
m
p
lI
n
te

g
e
rA

ri
th

1
3
.0
2

±
0
.7
%

2
2
.6
3

±
1
.6
%

1
3
.2
8

±
0
.3
%

2
2
.0
8

±
1
.6
%

2
2
.0
4

±
1
.0
%

2
0
.7
1

±
1
.2
%

1
5
.4
8

±
1
.4
%

2
2
.3
6

±
0
.3
%

1
1
.5
6

±
1
.8
%

1
1
.5
3

±
0
.0
%

A
ri
th

.S
m
p
lI
n
tF

lo
a
tA

ri
th

1
3
.0
3

±
1
.2
%

2
2
.5
5

±
0
.3
%

1
3
.2
9

±
0
.6
%

2
2
.1
2

±
0
.8
%

2
2
.0
8

±
0
.8
%

2
2
.4
4

±
0
.7
%

1
5
.4
5

±
0
.6
%

2
2
.3
9

±
0
.7
%

1
1
.4
9

±
2
.0
%

1
1
.4
6

±
0
.0
%

C
a
ll
s.
F
u
n
c
ti
o
n
C
a
ll
s

1
2
.1
5

±
1
.2
%

1
2
.1
6

±
1
.0
%

1
3
.1
1

±
1
.6
%

1
2
.5
3

±
0
.3
%

2
2
.0
9

±
1
.2
%

2
3
.0
2

±
0
.0
%

1
3
.5
5

±
0
.0
%

1
3
.5
3

±
1
.9
%

1
4
.4
7

±
0
.5
%

2
1
.8
3

±
0
.2
%

C
a
ll
s.
M

e
th

o
d
C
a
ll
s

1
9
.8
6

±
0
.6
%

2
5
.1
9

±
1
.0
%

1
4
.5
0

±
1
.2
%

2
2
.3
8

±
1
.9
%

2
2
.1
9

±
0
.7
%

2
4
.8
4

±
1
.0
%

1
3
.8
4

±
1
.1
%

2
4
.0
8

±
0
.7
%

1
5
.2
8

±
1
.0
%

2
1
.8
2

±
0
.8
%

C
a
ll
s.
R
e
c
u
rs
io
n

1
2
.8
9

±
0
.9
%

2
1
.8
2

±
1
.2
%

1
3
.2
9

±
0
.7
%

2
1
.5
5

±
0
.5
%

2
2
.1
4

±
0
.8
%

2
2
.2
0

±
1
.3
%

1
4
.0
2

±
1
.7
%

2
2
.1
4

±
0
.2
%

1
1
.7
6

±
1
.3
%

2
1
.5
3

±
1
.2
%

C
o
n
st
.F

o
rL

o
o
p
s

1
3
.9
6

±
0
.0
%

2
3
.3
1

±
0
.8
%

1
3
.4
7

±
0
.5
%

2
1
.6
7

±
0
.7
%

2
2
.2
6

±
1
.8
%

2
3
.0
7

±
0
.2
%

1
4
.0
7

±
0
.5
%

2
2
.7
3

±
0
.2
%

1
1
.7
6

±
1
.3
%

1
1
.7
6

±
1
.3
%

C
o
n
st
.I
fT

h
e
n
E
ls
e

1
2
.9
6

±
1
.1
%

2
1
.8
6

±
0
.7
%

1
3
.1
9

±
0
.3
%

2
1
.7
8

±
0
.6
%

2
2
.1
4

±
0
.2
%

2
2
.4
0

±
1
.3
%

1
3
.4
8

±
0
.3
%

2
2
.1
4

±
0
.8
%

1
1
.4
8

±
1
.3
%

1
1
.4
7

±
1
.6
%

C
o
n
st
.N

e
st
e
d
F
o
rL

o
o
p
s

1
3
.8
3

±
0
.8
%

2
3
.0
3

±
1
.3
%

1
3
.4
4

±
2
.0
%

2
1
.5
0

±
0
.7
%

2
2
.3
0

±
0
.9
%

2
4
.2
5

±
0
.5
%

1
4
.1
1

±
1
.2
%

2
2
.4
7

±
0
.2
%

1
1
.8
6

±
1
.5
%

2
1
.3
2

±
1
.4
%

D
ic
ts
.D

ic
tC

re
a
ti
o
n

1
3
.2
2

±
0
.8
%

2
2
.8
6

±
1
.1
%

1
3
.3
1

±
1
.0
%

1
2
.7
2

±
0
.6
%

2
2
.2
0

±
1
.0
%

2
3
.1
7

±
0
.8
%

1
3
.8
1

±
1
.1
%

2
2
.8
8

±
0
.7
%

1
1
.7
8

±
0
.3
%

2
1
.7
7

±
0
.7
%

D
ic
ts
.D

ic
tW

it
h
F
lo
a
tK

e
y
s

1
3
.2
5

±
1
.1
%

2
2
.9
6

±
0
.7
%

1
4
.6
7

±
1
.5
%

2
2
.6
2

±
1
.1
%

2
2
.2
0

±
1
.0
%

2
3
.2
7

±
0
.0
%

1
3
.8
9

±
0
.6
%

2
3
.0
5

±
1
.0
%

3
2
3
.5
6

±
7
.9
%

3
3
5
.9
2

±
8
.5
%

D
ic
ts
.D

ic
tW

it
h
In

tK
e
y
s

1
3
.1
3

±
1
.0
%

2
2
.6
0

±
1
.1
%

1
4
.6
1

±
1
.8
%

2
2
.6
2

±
0
.8
%

2
2
.0
6

±
0
.0
%

2
2
.6
9

±
1
.5
%

1
3
.9
1

±
0
.0
%

2
3
.0
6

±
1
.3
%

1
4
.5
6

±
0
.5
%

2
1
.9
8

±
0
.2
%

D
ic
ts
.D

ic
tW

it
h
S
tr
K
e
y
s

1
4
.4
4

±
1
.3
%

2
5
.2
6

±
0
.3
%

1
4
.6
0

±
1
.3
%

2
2
.6
5

±
1
.4
%

2
1
.9
9

±
1
.5
%

2
2
.6
0

±
0
.6
%

1
3
.8
9

±
1
.1
%

2
3
.1
1

±
0
.3
%

3
1
3
.8
7

±
9
.5
%

3
4
0
.2
9

±
8
.0
%

D
ic
ts
.S

m
p
lD

ic
tM

a
n
ip

1
3
.8
0

±
1
.1
%

2
3
.5
1

±
0
.7
%

1
4
.7
4

±
1
.2
%

2
3
.1
3

±
0
.3
%

2
2
.0
4

±
1
.8
%

2
4
.6
4

±
1
.6
%

1
4
.1
6

±
1
.3
%

2
3
.9
2

±
0
.3
%

1
8
.0
6

±
1
.2
%

2
2
.5
8

±
1
.5
%

E
x
c
e
p
t.
T
ry

E
x
c
e
p
t

2
1
.9
0

±
1
.8
%

3
0
.5
2

±
1
.9
%

1
3
.9
7

±
0
.8
%

2
1
.6
1

±
1
.5
%

2
2
.3
2

±
1
.0
%

2
3
.1
0

±
0
.8
%

1
3
.9
1

±
0
.5
%

2
2
.1
0

±
0
.2
%

1
8
.9
8

±
1
.0
%

1
8
.9
7

±
0
.2
%

E
x
c
e
p
t.
T
ry

R
a
is
e
E
x
c
e
p
t

1
3
.0
8

±
1
.0
%

2
2
.1
8

±
0
.7
%

1
3
.6
4

±
0
.9
%

2
1
.9
5

±
0
.8
%

2
2
.1
3

±
0
.8
%

2
3
.0
8

±
1
.0
%

1
3
.5
1

±
0
.8
%

1
3
.5
3

±
1
.2
%

1
1
.6
6

±
1
.3
%

1
1
.6
3

±
1
.6
%

In
st
.C

re
a
te

In
st
a
n
c
e
s

1
3
.0
5

±
1
.4
%

2
1
.7
6

±
0
.7
%

1
3
.4
1

±
1
.4
%

2
1
.5
4

±
1
.0
%

2
2
.0
4

±
1
.0
%

2
3
.0
1

±
0
.3
%

1
3
.9
5

±
1
.6
%

2
2
.1
1

±
0
.5
%

1
1
.4
3

±
1
.6
%

1
1
.4
4

±
1
.9
%

L
is
ts
.L

is
tS

li
c
in

g
1
4
.8
2

±
1
.7
%

2
3
.3
2

±
0
.8
%

1
4
.6
2

±
1
.8
%

2
2
.3
2

±
0
.6
%

2
2
.5
5

±
0
.8
%

2
4
.4
8

±
0
.9
%

1
4
.1
7

±
0
.9
%

2
2
.8
7

±
1
.4
%

1
2
.9
1

±
0
.9
%

2
1
.8
5

±
0
.5
%

L
is
ts
.S

m
p
lL

is
tM

a
n
ip

1
4
.0
3

±
1
.0
%

2
7
.0
1

±
0
.1
%

1
4
.4
2

±
0
.9
%

2
4
.6
6

±
2
.0
%

2
2
.6
5

±
1
.1
%

2
3
.7
0

±
0
.9
%

1
4
.3
0

±
1
.0
%

2
4
.7
7

±
1
.9
%

1
8
.8
0

±
0
.8
%

2
5
.1
0

±
0
.6
%

L
o
o
k
u
p
s.
C
la
ss
A
tt
r

1
2
.9
4

±
0
.6
%

2
2
.5
4

±
0
.7
%

1
0
.9
3

±
1
.7
%

1
0
.3
6

±
1
.4
%

2
2
.0
7

±
1
.7
%

2
2
.6
2

±
1
.3
%

1
1
.2
3

±
1
.6
%

1
1
.2
5

±
0
.8
%

1
1
.4
4

±
1
.0
%

1
1
.4
3

±
1
.0
%

L
o
o
k
u
p
s.
In

st
a
n
c
e
A
tt
r

1
3
.6
3

±
1
.6
%

2
3
.2
2

±
0
.2
%

1
4
.4
7

±
1
.3
%

2
2
.4
1

±
0
.9
%

2
2
.4
9

±
1
.1
%

2
4
.0
6

±
1
.2
%

1
1
.5
6

±
0
.8
%

2
2
.8
6

±
0
.3
%

2
0
.3
7

±
0
.5
%

2
1
.8
8

±
0
.3
%

N
e
w
In

st
.C

re
a
te

N
e
w
In

st
1
2
.9
5

±
1
.0
%

1
2
.9
4

±
0
.8
%

1
3
.4
0

±
1
.4
%

2
1
.5
7

±
0
.9
%

2
2
.5
1

±
0
.7
%

2
3
.4
3

±
0
.2
%

1
4
.0
1

±
0
.8
%

2
2
.1
0

±
1
.0
%

1
1
.4
5

±
1
.0
%

1
1
.4
4

±
0
.6
%

N
u
m
.C

m
p
F
lo
a
ts

1
3
.2
4

±
1
.1
%

2
3
.2
5

±
1
.1
%

1
3
.2
9

±
1
.1
%

2
2
.8
2

±
0
.8
%

2
2
.6
3

±
0
.7
%

2
3
.0
7

±
1
.4
%

1
1
.6
2

±
0
.6
%

2
3
.2
7

±
0
.0
%

2
4
9
.2
6

±
0
.0
%

2
4
9
.3
4

±
0
.0
%

N
u
m
.C

m
p
F
lo
a
ts
In

te
g
e
rs

1
3
.1
8

±
1
.3
%

2
3
.4
0

±
0
.8
%

1
3
.3
4

±
1
.2
%

2
2
.8
9

±
0
.9
%

2
2
.6
1

±
0
.3
%

2
4
.7
8

±
1
.0
%

1
3
.9
2

±
1
.9
%

2
3
.3
8

±
0
.9
%

2
4
9
.2
7

±
0
.0
%

2
4
9
.2
7

±
0
.0
%

N
u
m
.C

m
p
In

te
g
e
rs

1
3
.2
0

±
0
.9
%

2
3
.1
9

±
1
.1
%

1
3
.3
5

±
0
.6
%

2
2
.6
4

±
0
.6
%

2
2
.8
8

±
0
.3
%

2
6
.0
3

±
1
.4
%

1
1
.6
6

±
1
.9
%

2
3
.1
7

±
0
.3
%

2
4
9
.2
7

±
0
.1
%

2
4
9
.2
7

±
0
.0
%

S
tr
.C

m
p
S
tr
in

g
s

1
5
.1
1

±
1
.0
%

2
3
.4
2

±
0
.9
%

1
6
.1
0

±
1
.1
%

2
2
.6
7

±
1
.9
%

2
2
.1
0

±
1
.0
%

2
3
.0
1

±
0
.6
%

1
4
.0
3

±
0
.8
%

2
3
.2
0

±
1
.9
%

1
6
.4
9

±
0
.4
%

2
2
.2
6

±
1
.5
%

S
tr
.C

o
n
c
a
tS

tr
in

g
s

1
4
.3
8

±
0
.5
%

2
3
.3
2

±
0
.8
%

1
5
.7
0

±
1
.1
%

2
2
.2
1

±
0
.7
%

2
2
.3
1

±
0
.2
%

2
3
.2
9

±
0
.6
%

1
3
.8
3

±
0
.8
%

2
2
.5
3

±
0
.5
%

4
8
.4
9

±
0
.6
%

5
1
.2
2

±
0
.1
%

S
tr
.C

re
a
te

S
tr
W

it
h
C
o
n
c
a
t

1
3
.0
9

±
2
.0
%

2
2
.7
0

±
1
.6
%

1
5
.7
4

±
0
.9
%

2
2
.2
7

±
0
.9
%

2
2
.3
2

±
1
.8
%

2
3
.2
6

±
0
.5
%

1
3
.8
2

±
1
.6
%

2
2
.5
2

±
0
.7
%

1
1
.8
8

±
1
.5
%

2
1
.2
7

±
0
.2
%

S
tr
.S

tr
in

g
M

a
p
p
in

g
s

1
4
.4
1

±
0
.5
%

2
4
.7
7

±
0
.9
%

1
6
.1
0

±
0
.9
%

2
2
.3
2

±
1
.6
%

2
2
.1
0

±
0
.2
%

2
3
.0
8

±
0
.3
%

1
3
.8
1

±
1
.9
%

2
4
.0
8

±
1
.1
%

1
1
.9
0

±
1
.9
%

2
2
.1
8

±
0
.8
%

S
tr
.S

tr
in

g
P
re

d
ic
a
te

s
1
4
.4
9

±
0
.0
%

2
4
.8
8

±
0
.6
%

1
4
.7
8

±
0
.7
%

2
2
.2
3

±
1
.3
%

2
2
.8
9

±
0
.5
%

2
3
.0
9

±
1
.6
%

1
4
.0
6

±
0
.7
%

2
2
.8
0

±
0
.7
%

1
2
.1
8

±
1
.4
%

2
1
.8
7

±
0
.8
%

S
tr
.S

tr
in

g
S
li
c
in

g
1
5
.3
1

±
0
.5
%

2
3
.9
1

±
0
.5
%

1
6
.1
9

±
1
.4
%

2
2
.8
3

±
0
.3
%

2
2
.2
4

±
0
.5
%

2
3
.2
2

±
0
.5
%

1
4
.0
6

±
1
.0
%

2
3
.3
2

±
0
.6
%

1
3
.3
9

±
0
.5
%

2
2
.5
5

±
1
.3
%

T
ab

le
A

.5
:

M
em

o
ry

co
n

su
m

p
ti

o
n

in
cr

ea
se

fo
r

P
y
b

en
ch

.

T
e
s
t

N
a
m

e
V

B
V

B
-o

p
t

B
o
o

B
o
o
-o

p
t

F
a
n
t
o
m

F
a
n
t
o
m

-o
p
t

C
o
b
r
a

C
o
b
r
a
-o

p
t

S
ta
D
y
n

S
ta
D
y
n
-o

p
t

P
y
b
e
n
c
h

1
3
.9
3

±
1
.0
%

2
2
.5
8

±
0
.8
%

1
4
.0
3

±
1
.1
%

2
0
.9
9

±
1
.0
%

2
2
.2
9

±
0
.9
%

2
3
.3
0

±
0
.8
%

1
3
.6
7

±
1
.0
%

2
1
.6
5

±
0
.8
%

2
2
.5
9

±
1
.5
%

2
8
.2
0

±
1
.2
%

F
F
T
B
e
n
c
h

1
5
.0
0

±
0
.0
%

2
6
.1
8

±
0
.6
%

1
5
.0
2

±
0
.7
%

2
3
.1
2

±
0
.2
%

2
2
.9
4

±
0
.0
%

2
4
.8
9

±
0
.6
%

1
5
.5
4

±
1
.9
%

2
4
.7
9

±
0
.3
%

1
7
.6
6

±
0
.2
%

2
2
.6
7

±
0
.5
%

H
e
a
p
S
o
rt
B
e
n
c
h

1
4
.3
1

±
1
.5
%

2
4
.6
1

±
0
.8
%

1
4
.6
7

±
1
.7
%

2
3
.0
1

±
1
.2
%

2
2
.2
3

±
1
.8
%

2
4
.2
9

±
0
.2
%

1
4
.1
0

±
0
.5
%

2
4
.3
0

±
1
.7
%

1
1
.9
4

±
1
.6
%

2
1
.9
7

±
1
.3
%

R
a
y
T
ra

c
e
rB

e
n
c
h

1
4
.8
7

±
1
.7
%

2
7
.4
0

±
1
.7
%

1
6
.9
6

±
1
.5
%

2
4
.8
8

±
0
.6
%

2
3
.7
3

±
0
.5
%

2
6
.5
0

±
0
.4
%

1
5
.6
8

±
0
.5
%

2
6
.3
5

±
0
.4
%

1
3
.7
6

±
0
.3
%

2
2
.6
1

±
1
.0
%

S
p
a
rs
e
M

a
tm

u
lt
B
e
n
c
h

1
4
.4
7

±
0
.5
%

2
5
.2
1

±
1
.0
%

1
4
.7
9

±
1
.3
%

2
3
.0
9

±
1
.8
%

2
3
.3
4

±
1
.9
%

2
4
.3
1

±
0
.8
%

1
5
.4
3

±
1
.2
%

2
4
.5
8

±
0
.1
%

1
4
.0
7

±
0
.7
%

2
2
.2
9

±
1
.7
%

p
o
in
ts

1
9
.7
2

±
0
.6
%

2
2
.9
7

±
0
.5
%

2
0
.5
9

±
1
.1
%

2
2
.7
9

±
1
.9
%

2
3
.4
2

±
0
.8
%

2
4
.1
3

±
0
.2
%

1
7
.2
6

±
0
.9
%

2
3
.0
9

±
0
.6
%

1
4
.3
4

±
0
.5
%

2
1
.6
4

±
0
.6
%

p
y
st
o
n
e

1
4
.6
5

±
0
.7
%

2
6
.2
1

±
1
.0
%

1
5
.5
5

±
1
.8
%

2
3
.2
4

±
1
.3
%

2
3
.3
6

±
0
.6
%

2
4
.3
1

±
1
.8
%

1
6
.0
5

±
1
.6
%

2
4
.9
5

±
1
.2
%

1
2
.2
7

±
1
.5
%

2
2
.0
1

±
0
.5
%

T
ab

le
A

.6
:

M
em

o
ry

co
n

su
m

p
ti

o
n

in
cr

ea
se

fo
r

a
ll

th
e

b
en

ch
m

a
rk

s
(F

ig
u

re
3
.1

6
).

84

Appendix B

Evaluation data of the SSA
optimizations

This appendix details the data obtained when measuring the cost and benefits
of the SSA transformations for inferring the type of dynamically typed local
variables (Chapter 4).

Test Name C#
StaDyn

StaDyn
no SSA

Arith.SmplFloatArith 1,786.00 ±2.0% 328.00 ±0.0% 15.00 ±0.0%
Arith.SmplIntegerArith 1,760.00 ±2.0% 390.00 ±0.0% 12.00 ±17.3%
Arith.SmplIntFloatArith 1,781.00 ±0.0% 390.00 ±0.0% 15.00 ±0.0%
Calls.FunctionCalls 1,703.00 ±0.0% 12,382.50 ±1.1% 6.50 ±15.4%
Calls.MethodCalls 1,703.00 ±0.0% 1,503.75 ±1.4% 15.00 ±0.0%
Calls.Recursion 1,699.00 ±1.3% 3,156.00 ±0.0% 109.00 ±0.0%
Const.ForLoops 5,374.67 ±1.2% 13,043.20 ±1.5% 703.00 ±0.0%
Const.IfThenElse 1,371.00 ±1.6% 62.00 ±0.0% 62.00 ±0.0%
Const.NestedForLoops 4,447.67 ±0.8% 9,499.67 ±1.8% 533.14 ±1.8%
Dicts.DictCreation 2,093.00 ±0.0% 10,828.00 ±0.0% 281.00 ±0.0%
Dicts.DictWithFloatKeys 2,510.00 ±1.4% 15,132.50 ±0.9% 1,484.00 ±0.0%
Dicts.DictWithIntKeys 2,531.00 ±0.0% 20,281.00 ±1.4% 437.00 ±0.0%
Dicts.DictWithStrKeys 2,828.00 ±0.0% 20,187.50 ±1.4% 1,625.00 ±0.0%
Dicts.SmplDictManip 1,718.00 ±0.0% 19,695.00 ±0.7% 2,078.00 ±0.0%
Except.TryExcept 1,093.00 ±0.0% 62.00 ±0.0% 46.00 ±0.0%
Except.TryRaiseExcept 2,140.00 ±0.0% 950.57 ±1.9% 880.00 ±1.7%
Inst.CreateInstances 2,208.00 ±1.6% 203.00 ±0.0% 31.00 ±0.0%
Lists.ListSlicing 1,534.75 ±1.3% 203.00 ±0.0% 62.00 ±0.0%
Lists.SmplListManip 3,234.00 ±0.0% 20,218.50 ±1.4% 515.00 ±0.0%
Lookups.ClassAttr 1,273.00 ±2.0% 31.00 ±0.0% 78.00 ±0.0%
Lookups.InstanceAttr 1,640.00 ±0.0% 3,413.67 ±2.0% 85.50 ±6.6%
NewInst.CreateNewInst 2,187.00 ±0.0% 190.73 ±2.6% 3.00 ±19.4%
Num.CmpFloats 2,062.00 ±0.0% 421.00 ±0.0% 3.50 ±18.4%
Num.CmpFloatsIntegers 1,911.00 ±1.8% 368.60 ±2.0% 2.50 ±16.0%
Num.CmpIntegers 2,385.00 ±1.5% 500.00 ±0.0% 4.50 ±11.1%
Str.CmpStrings 5,650.33 ±1.3% 13,000.00 ±0.0% 3,537.20 ±1.5%
Str.ConcatStrings 3,406.00 ±0.0% 3,614.33 ±1.0% 1,843.25 ±1.9%
Str.CreateStrWithConcat 2,005.00 ±1.8% 812.00 ±0.0% 630.63 ±1.9%
Str.StringMappings 2,609.00 ±0.0% 1,828.00 ±0.0% 1,109.00 ±0.0%
Str.StringPredicates 1,812.00 ±0.0% 328.00 ±0.0% 35.50 ±14.5%
Str.StringSlicing 2,213.00 ±1.6% 6,765.00 ±0.0% 281.00 ±0.0%

Table B.1: Start-up performance of Pybench (Figure 4.15).

85

Appendix B. Evaluation data of the SSA optimizations

Test Name C#
StaDyn

StaDyn
no SSA

Pybench 2,167.36 ±0.0% 1,510.10 ±0.0% 116.42 ±0.2%
FFTBench 550.80 ±2.0% 586.33 ±0.0% 196.60 ±3.0%
HeapSortBench 234.00 ±1.9% 364.05 ±2.0% 160.00 ±3.1%
RayTracerBench 1,203.00 ±0.0% 625.00 ±2.0% 46.00 ±0.0%
SparseMatmultBench 359.00 ±0.0% 1,968.00 ±0.0% 281.00 ±0.0%
points 1,791.00 ±0.0% 781.00 ±0.0% 52.40 ±11.2%
pystone 937.00 ±0.0% 421.00 ±0.0% 133.00 ±4.2%

Table B.2: Start-up performance of all the benchmarks (Figure 4.16).

Test Name C#
StaDyn

StaDyn
no SSA

Arith.SmplFloatArith 542.40 ±0.6% 176.15 ±0.5% 8.95 ±3.9%
Arith.SmplIntegerArith 513.00 ±0.7% 244.80 ±0.0% 9.00 ±0.0%
Arith.SmplIntFloatArith 574.55 ±0.2% 242.70 ±1.4% 8.15 ±11.6%
Calls.FunctionCalls 380.90 ±0.0% 12,339.23 ±0.6% 1.50 ±0.0%
Calls.MethodCalls 340.52 ±1.5% 1,475.20 ±1.0% 1.50 ±0.0%
Calls.Recursion 518.58 ±1.2% 3,144.75 ±1.8% 108.68 ±1.5%
Const.ForLoops 4,008.95 ±1.5% 12,934.38 ±1.3% 683.27 ±0.5%
Const.IfThenElse 332.93 ±1.3% 34.00 ±0.0% 52.40 ±0.0%
Const.NestedForLoops 3,332.80 ±1.9% 9,497.67 ±1.0% 537.77 ±1.8%
Dicts.DictCreation 830.10 ±1.7% 10,806.90 ±0.1% 281.70 ±1.9%
Dicts.DictWithFloatKeys 1,093.20 ±0.0% 15,117.90 ±1.0% 447.60 ±0.8%
Dicts.DictWithIntKeys 1,304.50 ±1.4% 20,197.45 ±0.9% 440.73 ±1.9%
Dicts.DictWithStrKeys 1,367.50 ±0.7% 20,113.15 ±0.9% 561.10 ±1.7%
Dicts.SmplDictManip 424.67 ±1.5% 19,612.35 ±1.4% 1,138.70 ±0.0%
Except.TryExcept 7.50 ±0.0% 6.00 ±0.0% 1.50 ±0.0%
Except.TryRaiseExcept 953.33 ±0.8% 944.20 ±1.5% 872.72 ±2.0%
Inst.CreateInstances 992.24 ±1.9% 204.50 ±1.7% 27.80 ±0.0%
Lists.ListSlicing 63.07 ±1.8% 191.80 ±0.0% 58.80 ±0.0%
Lists.SmplListManip 1,806.87 ±0.8% 20,131.85 ±0.3% 506.00 ±0.0%
Lookups.ClassAttr 200.94 ±1.9% 20.01 ±4.6% 79.63 ±1.8%
Lookups.InstanceAttr 358.80 ±0.0% 3,390.13 ±0.9% 80.70 ±1.8%
NewInst.CreateNewInst 986.96 ±2.0% 187.00 ±0.0% 1.50 ±0.0%
Num.CmpFloats 780.13 ±1.2% 196.10 ±0.0% 1.50 ±0.0%
Num.CmpFloatsIntegers 621.37 ±1.0% 153.98 ±1.6% 0.85 ±19.3%
Num.CmpIntegers 1,125.40 ±1.3% 282.97 ±1.3% 1.85 ±14.4%
Str.CmpStrings 4,168.03 ±1.7% 12,966.05 ±0.1% 3,518.20 ±0.8%
Str.ConcatStrings 2,020.75 ±0.7% 2,698.80 ±1.4% 1,866.80 ±0.0%
Str.CreateStrWithConcat 837.95 ±1.6% 729.80 ±1.4% 624.81 ±1.9%
Str.StringMappings 1,255.00 ±1.1% 1,818.40 ±0.0% 1,096.20 ±0.0%
Str.StringPredicates 418.20 ±1.4% 331.00 ±0.0% 32.20 ±2.4%
Str.StringSlicing 726.00 ±0.0% 6,674.50 ±1.2% 292.90 ±2.0%

Table B.3: Steady-state performance of Pybench.

Test Name C#
StaDyn

StaDyn
no SSA

Pybench 661.84 ±0.0% 1,178.36 ±0.0% 79.80 ±0.1%
FFTBench 93.71 ±0.2% 375.00 ±1.9% 121.80 ±0.0%
HeapSortBench 73.38 ±1.8% 321.60 ±0.0% 70.00 ±0.0%
RayTracerBench 47.92 ±1.9% 393.07 ±0.0% 9.80 ±5.7%
SparseMatmultBench 156.00 ±2.0% 1,918.25 ±1.0% 15.80 ±4.7%
points 390.25 ±0.0% 745.03 ±1.5% 9.00 ±0.0%
pystone 38.50 ±0.0% 360.80 ±1.5% 16.60 ±0.0%

Table B.4: Steady-state performance of all the benchmarks.

86

Appendix B. Evaluation data of the SSA optimizations

Test Name C#
StaDyn

StaDyn
no SSA

Arith.SmplFloatArith 24.47 ±0.6% 78.23 ±0.1% 11.47 ±1.8%
Arith.SmplIntegerArith 24.95 ±1.2% 78.10 ±0.3% 11.43 ±1.6%
Arith.SmplIntFloatArith 24.39 ±0.0% 78.14 ±0.1% 11.47 ±1.3%
Calls.FunctionCalls 24.96 ±0.3% 11.84 ±0.9% 10.35 ±0.4%
Calls.MethodCalls 24.89 ±0.6% 11.88 ±0.3% 10.17 ±1.3%
Calls.Recursion 24.51 ±0.8% 11.86 ±0.6% 11.40 ±1.5%
Const.ForLoops 27.49 ±0.5% 29.71 ±0.7% 11.69 ±0.0%
Const.IfThenElse 24.00 ±0.5% 18.37 ±0.4% 11.48 ±1.9%
Const.NestedForLoops 24.74 ±0.7% 12.00 ±1.3% 11.60 ±1.0%
Dicts.DictCreation 24.63 ±0.3% 14.30 ±0.8% 11.59 ±1.0%
Dicts.DictWithFloatKeys 25.18 ±1.3% 12.06 ±1.2% 11.73 ±1.2%
Dicts.DictWithIntKeys 24.75 ±0.8% 12.37 ±0.7% 11.54 ±1.1%
Dicts.DictWithStrKeys 25.38 ±1.9% 12.06 ±1.3% 11.94 ±0.6%
Dicts.SmplDictManip 25.04 ±1.5% 14.48 ±1.5% 11.98 ±1.2%
Except.TryExcept 24.02 ±1.3% 19.06 ±1.2% 18.88 ±0.8%
Except.TryRaiseExcept 24.61 ±1.7% 11.73 ±0.0% 11.71 ±0.7%
Inst.CreateInstances 24.41 ±0.7% 11.52 ±1.5% 11.40 ±1.0%
Lists.ListSlicing 25.15 ±0.1% 12.18 ±1.8% 11.67 ±1.9%
Lists.SmplListManip 32.12 ±0.8% 14.77 ±0.0% 15.64 ±0.6%
Lookups.ClassAttr 23.18 ±0.5% 11.51 ±1.0% 11.52 ±0.7%
Lookups.InstanceAttr 25.08 ±1.0% 12.57 ±1.3% 12.70 ±1.7%
NewInst.CreateNewInst 24.40 ±0.5% 11.56 ±1.2% 11.44 ±1.7%
Num.CmpFloats 31.64 ±0.5% 114.17 ±0.8% 11.18 ±1.3%
Num.CmpFloatsIntegers 31.67 ±0.7% 114.13 ±0.0% 10.75 ±1.6%
Num.CmpIntegers 31.71 ±0.9% 114.08 ±0.8% 11.43 ±1.0%
Str.CmpStrings 25.97 ±1.4% 12.34 ±0.3% 11.60 ±1.6%
Str.ConcatStrings 25.45 ±1.3% 110.44 ±0.0% 11.64 ±1.1%
Str.CreateStrWithConcat 24.41 ±0.2% 23.52 ±0.9% 11.58 ±1.1%
Str.StringMappings 25.40 ±1.4% 11.95 ±1.1% 11.58 ±1.6%
Str.StringPredicates 25.18 ±0.9% 11.99 ±1.8% 11.51 ±1.9%
Str.StringSlicing 25.91 ±0.6% 23.27 ±0.0% 11.48 ±0.9%

Table B.5: Memory consumption of Pybench.

Test Name C#
StaDyn

StaDyn
no SSA

Pybench 25.59 ±0.0% 21.62 ±0.0% 11.78 ±0.0%
FFTBench 31.80 ±0.7% 37.68 ±1.3% 38.10 ±0.6%
HeapSortBench 23.32 ±0.9% 14.22 ±0.2% 16.15 ±1.4%
RayTracerBench 28.79 ±1.1% 17.59 ±1.8% 13.95 ±0.3%
SparseMatmultBench 26.35 ±1.2% 19.19 ±1.0% 13.77 ±1.3%
points 49.96 ±0.6% 38.17 ±0.2% 13.82 ±1.3%
pystone 26.70 ±1.4% 12.71 ±1.2% 12.22 ±0.7%

Table B.6: Memory consumption of all the benchmarks (Figure 4.18).

87

Appendix B. Evaluation data of the SSA optimizations

Test Name CSC Roselyn Mono
StaDyn

StaDyn
no SSA

Arith.SmplFloatArith 0.215 ±12.6% 6.375 ±1.8% 4.201 ±1.9% 1.358 ±0.0% 1.545 ±1.2%
Arith.SmplIntegerArith 0.209 ±1.3% 6.356 ±0.1% 4.200 ±1.3% 1.362 ±0.0% 1.546 ±0.6%
Arith.SmplIntFloatArith 0.209 ±1.1% 6.378 ±0.8% 4.199 ±1.1% 1.372 ±0.0% 1.550 ±0.6%
Calls.FunctionCalls 0.209 ±1.3% 6.417 ±0.9% 4.210 ±0.6% 1.456 ±0.0% 1.629 ±0.6%
Calls.MethodCalls 0.209 ±1.3% 6.392 ±0.5% 4.208 ±0.4% 1.648 ±0.0% 1.804 ±0.5%
Calls.Recursion 0.207 ±1.3% 6.393 ±0.8% 4.208 ±0.9% 1.400 ±0.0% 1.573 ±1.1%
Const.ForLoops 0.209 ±1.1% 6.399 ±0.6% 4.219 ±0.6% 1.416 ±0.0% 1.599 ±1.1%
Const.IfThenElse 0.207 ±1.3% 6.395 ±0.7% 4.204 ±0.9% 1.517 ±0.0% 1.723 ±0.0%
Const.NestedForLoops 0.207 ±2.0% 6.402 ±0.0% 4.219 ±0.8% 1.400 ±0.0% 1.587 ±0.6%
Dicts.DictCreation 0.208 ±0.0% 6.420 ±0.7% 4.212 ±1.9% 1.377 ±0.0% 1.564 ±1.1%
Dicts.DictWithFloatKeys 0.208 ±0.0% 6.429 ±0.7% 4.251 ±1.1% 1.477 ±0.0% 1.674 ±1.1%
Dicts.DictWithIntKeys 0.207 ±1.1% 6.383 ±0.8% 4.211 ±0.9% 1.376 ±0.0% 1.545 ±0.6%
Dicts.DictWithStrKeys 0.208 ±1.1% 6.375 ±1.3% 4.241 ±0.0% 1.504 ±0.0% 1.707 ±0.5%
Dicts.SmplDictManip 0.208 ±2.0% 6.368 ±0.1% 4.253 ±0.6% 1.476 ±0.0% 1.650 ±1.1%
Except.TryExcept 0.210 ±0.0% 6.454 ±0.8% 4.248 ±0.6% 1.439 ±0.0% 1.580 ±0.6%
Except.TryRaiseExcept 0.206 ±2.0% 6.442 ±1.4% 4.275 ±0.4% 1.369 ±0.0% 1.553 ±1.2%
Inst.CreateInstances 0.207 ±1.3% 6.472 ±0.8% 4.207 ±1.1% 1.379 ±0.0% 1.565 ±1.1%
Lists.ListSlicing 0.207 ±1.1% 6.382 ±0.7% 4.207 ±0.4% 1.353 ±0.0% 1.540 ±1.8%
Lists.SmplListManip 0.210 ±1.9% 6.387 ±0.7% 4.213 ±0.4% 1.392 ±0.0% 1.566 ±1.1%
Lookups.ClassAttr 0.207 ±1.1% 6.378 ±1.4% 4.189 ±0.0% 1.366 ±0.0% 1.537 ±0.6%
Lookups.InstanceAttr 0.210 ±1.9% 6.396 ±1.0% 4.211 ±0.6% 1.397 ±0.0% 1.572 ±0.0%
NewInst.CreateNewInst 0.206 ±1.1% 6.464 ±0.6% 4.216 ±0.2% 1.448 ±0.0% 1.605 ±0.6%
Num.CmpFloats 0.209 ±1.9% 6.374 ±1.0% 4.204 ±1.7% 1.368 ±0.0% 1.552 ±0.5%
Num.CmpFloatsIntegers 0.209 ±1.1% 6.389 ±0.3% 4.200 ±0.6% 1.369 ±0.0% 1.549 ±0.8%
Num.CmpIntegers 0.209 ±1.1% 6.389 ±1.7% 4.201 ±1.7% 1.361 ±0.0% 1.549 ±0.5%
Str.CmpStrings 0.210 ±1.3% 6.392 ±1.3% 4.217 ±1.1% 1.378 ±0.0% 1.553 ±0.0%
Str.ConcatStrings 0.208 ±2.0% 6.397 ±0.5% 4.211 ±0.0% 1.367 ±0.0% 1.544 ±0.6%
Str.CreateStrWithConcat 0.206 ±1.1% 6.368 ±0.1% 4.189 ±0.2% 1.345 ±0.0% 1.518 ±1.2%
Str.StringMappings 0.208 ±2.0% 6.402 ±0.7% 4.206 ±1.1% 1.373 ±0.0% 1.543 ±1.2%
Str.StringPredicates 0.207 ±1.1% 6.381 ±1.0% 4.211 ±0.4% 1.363 ±0.0% 1.542 ±0.6%
Str.StringSlicing 0.209 ±1.1% 6.394 ±1.3% 4.212 ±0.2% 1.371 ±0.0% 1.551 ±0.6%

Table B.7: Compilation time of Pybench.

Test Name
CSC Roselyn Mono

StaDyn
StaDyn

no SSA

Pybench 0.208 ±0.0% 6.398 ±0.0% 4.214 ±0.0% 1.404 ±0.0% 1.583 ±0.0%
FFTBench 0.214 ±1.3% 6.474 ±1.9% 4.286 ±0.5% 1.872 ±0.0% 2.097 ±0.0%
HeapSortBench 0.208 ±1.1% 6.629 ±0.7% 4.270 ±0.2% 1.518 ±0.0% 1.726 ±0.5%
RayTracerBench 0.226 ±1.0% 6.846 ±1.0% 4.340 ±1.7% 1.782 ±0.0% 2.007 ±1.3%
SparseMatmultBench 0.209 ±1.1% 6.418 ±1.3% 4.275 ±0.8% 1.502 ±0.0% 1.711 ±0.0%
points 0.209 ±1.3% 6.480 ±1.7% 4.239 ±0.2% 1.514 ±0.0% 1.724 ±1.0%
pystone 0.213 ±1.1% 6.533 ±1.2% 4.295 ±0.0% 1.663 ±0.0% 1.900 ±0.9%

Table B.8: Compilation time of all the benchmarks (Figure 4.19).

88

Appendix C

Evaluation data for the multiple
dispatch optimizations

This appendix details the data obtained for the different approaches to implement
multiple dispatch methods (Chapter 5).

89

Appendix C. Evaluation data for the multiple dispatch optimizations

Single Dispatch

Iterations
Hybrid

Is Reflection
Static

GetType StaDyn
Typing Typing

1 26.49 ±1.8% 0.60 ±0.8% 0.98 ±0.6% 0.53 ±1.3% 0.76 ±0.3% 0.55 ±1.4%
10 26.60 ±1.7% 0.60 ±1.6% 1.06 ±2.0% 0.55 ±1.1% 0.76 ±1.5% 0.55 ±2.0%

100 26.69 ±1.9% 0.61 ±1.1% 1.84 ±1.9% 0.55 ±1.2% 0.79 ±1.3% 0.55 ±0.9%
1K 27.61 ±0.6% 0.70 ±0.8% 9.66 ±1.3% 0.58 ±0.7% 1.06 ±0.7% 0.63 ±1.9%

10K 39.20 ±0.7% 1.57 ±0.6% 86.81 ±1.6% 0.87 ±1.1% 3.70 ±0.4% 1.33 ±1.0%
100K 127.90 ±2.0% 10.06 ±0.4% 849.03 ±1.5% 3.72 ±1.7% 29.99 ±3.1% 8.07 ±1.7%

Double Dispatch

Iterations
Hybrid

Is Reflection
Static

GetType StaDyn
Typing Typing

1 47.06 ±0.9% 2.15 ±1.8% 2.10 ±1.7% 1.80 ±1.4% 2.95 ±0.5% 1.97 ±1.4%
10 47.35 ±1.4% 2.15 ±0.0% 3.14 ±0.6% 1.83 ±1.8% 2.98 ±1.9% 1.97 ±0.3%

100 50.09 ±0.2% 2.24 ±0.5% 13.46 ±0.2% 1.88 ±1.8% 3.25 ±0.9% 2.05 ±0.9%
1K 78.09 ±1.5% 2.99 ±1.3% 115.03 ±2.0% 2.21 ±0.9% 6.11 ±1.6% 2.74 ±1.6%

10K 318.80 ±1.5% 10.53 ±0.1% 1,121.21 ±1.1% 5.37 ±2.0% 35.02 ±1.4% 9.63 ±1.4%
100K 2,744.87 ±0.0% 85.86 ±0.3% 11,182.68 ±1.2% 37.02 ±1.6% 319.69 ±1.9% 78.56 ±0.8%

Triple Dispatch

Iterations
Hybrid

Is Reflection
Static

GetType StaDyn
Typing Typing

1 211.41 ±1.6% 15.14 ±1.7% 8.98 ±1.1% 7.56 ±1.2% 21.18 ±0.8% 9.54 ±1.4%
10 214.67 ±0.9% 15.26 ±1.5% 29.18 ±0.9% 7.81 ±1.9% 21.51 ±1.7% 9.62 ±0.8%

100 251.25 ±1.8% 16.16 ±1.4% 229.16 ±1.2% 8.14 ±1.4% 24.39 ±1.8% 10.19 ±1.3%
1K 619.48 ±1.6% 24.99 ±0.6% 2,208.91 ±1.4% 10.50 ±1.8% 53.61 ±1.9% 15.75 ±1.6%

10K 4,246.95 ±1.7% 114.52 ±0.7% 22,093.66 ±2.0% 33.82 ±2.0% 340.66 ±1.8% 72.17 ±0.8%
100K 40,392.14 ±1.3% 999.10 ±0.7% 219,926.99 ±0.7% 273.07 ±1.6% 3,218.07 ±1.6% 654.22 ±1.6%

Table C.1: Start-up performance for 5 different concrete classes, increasing the number of
iterations (Figure 5.8).

90

Appendix C. Evaluation data for the multiple dispatch optimizations

Single Dispatch

Iterations
Hybrid

Is Reflection
Static

GetType StaDyn
Typing Typing

1 0.0060±0.0% 0.0009±0.0% 0.0470 ±0.0% 0.0009±1.9% 0.0117±0.0% 0.0007 ±0.0%
10 0.0152±7.7% 0.0018±1.7% 0.1238±12.7% 0.0012±2.0% 0.0150±1.9% 0.0016 ±8.2%

100 0.1030±0.0% 0.0103±1.2% 0.8841 ±3.2% 0.0039±1.9% 0.0411±1.9% 0.0088 ±9.2%
1K 0.9817±0.0% 0.0937±0.6% 8.4381 ±0.0% 0.0312±1.3% 0.3093±0.4% 0.0804 ±0.0%

10K 9.5352±2.0% 0.9252±0.5% 84.4720 ±0.0% 0.3036±0.3% 2.9957±1.6% 0.7938 ±0.0%
100K 96.5241±1.7% 9.2149±0.7% 841.8626 ±1.7% 3.0382±0.3% 29.9008±1.7% 7.9067 ±1.9%

Double Dispatch

Iterations
Hybrid

Is Reflection
Static

GetType StaDyn
Typing Typing

1 0.0469±0.0% 0.0038±1.8% 0.1999 ±7.9% 0.0035±1.9% 0.0214±2.0% 0.0035 ±0.0%
10 0.2927±3.0% 0.0129±1.6% 1.2053 ±4.2% 0.0076±1.9% 0.0520±0.9% 0.0117 ±0.0%

100 2.7230±2.0% 0.0872±1.2% 11.2709 ±0.0% 0.0385±1.1% 0.3376±1.2% 0.0793 ±1.9%
1K 27.4890±1.8% 0.8309±1.8% 113.2678 ±1.1% 0.3513±1.9% 3.1836±0.2% 0.7550 ±1.9%

10K 266.3182±1.2% 8.2666±0.1% 1,123.3781 ±1.7% 3.4762±1.7% 32.1341±1.6% 7.4510 ±1.7%
100K 2,673.8649±0.7% 82.7348±1.9% 11,276.9048 ±2.0% 34.9245±1.9% 322.0433±1.7% 74.3367 ±1.7%

Triple Dispatch

Iterations
Hybrid

Is Reflection
Static

GetType StaDyn
Typing Typing

1 0.4829±4.3% 0.0273±1.8% 2.5601 ±3.0% 0.0151±1.8% 0.0628±3.1% 0.0171 ±3.8%
10 4.0252±3.2% 0.1339±0.1% 22.2924 ±2.0% 0.0454±1.9% 0.3598±6.3% 0.0838±10.1%

100 38.3173±0.4% 1.0343±1.6% 220.0359 ±2.4% 0.2916±1.9% 3.1822±0.6% 0.6473 ±1.7%
1K 401.9257±1.2% 9.9327±1.3% 2,193.3350 ±1.9% 2.6424±1.8% 31.7280±0.8% 6.5410 ±1.6%

10K 4,034.9813±0.9% 97.8698±0.5% 21,866.0455 ±1.9% 25.6201±1.9% 318.3810±2.0% 64.4123 ±1.6%
100K40,152.6208±1.2%976.8111±1.2%218,843.6154 ±1.9%255.9491±1.9%3,147.0280±1.9%638.6662 ±1.5%

Table C.2: Steady-state performance for 5 different concrete classes, increasing the number of
iterations (Figure 5.9).

91

Appendix C. Evaluation data for the multiple dispatch optimizations

Single Dispatch

Number Hybrid
Is Reflection

Static
GetType StaDyn

of classes Typing Typing

1 31.12 ±0.8% 1.46 ±0.7% 108.14 ±1.3% 1.19 ±0.8% 5.05 ±0.8% 1.10 ±0.7%
2 52.21 ±2.0% 2.79 ±2.0% 254.78 ±2.0% 1.93 ±0.5% 10.22 ±1.4% 2.00 ±2.0%
3 80.97 ±0.2% 4.19 ±1.7% 427.55 ±2.0% 2.55 ±1.9% 16.33 ±1.9% 3.47 ±0.3%
4 103.34 ±1.9% 6.72 ±0.9% 631.98 ±0.4% 3.12 ±2.0% 23.04 ±0.5% 5.35 ±2.2%
5 127.90 ±2.0% 10.06 ±0.4% 849.03 ±1.5% 3.72 ±1.7% 29.99 ±3.1% 8.07 ±1.7%

Double Dispatch

Number Hybrid
Is Reflection

Static
GetType StaDyn

of classes Typing Typing

1 33.67 ±2.0% 2.96 ±0.3% 128.39 ±0.1% 2.90 ±1.2% 11.06 ±1.4% 2.42 ±1.0%
2 106.51 ±0.8% 7.97 ±1.0% 713.79 ±1.8% 8.23 ±1.8% 40.53 ±1.5% 6.22 ±0.8%
3 277.48 ±1.3% 22.61 ±0.4% 2,227.87 ±0.9% 15.56 ±1.4% 93.47 ±1.9% 18.85 ±1.3%
4 1,561.57 ±0.7% 46.46 ±0.8% 5,392.84 ±0.1% 24.78 ±0.6% 185.91 ±1.6% 43.00 ±0.4%
5 2,744.87 ±0.0% 85.86 ±0.3% 11,182.68 ±1.2% 37.02 ±1.6% 319.69 ±1.9% 78.56 ±0.8%

Triple Dispatch

Number Hybrid
Is Reflection

Static
GetType StaDyn

of classes Typing Typing

1 33.42 ±1.1% 2.70 ±1.8% 148.19 ±2.0% 2.87 ±1.9% 14.23 ±1.9% 2.31 ±0.6%
2 234.37 ±1.8% 18.78 ±0.4% 2,085.43 ±1.4% 19.58 ±1.9% 124.83 ±1.4% 15.85 ±1.8%
3 3,194.18 ±1.2% 85.68 ±0.2% 13,607.55 ±1.9% 59.69 ±1.9% 459.47 ±1.1% 76.48 ±1.4%
4 11,432.71 ±1.3% 321.54 ±0.5% 62,493.59 ±2.0% 139.89 ±1.9% 1,447.45 ±0.0% 262.98 ±1.1%
5 40,392.14 ±1.3% 999.10 ±0.7% 219,926.99 ±0.7% 273.07 ±1.6% 3,218.07 ±1.6% 654.22 ±1.6%

Table C.3: Start-up performance for 100K iterations, increasing the number of concrete classes
(Figure 5.10).

92

Appendix C. Evaluation data for the multiple dispatch optimizations

Single Dispatch

Number Hybrid
Is Reflection

Static
GetType StaDyn

of classes Typing Typing

1 5.40 ±4.2% 0.97 ±1.1% 106.13 ±3.8% 0.83 ±0.3% 4.53 ±2.0% 0.72 ±0.0%
2 25.73 ±0.2% 2.06 ±1.1% 252.89 ±0.3% 1.45 ±2.0% 9.63 ±0.3% 1.59 ±1.9%
3 52.08 ±0.0% 3.40 ±0.5% 423.53 ±1.7% 2.00 ±0.8% 15.48 ±1.8% 2.90 ±0.1%
4 75.30 ±2.0% 5.98 ±1.4% 626.47 ±0.2% 2.48 ±1.8% 22.03 ±1.9% 4.83 ±1.9%
5 96.52 ±1.7% 9.21 ±0.7% 841.86 ±1.7% 3.04 ±0.3% 29.90 ±1.7% 7.91 ±1.9%

Double Dispatch

Number Hybrid
Is Reflection

Static
GetType StaDyn

of classes Typing Typing

1 6.53 ±0.7% 1.97 ±1.2% 125.85 ±1.8% 1.96 ±1.7% 9.95 ±1.8% 1.58 ±1.9%
2 75.70 ±1.5% 7.09 ±2.0% 714.80 ±1.8% 7.05 ±1.9% 39.09 ±1.9% 5.58 ±1.9%
3 239.50 ±0.4% 19.55 ±1.8% 2,222.01 ±1.2% 13.64 ±1.6% 94.42 ±1.8% 17.56 ±1.3%
4 1,495.38 ±1.4% 41.73 ±1.9% 5,459.93 ±0.5% 23.03 ±1.7% 185.82 ±1.6% 37.68 ±1.6%
5 2,673.86 ±0.7% 82.73 ±1.9% 11,276.90 ±2.0% 34.92 ±1.9% 322.04 ±1.7% 74.34 ±1.7%

Triple Dispatch

Number Hybrid
Is Reflection

Static
GetType StaDyn

of classes Typing Typing

1 6.74 ±2.6% 2.08 ±0.7% 145.32 ±1.9% 2.21 ±1.7% 13.37 ±0.1% 1.73 ±0.4%
2 200.59 ±1.9% 18.53 ±0.9% 2,080.53 ±0.3% 18.33 ±1.7% 126.67 ±1.9% 14.87 ±1.6%
3 3,090.45 ±1.8% 82.15 ±0.6% 13,592.43 ±1.6% 56.49 ±1.0% 457.29 ±1.9% 73.36 ±0.6%
4 11,663.43 ±0.4% 314.47 ±0.4% 61,845.14 ±2.0% 132.67 ±1.8% 1,444.32 ±1.9% 257.71 ±0.9%
5 40,152.62 ±1.2% 976.81 ±1.2% 218,843.62 ±1.9% 255.95 ±1.9% 3,147.03 ±1.9% 638.67 ±1.5%

Table C.4: Steady-state performance for 100K iterations, increasing the number of concrete
classes (Figure 5.11).

93

Appendix C. Evaluation data for the multiple dispatch optimizations

Single Dispatch

Number Hybrid
Is Reflection

Static
GetType StaDyn

of classes Typing Typing

1 14.87 ±1.1% 10.83 ±0.0% 11.66 ±1.7% 10.78 ±1.2% 10.82 ±0.2% 10.83 ±0.6%
2 14.88 ±1.0% 10.86 ±1.8% 11.69 ±0.7% 10.77 ±1.0% 10.81 ±0.7% 10.82 ±1.3%
3 14.86 ±1.0% 10.82 ±1.7% 11.64 ±1.3% 10.79 ±1.0% 10.83 ±1.2% 10.82 ±1.0%
4 14.89 ±0.7% 10.82 ±0.7% 11.59 ±1.7% 10.75 ±1.3% 10.82 ±0.5% 10.85 ±2.0%
5 14.90 ±0.0% 10.81 ±0.0% 11.61 ±1.7% 10.76 ±1.7% 10.84 ±1.0% 10.82 ±0.0%

Double Dispatch

Number Hybrid
Is Reflection

Static
GetType StaDyn

of classes Typing Typing

1 14.85 ±1.3% 12.02 ±0.6% 11.61 ±1.2% 11.96 ±0.9% 11.99 ±0.7% 12.02 ±1.0%
2 14.90 ±0.5% 12.02 ±1.0% 11.65 ±0.9% 11.96 ±1.5% 12.01 ±0.0% 12.01 ±0.9%
3 14.91 ±0.7% 12.01 ±1.0% 11.65 ±1.5% 11.98 ±0.6% 12.03 ±0.6% 12.01 ±0.9%
4 14.94 ±0.3% 12.03 ±0.3% 11.65 ±0.3% 11.95 ±1.2% 12.05 ±0.5% 12.02 ±0.8%
5 15.01 ±0.6% 12.01 ±1.2% 11.64 ±0.3% 11.97 ±1.4% 12.03 ±0.9% 12.01 ±0.9%

Triple Dispatch

Number Hybrid
Is Reflection

Static
GetType StaDyn

of classes Typing Typing

1 14.90 ±1.0% 10.88 ±0.0% 11.66 ±0.3% 10.83 ±1.6% 10.91 ±1.0% 10.88 ±1.3%
2 14.96 ±0.7% 10.88 ±0.9% 11.67 ±0.0% 10.82 ±0.0% 10.87 ±1.9% 10.87 ±0.3%
3 15.09 ±0.3% 10.89 ±0.7% 11.70 ±0.7% 10.83 ±0.0% 10.90 ±1.4% 10.90 ±0.6%
4 15.19 ±0.3% 10.93 ±1.5% 11.75 ±0.8% 10.90 ±0.0% 10.93 ±1.7% 10.92 ±2.0%
5 15.42 ±0.3% 10.96 ±0.8% 11.84 ±0.9% 10.93 ±1.3% 11.02 ±1.9% 10.98 ±0.8%

Table C.5: Memory consumed for 100K iterations, increasing the number of concrete classes
(Figure 5.12).

94

Appendix D

Publications

The research work of this PhD thesis has been published in different journals and
conferences. The following publications are derived from this PhD.

– Articles published in journals included in the Journal Citation Reports at
acceptance date:

1. Optimizing Runtime Performance of Hybrid Dynamically and Stati-
cally Typed Languages for the .Net Platform. Jose Quiroga, Francisco
Ortin, David Llewellyn-Jones, Miguel Garcia. Journal of Systems and
Software, volume 113, pp. 114-129, 2016.

2. Design and implementation of an efficient hybrid dynamic and static
typing language. Miguel Garcia, Francisco Ortin, Jose Quiroga. Soft-
ware: Practice and Experience, volume 46, issue 2, pp. 199-226, 2016.

3. Attaining Multiple Dispatch in Widespread Object-Oriented Languages.
Francisco Ortin, Jose Quiroga, Jose M. Redondo, Miguel Garcia. Dyna,
volume 186, pp. 242-250, 2014.

4. SSA Transformations to Efficiently Support Variables with Different
Types in the Same Scope. Jose Quiroga, Francisco Ortin. The Com-
puter Journal (under review).

5. Combining Static and Dynamic Typing to Achieve Multiple Dispatch.
Francisco Ortin, Miguel Garcia, Jose M. Redondo, Jose Quiroga. Infor-
mation – An International Interdisciplinary Journal, volume 16, issue
12(b), pp. 8731-8750, 2013.

– Articles published other journals:

1. Automatic Generation of Object-Oriented Type Checkers. Francisco
Ortin, Daniel Zapico, Jose Quiroga, Miguel Garcia. Lecture Notes on
Software Engineering, volume 2, issue 4, pp. 288-293. November 2014.

2. From UAProf towards a Universal Device Description Repository. Jose
Quiroga, Ignacio Marin, Javier Rodriguez, Diego Berrueta, Nicanor
Gutierrez, Antonio Campos. Lecture Notes of the Institute for Com-

95

Appendix D. Publications

puter Sciences, Social Informatics and Telecommunications Engineer-
ing, volume 85, pp. 263-282, 2011.

– Articles presented in conferences:

1. TyS - A Framework to Facilitate the Implementation of Object-Oriented
Type Checkers. Francisco Ortin, Daniel Zapico, Jose Quiroga, Miguel
Garcia. 26th International Conference on Software Engineering and
Knowledge Engineering (SEKE), Vancouver, British Columbia (Canada).
July 2014.

2. Device Independence approach for ICT-based PFTL Solutions. Igna-
cio Marin, Antonio Campos, Jose Quiroga, Patricia Miravet, Francisco
Ortin. International Conference on Paperless Freight Transport Logis-
tics (e-Freight), Munich (Germany). May 2011.

3. Design of a Programming Paradigms Course Using One Single Pro-
gramming Language. Francisco Ortin, Jose M. Redondo and Jose
Quiroga. 4th World Conference on Information Systems and Tech-
nologies (WorldCIST), Recife (Brazil). March 2016.

96

References

[1] Miguel Garcia, Francisco Ortin, and Jose Quiroga. Design and implemen-
tation of an efficient hybrid dynamic and static typing language. Software:
Practice and Experience, 46:199–226, 2015. vii, 10, 22, 24, 33, 35, 40, 55,
56, 69

[2] Francisco Ortin and Juan Manuel Cueva. Dynamic adaptation of appli-
cation aspects. Journal of Systems and Software, 71:229–243, May 2004.
1

[3] Francisco Ortin, Jose M. Redondo, and J. Baltasar G. Perez-Schofield. Ef-
ficient virtual machine support of runtime structural reflection. Science of
Computer Programming, 70(10):836–860, 2009. 1, 15, 68, 80

[4] Dave Thomas, Chad Fowler, and Andy Hunt. Programming Ruby. Addison-
Wesley Professional, Raleigh, North Carolina, 2nd edition, 2004. 1, 6

[5] Dave Thomas, David Heinemeier Hansson, Andreas Schwarz, Thomas
Fuchs, Leon Breedt, and Mike Clark. Agile Web Development with Rails.
A Pragmatic Guide. Pragmatic Bookshelf, Raleigh, North Carolina, 2005.
1

[6] Andrew Hunt and David Thomas. The pragmatic programmer: from jour-
neyman to master. Addison-Wesley Longman Publishing Co., Inc., Boston,
Massachusetts, 1999. 1

[7] ECMA-357. ECMAScript for XML (E4X) Specification, 2nd edition. Eu-
ropean Computer Manufacturers Association, Geneva, Switzerland, 2005.
1

[8] Dave Crane, Eric Pascarello, and Darren James. AJAX in Action. Manning
Publications, Greenwich, Connecticut, 2005. 1

[9] Guido van Rossum and Fred L. Drake, Jr. The Python Language Reference
Manual. Network Theory, United Kingdom, 2003. 1

[10] Amos Latteier, Michel Pelletier, Chris McDonough, and Peter Sabaini. The
Zope book. http://old.zope.org/Documentation/Books/ZopeBook/

ZopeBook-2_6.pdf/file_view, 2016. 1

[11] Django Software Foundation. Django, the web framework for perfectionists
with deadlines. http://openjdk.java.net/projects/mlvm, 2016. 1

97

http://old.zope.org/Documentation/Books/ZopeBook/ZopeBook-2_6.pdf/file_view
http://old.zope.org/Documentation/Books/ZopeBook/ZopeBook-2_6.pdf/file_view
http://openjdk.java.net/projects/mlvm

References

[12] Erik Meijer and Peter Drayton. Static typing where possible dynamic typing
when needed: The end of the cold war between programming languages. In
Proceedings of the OOPSLA Workshop on Revival of Dynamic Languages,
Vancouver, Canada, 24-28 October 2004. ACM. 1, 67

[13] Benjamin C. Pierce. Types and Programming Languages. The MIT Press,
Cambridge, Massachusetts, 2002. 1

[14] Francisco Ortin, Miguel Garcia, Jose M. Redondo, and Jose Quiroga. Com-
bining static and dynamic typing to achieve multiple dispatch. Information
– An International Interdisciplinary Journal, 16(12):8731–8750, Dec 2013.
1, 57, 63, 67

[15] Francisco Ortin, Patricia Conde, Daniel Fernandez-Lanvin, and Raul
Izquierdo. Runtime performance of invokedynamic: an evaluation with
a Java library. IEEE Software, 31(4):82–90, 2014. 1, 16, 21, 46

[16] James Strachan. Groovy 2.0 release notes. http://groovy.codehaus.org/
Groovy+2.0+release+notes, 2016. 2, 14, 17

[17] Gavin Bierman, Erik Meijer, and Mads Torgersen. Adding dynamic types
to C#. In Proceedings of the 24th European Conference on Object-Oriented
Programming, ECOOP’10, pages 76–100, Maribor, Slovenia, 21-25 June
2010. Springer-Verlag. 2, 6, 14, 45, 67, 80

[18] Francisco Ortin, Miguel A. Labrador, and Jose M. Redondo. A hybrid class-
and prototype-based object model to support language-neutral structural
intercession. Information and Software Technology, 44(1):199–219, feb 2014.
2, 15, 20, 22, 40, 80

[19] Jose M. Redondo and Francisco Ortin. A comprehensive evaluation of
widespread Python implementations. IEEE Software, 34(4):76–84, 2015.
3

[20] Microsoft Corporation. The C# Programming Lan-
guage. http://download.microsoft.com/download/3/8/8/

388e7205-bc10-4226-b2a8-75351c669b09/csharp%20language%

20specification.doc, 2016. 5

[21] Francisco Ortin and Anton Morant. IDE support to facilitate the transition
from rapid prototyping to robust software production. In Proceedings of the
1st Workshop on Developing Tools as Plug-ins, TOPI ’11, pages 40–43, New
York, NY, USA, 2011. ACM. 5

[22] Francisco Ortin, Francisco Moreno, and Anton Morant. Static type infor-
mation to improve the ide features of hybrid dynamically and statically
typed languages. Journal of Visual Languages & Computing, 25:346–362,
2014. 5, 46

[23] Francisco Ortin, Daniel Zapico, and Miguel Garcia. A programming lan-
guage to facilitate the transition from rapid prototyping to efficient software

98

http://groovy.codehaus.org/Groovy+2.0+release+notes
http://groovy.codehaus.org/Groovy+2.0+release+notes
http://download.microsoft.com/download/3/8/8/388e7205-bc10-4226-b2a8-75351c669b09/csharp%20language%20specification.doc
http://download.microsoft.com/download/3/8/8/388e7205-bc10-4226-b2a8-75351c669b09/csharp%20language%20specification.doc
http://download.microsoft.com/download/3/8/8/388e7205-bc10-4226-b2a8-75351c669b09/csharp%20language%20specification.doc

References

production. In Proceedings of the Fifth International Conference on Soft-
ware and Data Technologies, Volume 2, Athens, Greece, pages 40–50, July
2010. 6

[24] Francisco Ortin and Miguel Garcia. Modularizing Different Responsibili-
ties into Separate Parallel Hierarchies. Communications in Computer and
Information Science, 275:16–31, January 2013. 6, 12, 35

[25] Luca Cardelli. Basic polymorphic typechecking. Science of Computer Pro-
gramming, 8(2):147–172, 1987. 6, 9

[26] Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348–375, 1978. 6

[27] Francisco Ortin. Type inference to optimize a hybrid statically and dy-
namically typed language. Computer Journal, 54(11):1901–1924, November
2011. 6, 12, 24, 37, 55, 69

[28] Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. A
nominal theory of objects with dependent types. In European Conference on
Object-Oriented Programming (ECOOP), pages 201–224. Springer-Verlag,
2002. 7

[29] Didier Rémy and Jérôme Vouillon. Objective ML: An effective object-
oriented extension to ML. Theory And Practice of Object Systems, 4(1):27–
50, 1998. 7

[30] Tim Freeman and Frank Pfenning. Refinement types for ML. In Proceedings
of the ACM SIGPLAN 1991 Conference on Programming Language Design
and Implementation, PLDI ’91, pages 268–277, New York, NY, USA, 1991.
ACM. 7

[31] John Plevyak and Andrew A. Chien. Precise concrete type inference for
object-oriented languages. In Proceedings of the ninth annual conference
on Object-oriented programming systems, language, and applications, OOP-
SLA ’94, pages 324–340, New York, NY, USA, 1994. ACM. 7

[32] Benjamin C. Pierce. Programming with intersection types and bounded
polymorphism. Technical Report CMU-CS-91-106, School of Computer
Science, Pittsburgh, PA, USA, 1992. 7, 27

[33] Francisco Ortin and Miguel Garcia. Union and intersection types to sup-
port both dynamic and static typing. Information Processing Letters,
111(6):278–286, 2011. 9, 48, 70

[34] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C.
Mitchell. F-bounded polymorphism for object-oriented programming. In
Proceedings of the fourth international conference on Functional program-
ming languages and computer architecture, FPCA ’89, pages 273–280, New
York, NY, USA, 1989. ACM. 9

99

References

[35] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with
constrained types. In Fourth International Workshop on Foundations of
Object-Oriented Programming (FOOL), 1997. 10

[36] Francisco Ortin and Miguel Garcia. Supporting dynamic and static typing
by means of union and intersection types. In Proceedings of the IEEE
International Conference on Progress in Informatics and Computing (PIC),
pages 993–999, Shanghai, China, 10-12 December 2010. IEEE. 10, 11, 12

[37] William Landi and Barbara G. Ryder. A safe approximate algorithm for
interprocedural aliasing. In Proceedings of the ACM SIGPLAN 1992 con-
ference on Programming language design and implementation, PLDI ’92,
pages 235–248, New York, NY, USA, 1992. ACM. 11

[38] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-based
alias analysis. In Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, PLDI ’98, pages 106–
117, New York, NY, USA, 1998. ACM. 11

[39] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function pointers. In
Proceedings of the ACM SIGPLAN 1994 Conference on Programming Lan-
guage Design and Implementation, PLDI ’94, pages 242–256, New York,
NY, USA, 1994. ACM. 11

[40] Andrew W. Appel. Modern Compiler Implementation in ML: Basic Tech-
niques. Cambridge University Press, New York, NY, USA, 1997. 11

[41] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-oriented software architecture: a system of patterns.
John Wiley & Sons, Inc., New York, NY, USA, 1996. 12

[42] Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Bookshelf, 2007. 12

[43] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series, 1995. 12, 34, 35, 55, 63, 64

[44] David Watt, Deryck Brown, and Robert W. Sebesta. Programming Lan-
guage Processors in Java: Compilers and Interpreters. Prentice Hall Press,
Upper Saddle River, NJ, USA, 2007. 12

[45] Francisco Ortin, Daniel Zapico, Jose Quiroga, and Miguel Garcia. Auto-
matic generation of object-oriented type checkers. Lecture Notes on Soft-
ware Engineering, 2(4):288, 2014. 12

[46] Francisco Ortin, Daniel Zapico Palacio, Jose Quiroga, and Miguel Garcia.
TyS – A framework to facilitate the implementation of object-oriented type
checkers. In IEEE 16th International Conference on Software Engineering
and Knowlege Engineering (SEKE), pages 150–155, 2014. 12

100

References

[47] Francisco Ortin, Daniel Zapico, and Juan Manuel Cueva. Design patterns
for teaching type checking in a compiler construction course. IEEE Trans-
actions on Educucation, 50(3):273–283, August 2007. 12, 64

[48] Francisco Ortin and Miguel Garcia. Separating different responsibilities
into parallel hierarchies. In Proceedings of The Fourth International C*
Conference on Computer Science and Software Engineering, C3S2E, pages
63–72, New York, NY, USA, 2011. ACM. 12

[49] Jim Hugunin. Just glue it! Ruby and the DLR in Silverlight. In The MIX
Conference, Las Vegas, Nevada, 30 April - 7 May 2007. 12

[50] Jose M. Redondo and Francisco Ortin. Optimizing reflective primitives
of dynamic languages. International Journal of Software Engineering and
Knowledge Engineering, 18(6):759–783, 2008. 12, 68

[51] Satish Thatte. Quasi-static typing. In Proceedings of the 17th symposium
on Principles of programming languages (POPL), pages 367–381, San Fran-
cisco, California, United States, January 1990. ACM. 12

[52] Cormac Flanagan, Stephen N. Freund, and Aaron Tomb. Hybrid types, in-
variants, and refinements for imperative objects. In Proceedings of the Inter-
national Workshop on Foundations and Developments of Object-Oriented
Languages (FOOL), San Antonio, Texas, 23 January 2006. ACM. 12

[53] Jeremy G. Siek and Walid Taha. Gradual typing for functional languages.
In Scheme and Functional Programming Workshop, pages 1–12, September
2006. 12

[54] Jeremy G. Siek and Walid Taha. Gradual typing for objects. In Pro-
ceedings of the 21st European Conference on Object-Oriented Programming
(ECOOP), pages 2–27, Berlin, Germany, 30 July - 3 August 2007. Springer-
Verlag. 12, 45

[55] Jeremy G. Siek and Manish Vachharajani. Gradual typing with unification-
based inference. In Proceedings of the Dynamic Languages Symposium,
pages 7:1–7:12, Paphos, Cyprus, 25 July 2008. ACM. 12

[56] Gilad Bracha and David Griswold. Strongtalk: typechecking Smalltalk in
a production environment. SIGPLAN Notices, 28(10):215–230, October
1993. 12

[57] Adele Goldberg and David Robson. Smalltalk-80: the language and its
implementation. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1983. 12, 15

[58] Gilad Bracha. Pluggable Type Systems. In Proceedings of the OOPSLA
2004 Workshop on Revival of Dynamic Languages, Vancouver, Canada,
October 2004. ACM. 12

101

References

[59] Andrew Shalit. The Dylan reference manual: the definitive guide to the new
object-oriented dynamic language. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 1996. 13

[60] Rodrigo B. de Oliveira. The Boo programming language. http://boo.

codehaus.org, 2016. 13, 36

[61] Paul Vick. The Microsoft Visual Basic Language Specification. Microsoft
Corporation, Redmond, Washington, 2007. 13, 25, 27, 36

[62] Stephen Kochan. Programming in Objective-C 2.0. Addison-Wesley Pro-
fessional, 2nd edition, 2009. 13

[63] TIOBE Software. The TIOBE programming community index. http:

//www.tiobe.com/index.php/content/paperinfo/tpci/index.html,
2016. 13

[64] Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor
Richards, Rok Strnisa, Jan Vitek, and Tobias Wrigstad. Thorn – robust,
concurrent, extensible scripting on the JVM. In Proceedings of the Con-
ference on Object-Oriented Programming Systems, Languages and Applica-
tions (OOPSLA), pages 117–136, Orlando, Florida, 25-29 October 2009.
ACM. 14

[65] Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan
Östlund, and Jan Vitek. Integrating typed and untyped code in a scripting
language. In Proceedings of the 37th annual symposium on Principles of
Programming Languages (POPL), POPL ’10, pages 377–388, New York,
NY, USA, 17-23 January 2010. ACM. 14

[66] Francisco Ortin, Jose Quiroga, Jose M. Redondo, and Miguel Garcia. At-
taining multiple dispatch in widespread object-oriented languages. Dyna,
81(186):242–250, 2014. 14, 27, 33, 46, 56, 57, 63

[67] Jon Siegel, Dan Frantz, Hal Mirsky, Raghu Hudli, Peter de Jong, Alan
Klein, Brent Wilkins, Alex Thomas, Wilf Coles, Sean Baker, and Maurice
Balick. COBRA fundamentals and programming. John Wiley & Sons, Inc.,
New York, NY, USA, 1996. 14, 36

[68] Brian Frank and Andy Frank. Fantom, the language formerly known as
Fan. http://fantom.org, 2016. 14, 36

[69] Mikhail Vorontsov. Static code compilation in Groovy 2.0. http://

java-performance.info/static-code-compilation-groovy-2-0, 2016.
14

[70] L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the
Smalltalk-80 system. In Proceedings of the 11th ACM SIGACT-SIGPLAN
symposium on Principles of Programming Languages, POPL’84, pages 297–
302, New York, NY, USA, 1984. ACM. 15, 20

102

http://boo.codehaus.org
http://boo.codehaus.org
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://fantom.org
http://java-performance.info/static-code-compilation-groovy-2-0
http://java-performance.info/static-code-compilation-groovy-2-0

References

[71] David Ungar and Randall B. Smith. Self: The power of simplicity. In Con-
ference Proceedings on Object-oriented Programming Systems, Languages
and Applications, OOPSLA’87, pages 227–242, New York, NY, USA, 1987.
ACM. 15

[72] Craig Chambers and David Ungar. Customization: optimizing compiler
technology for Self, a dynamically-typed object-oriented programming lan-
guage. In Conference on Programming language design and implementation
(PLDI), pages 146–160, 1989. 15

[73] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing dynamically-
typed object-oriented languages with polymorphic inline caches. In
ECOOP’91 European Conference on Object-Oriented Programming, pages
21–38. Springer, 1991. 15

[74] Urs Hölzle and David Ungar. Reconciling responsiveness with performance
in pure object-oriented languages. ACM Transactions on Programming
Languages and Systems (TOPLAS), 18(4):355–400, 1996. 15

[75] Google Inc. The V8 JavaScript engine. https://github.com/v8/v8/wiki,
2016. 15

[76] Mozilla. The SpiderMonkey JavaScript engine. https://developer.

mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey, 2016. 15

[77] Jose M. Redondo and Francisco Ortin. Efficient support of dynamic inher-
itance for class- and prototype-based languages. Journal of Systems and
Software, 86(2):278–301, February 2013. 15, 66, 80

[78] Thomas Würthinger, Christian Wimmer, and Lukas Stadler. Dynamic code
evolution for Java. In Proceedings of the 8th International Conference on
the Principles and Practice of Programming in Java, PPPJ’10, pages 10–19,
New York, NY, USA, 2010. ACM. 15

[79] Thomas Würthinger, Christian Wimmerb, and Lukas Stadler. Unrestricted
and safe dynamic code evolution for Java. Science of Computer Program-
ming, 78(5):481–498, May 2013. 16

[80] Sun Microsystems OpenJDK. The Da Vinci Machine, a multi-language
renaissance for the java virtual machine architecture. http://openjdk.

java.net/projects/mlvm, 2016. 16

[81] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Detecting equal-
ity of variables in programs. In Proceedings of the 15th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 1–11.
ACM, 1988. 16

[82] Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Global value
numbers and redundant computations. In Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’88, pages 12–27, New York, NY, USA, 1988. ACM. 16, 47

103

https://github.com/v8/v8/wiki
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
http://openjdk.java.net/projects/mlvm
http://openjdk.java.net/projects/mlvm

References

[83] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with
conditional branches. ACM Trans. Program. Lang. Syst., 13(2):181–210,
April 1988. 16, 47

[84] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Programming
Languages and Systems, 13(4):451–490, October 1991. 16, 46, 47

[85] Andrew W. Appel. Modern compiler implementation in Java, 1998. 16, 51

[86] Free Software Foundation. Gnu compiler colletion (gcc) internals, 2016. 16

[87] Chris Lattner and Vikram Adve. LLVM: a compilation framework for life-
long program analysis transformation. In Code Generation and Optimiza-
tion, 2004. CGO 2004. International Symposium on, pages 75–86, March
2004. 16

[88] Jay Conrod. A tour of V8: Crankshaft, the optimizing compiler, 2013. 16

[89] Mike Pall. LuaJIT 2.0 SSA IR. http://wiki.luajit.org/SSA-IR-2.0,
2016. 16

[90] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas
Rodriguez, Kenneth Russell, and David Cox. Design of the Java HotSpotTM

client compiler for Java 6. ACM Transactions on Architecture and Code
Optimization (TACO), 5(1):7, 2008. 16

[91] Christian Wimmer and Michael Franz. Linear scan register allocation on
SSA form. In Proceedings of the 8th annual IEEE/ACM international sym-
posium on Code generation and optimization, pages 170–179. ACM, 2010.
16

[92] PyPy project. What’s new in pypy 2.5.0, 2016. 16

[93] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo.
Tracing the meta-level: PyPy’s tracing JIT compiler. In Proceedings of the
4th workshop on the Implementation, Compilation, Optimization of Object-
Oriented Languages and Programming Systems, ICOOOLPS ’09, pages 18–
25, New York, NY, USA, 2009. ACM. 16

[94] Holger Krekel and Armin Rigo. PyPy, architecture overview. In PyCon
conference, PyCon, 2006. 16

[95] Andrew W. Appel. SSA is functional programming. ACM SIGPLAN no-
tices, 33(4):17–20, 1998. 16

[96] Richard A. Kelsey. A correspondence between continuation passing style
and static single assignment form. In ACM SIGPLAN Notices, volume 30,
pages 13–22. ACM, 1995. 16

104

http://wiki.luajit.org/SSA-IR-2.0

References

[97] Wolfram Amme, Niall Dalton, Jeffery von Ronne, and Michael Franz.
SafeTSA: A type safe and referentially secure mobile-code representation
based on static single assignment form, volume 36. ACM, 2001. 16

[98] Yutaka Matsuno and Atsushi Ohori. A type system equivalent to static
single assignment. In Proceedings of the 8th ACM SIGPLAN international
conference on Principles and practice of declarative programming, pages
249–260. ACM, 2006. 17

[99] Brian Hackett and Shu-yu Guo. Fast and precise hybrid type inference
for JavaScript. In Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’12, pages 239–
250, New York, NY, USA, 2012. ACM. 17

[100] Craig Chambers. Object-oriented multi-methods in Cecil. In Ole Lehrmann
Madsen, editor, European Conference on Object-Oriented Programming
(ECOOP), Utrecht, The Netherlands, pages 33–56, Berlin, Heidelberg,
1992. Springer Berlin Heidelberg. 17, 62

[101] Linda G. DeMichiel and Richard P. Gabriel. The Common Lisp object
system: An overview. In European Conference on Object-Oriented Pro-
gramming (ECOOP), pages 201–220, Paris, France, 1987. 17

[102] Rich Hickey. The Clojure programming language. In Proceedings of the 2008
Symposium on Dynamic Languages, DLS ’08, pages 1:1–1:1, New York, NY,
USA, 2008. ACM. 17

[103] David Miller. Clojure CLR. https://github.com/clojure/clojure-clr,
2016. 17

[104] The Eclipse project. Xtend, Java 10 today! http://www.eclipse.org/

xtend, 2016. 17

[105] Neal Feinberg, Sonya E. Keene, Robert O. Mathews, and P. Tucker With-
ington. Dylan programming: an object-oriented and dynamic language. Ad-
dison Wesley Longman, Boston, Massachusetts, 1996. 17

[106] Christian Grothoff. Walkabout revisited: The runabout. In Luca
Cardelli, editor, 17th European Conference on Object Oriented Program-
ming (ECOOP), Darmstadt, Germany, pages 103–125, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg. 17

[107] Jens Palsberg and C. Barry Jay. The essence of the Visitor pattern. In
Computer Software and Applications Conference (COMPSAC), pages 9–
15. IEEE Computer Society, 1998. 17, 18

[108] Fabian Büttner, Oliver Radfelder, Arne Lindow, and Martin Gogolla. Dig-
ging into the Visitor pattern. In IEEE 16th International Conference on
Software Engineering and Knowlege Engineering (SEKE), Los Alamitos
(CA), pages 135–141, 2004. 18

105

https://github.com/clojure/clojure-clr
http://www.eclipse.org/xtend
http://www.eclipse.org/xtend

References

[109] Rémi Forax, Etienne Duris, and Gilles Roussel. Reflection-based implemen-
tation of Java extensions: The double-dispatch use-case. In Proceedings of
the 2005 ACM Symposium on Applied Computing, SAC ’05, pages 1409–
1413, New York, NY, USA, 2005. ACM. 18

[110] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein. Mul-
tiJava: Modular open classes and symmetric multiple dispatch for Java. In
Proceedings of the Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), pages 130–145, Minneapolis, Min-
nesota, 25-29 October 2000. ACM. 18

[111] Rémi Forax, Étienne Duris, and Gilles Roussel. A reflective implementation
of Java multi-methods. IEEE Transactions on Software Engineering (TSE),
30(12):1055–1071, 2004. 18

[112] Antonio Cunei and Jan Vitek. An efficient and flexible toolkit for com-
posing customized method dispatchers. Software, Practice and Experience,
38(1):33–73, 2008. 18

[113] Linda Dailey Paulson. Developers shift to dynamic programming languages.
Computer, 40(2):12–15, Feb 2007. 20

[114] Laurence Tratt. Dynamically typed languages. Advances in Computers,
77:149–184, July 2009. 20

[115] Bill Chiles and Alex Turner. Dynamic Language Runtime. http://www.

codeplex.com/Download?ProjectName=dlr&DownloadId=127512, 2016.
21, 22, 25, 41, 42, 43, 57, 77, 80

[116] Mike Barnett. Microsoft Research Common Compiler Infrastructure.
http://research.microsoft.com/en-us/projects/cci/, 2016. 22, 33

[117] Francisco Ortin, Daniel Zapico, J. Baltasar G. Perez-Schofield, and Miguel
Garcia. Including both static and dynamic typing in the same programming
language. IET Software, 4(4):268–282, 2010. 22, 63, 69

[118] ECMA-335. Common Language Infrastructure (CLI). European Computer
Manufacturers Association, Geneva, Switzerland, 2016. 25

[119] Jose Quiroga and Francisco Ortin. Optimizing runtime performance of
hybrid dynamically and statically typed languages for the .Net platform
(Web page). http://www.reflection.uniovi.es/stadyn/download/

2015/jss, 2016. 29, 37

[120] Microsoft Developer Network. Dynamic source code generation and com-
pilation. http://msdn.microsoft.com/en-us/library/650ax5cx(v=vs.

110).aspx, 2016. 34

[121] Patrick McEvoy. Brail, a view engine for MonoRail. https://github.com/
castleproject/MonoRail/blob/master/MR2/docs/brail.md, 2016. 36

106

http://www.codeplex.com/Download?ProjectName=dlr&DownloadId=127512
http://www.codeplex.com/Download?ProjectName=dlr&DownloadId=127512
http://www.reflection.uniovi.es/stadyn/download/2015/jss
http://www.reflection.uniovi.es/stadyn/download/2015/jss
http://msdn.microsoft.com/en-us/library/650ax5cx(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/650ax5cx(v=vs.110).aspx
https://github.com/castleproject/MonoRail/blob/master/MR2/docs/brail.md
https://github.com/castleproject/MonoRail/blob/master/MR2/docs/brail.md

References

[122] Andrew Davey and Cedric Vivier. Specter framework, a behaviour-
driven development framework for .Net and Mono. http://specter.

sourceforge.net, 2016. 36

[123] Krzysztof Koźmic. Castle Windsor, mature inversion of control container
for .Net and Silverlight. https://github.com/castleproject/Windsor/
blob/master/docs/README.md, 2016. 36

[124] Unity Technologies. Unity3D. http://unity3d.com, 2016. 36

[125] NetVed Technologies. Kloudo, the simplest way to get your business orga-
nized. http://www.kloudo.com, 2015. 36

[126] SkyFoundry. SkySpark, analytics software for a world of smart devices.
http://skyfoundry.com/skyspark, 2016. 36

[127] Thibaut Colar. NetColarDB, ORM features on top of Fantom’s
SQL package. https://bitbucket.org/tcolar/fantomutils/src/tip/

netColarDb, 2016. 36

[128] Python Software Foundation. Pybench benchmark project trunk page.
http://svn.python.org/projects/python/trunk/Tools/pybench,
2016. 36

[129] Reinhold P. Weicker. Dhrystone: a synthetic systems programming bench-
mark. Communications of the ACM, 27(10):1013–1030, 1984. 37

[130] Chandra Krintz. A collection of phoenix-compatible C# bench-
marks. http://www.cs.ucsb.edu/~ckrintz/racelab/PhxCSBenchmarks,
2016. 37

[131] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous
Java performance evaluation. ACM SIGPLAN Notices, 42(10):57–76, 2007.
37, 38

[132] David J. Lilja. Measuring computer performance: a practitioner’s guide.
Cambridge University Press, 2005. 38

[133] MicrosoftTechnet. Windows server techcenter: Windows performance mon-
itor. http://technet.microsoft.com/en-us/library/cc749249.aspx,
2016. 39

[134] Microsoft. Windows management instrumentation. http://msdn.

microsoft.com/en-us/library/windows/desktop/aa394582(v=vs.85)

.aspx, 2016. 39

[135] Robin Milner. The definition of standard ML: revised. MIT press, 1997. 45

[136] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fair-
bairn, Joseph Fasel, Maŕıa M Guzmán, Kevin Hammond, John Hughes,
Thomas Johnsson, et al. Report on the Programming Language Haskell,
A Non-strict Purely Functional Language (Version 1.2). ACM SIGPLAN
Notices, 27(5):1–164, 1992. 45

107

http://specter.sourceforge.net
http://specter.sourceforge.net
https://github.com/castleproject/Windsor/blob/master/docs/README.md
https://github.com/castleproject/Windsor/blob/master/docs/README.md
http://unity3d.com
http://www.kloudo.com
http://skyfoundry.com/skyspark
https://bitbucket.org/tcolar/fantomutils/src/tip/netColarDb
https://bitbucket.org/tcolar/fantomutils/src/tip/netColarDb
http://svn.python.org/projects/python/trunk/Tools/pybench
http://www.cs.ucsb.edu/~ckrintz/racelab/PhxCSBenchmarks
http://technet.microsoft.com/en-us/library/cc749249.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582(v=vs.85).aspx

References

[137] Asumu Takikawa, Daniel Feltey, Earl Dean, Robert Bruce Findler, Matthew
Flatt, Sam Tobin-Hochstadt, and Matthias Felleisen. Towards practical
gradual typing. In European Conference on Object-Oriented Programming,
2015. 46

[138] Francisco Ortin and Diego Diez. Designing an adaptable heterogeneous ab-
stract machine by means of reflection. Information & Software Technology,
47(2):81–94, 2005. 46

[139] Francisco Ortin and Juan Manuel Cueva. Implementing a real
computational-environment jump in order to develop a runtime-adaptable
reflective platform. SIGPLAN Notices, 37(8):35–44, 2002. 46

[140] Ron Cytron and Jeanne Ferrante. What’s in a name?-or-the value of re-
naming for parallelism detection and storage allocation. IBM Thomas J.
Watson Research Division, 1987. 47

[141] Jose Quiroga and Francisco Ortin. SSA transformations to efficiently
support variables with different types in the same scope. http://www.

reflection.uniovi.es/stadyn/download/2016/compj, 2016. 52, 56

[142] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo De’Liguoro.
Intersection and union types: syntax and semantics. Information and Com-
putation, 119:202–230, June 1995. 55

[143] Alexander Aiken and Edward L. Wimmers. Type inclusion constraints and
type inference. In Proceedings of the Conference on Functional Program-
ming Languages and Computer Architecture, pages 31–41, Copenhagen,
Denmark, 9-11 June 1993. ACM Press. 55

[144] Francisco Ortin. The StaDyn programming language. http://www.

reflection.uniovi.es/stadyn, 2016. 55, 68, 69

[145] Jose Quiroga, Francisco Ortin, David Llewellyn-Jones, and Miguel Garcia.
Optimizing runtime performance of hybrid dynamically and statically typed
languages for the .Net platform. Journal of Systems and Software, 113:114–
129, 2016. 57

[146] Microsoft. The .Net compiler platform (Roslyn). https://github.com/

dotnet/roslyn, 2016. 57

[147] Mono-Project. The Mono project. http://www.mono-project.com, 2016.
57

[148] ECMA. ECMA-334 standard: C# language specification 4th edi-
tion. http://www.ecma-international.org/publications/standards/

Ecma-334.htm, 2016. 57

[149] Mads Torgersen. The expression problem revisited four new solutions using
generics. In In Proceedings of the 18th European Conference on Object-
Oriented Programming, pages 123–143. Springer-Verlag, 2004. 65, 67

108

http://www.reflection.uniovi.es/stadyn/download/2016/compj
http://www.reflection.uniovi.es/stadyn/download/2016/compj
http://www.reflection.uniovi.es/stadyn
http://www.reflection.uniovi.es/stadyn
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
http://www.mono-project.com
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm

References

[150] Francisco Ortin, Luis Vinuesa, and Jose Manuel Felix. The DSAW aspect-
oriented software development platform. International Journal of Software
Engineering and Knowledge Engineering, 21(07):891–929, 2011. 65

[151] Francisco Ortin, Benjamin Lopez, and J. Baltasar G. Perez-Schofield. Sep-
arating adaptable persistence attributes through computational reflection.
IEEE Software, 21(6):41–49, Nov 2004. 66

[152] Pattie Maes. Computational Reflection. PhD thesis, Vrije Universiteit,
Brussels, May 1987. 66

[153] Francisco Ortin, Miguel Garcia, Jose M. Redondo, and Jose Quiroga.
Achieving multiple dispatch in hybrid statically and dynamically typed
languages. In World Conference on Information Systems and Technolo-
gies, WorldCIST, pages 1–11, 2013. 67, 72

[154] Armin Rigo. Representation-based just-in-time specialization, 2004. 69

[155] Francisco Ortin, Jose Baltasar Garcia Perez-Schofield, and Jose Manuel
Redondo. Towards a static type checker for python. In European Con-
ference on Object-Oriented Programming (ECOOP), Scripts to Programs
Workshop, STOP ’15, pages 1–2, 2015. 80

[156] Joe Kunk. 10 Questions, 10 Answers on Roslyn. VisualStudio Magazine,
03/20/2012, 2012. 80

[157] Patricia Miravet, Ignacio Marin, Francisco Ortin, and Abel Rionda.
DIMAG: A framework for automatic generation of mobile applications for
multiple platforms. In Proceedings of the 6th International Conference on
Mobile Technology, Application & Systems, Mobility ’09, pages 23:1–23:8,
New York, NY, USA, 2009. ACM. 80

[158] Ignacio Marin, Antonio Campos, Jose Quiroga, Patricia Miravet, and Fran-
cisco Ortin. Device independence approach for ict-based pftl solutions.
In International Conference on Paperless Freight Transport Logistics (e-
Freight), 2011. 80

[159] Jose Quiroga, Ignacio Marin, Javier Rodriguez, Diego Berrueta, Nicanor
Gutierrez, and Antonio Campos. From UAProf towards a universal de-
vice description repository. Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering (Mobile
Computing, Applications, and Services), 95:263–282, 2012. 80

[160] Patricia Conde and Francisco Ortin. JINDY: A java library to support
invokedynamic. Computer Science and Information Systems, 11(1):47–68,
2014. 80

109

	Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Structure of the document

	2 Related Work
	2.1 The StaDyn programming language
	2.1.1 Type inference
	2.1.2 Duck typing
	2.1.3 Dynamic and static typing
	2.1.4 Implicitly typed parameters
	2.1.5 Implicitly typed attributes
	2.1.6 Alias analysis for concrete type evolution
	2.1.7 Implementation

	2.2 Hybrid static and dynamic typing languages
	2.3 Optimizations of dynamically typed virtual machines
	2.4 Optimizations based on the SSA form
	2.5 Multiple dispatch (multi-methods)

	3 Optimizing Dynamically Typed Operations with a Type Cache
	3.1 The Dynamic Language Runtime
	3.2 Optimization of .Net hybrid typing languages
	3.2.1 VB optimizations
	3.2.2 Boo optimizations
	3.2.3 Cobra optimizations
	3.2.4 Fantom optimizations
	3.2.5 StaDyn optimizations

	3.3 Implementation
	3.3.1 Binary program transformation
	3.3.2 Compiler optimization phase

	3.4 Evaluation
	3.4.1 Methodology
	3.4.1.1 Selected languages
	3.4.1.2 Selected benchmarks
	3.4.1.3 Data analysis
	3.4.1.4 Data measurement

	3.4.2 Start-up performance
	3.4.2.1 Discussion

	3.4.3 Steady-State performance
	3.4.3.1 Discussion

	3.4.4 Memory consumption
	3.4.4.1 Discussion

	4 Optimizations based on the SSA form
	4.1 SSA form
	4.2 SSA form to allow multiple types in the same scope
	4.2.1 Basic blocks
	4.2.2 Conditionals statements
	4.2.3 Loop statements
	4.2.4 Union types
	4.2.5 Implementation

	4.3 Evaluation
	4.3.1 Methodology
	4.3.2 Start-up performance
	4.3.3 Steady-state performance
	4.3.4 Memory consumption
	4.3.5 Compilation time

	5 Optimizing Multimethods with Static Type Inference
	5.1 Existing approaches
	5.1.1 The Visitor design pattern
	5.1.2 Runtime type inspection
	5.1.3 Reflection
	5.1.4 Hybrid typing

	5.2 Static type checking of dynamically typed code
	5.2.1 Method specialization

	5.3 Evaluation
	5.3.1 Methodology
	5.3.2 Runtime performance
	5.3.3 Memory consumption

	6 Conclusions
	6.1 Future Work

	A Evaluation data of the DLR optimizations
	B Evaluation data of the SSA optimizations
	C Evaluation data for the multiple dispatch optimizations
	D Publications
	References

