
A Flexible Integral Computing System
based on a Structurally-Reflective Abstract Machine

F. Ortín Soler, D. Álvarez Gutiérrez, and J. M. Cueva Lovelle

University of Oviedo
Department of Computer Science

Calvo Sotelo s/n 33007, Oviedo, Spain
e-mail: {ortin, darioa, cueva}@pinon.ccu.uniovi.es

Abstract

Currently, integrating and interconnecting different computing systems on different
platforms is a problem without a definite solution. An integral solution allowing the ma-
nipulation of the system as a whole in a flexible way has not yet emerged.

An abstract machine endowed with structural reflection implementing a reflective
object model can be the basis to develop a multiplatform integral system, highly flexible
and offering the abstraction of a single distributed computing system.

By developing an interpreter on the machine, computational reflection is intro-
duced in the system, making the dynamic change of the language interpreted possible. A
generic and methodical tool to develop these interpreters complements this. Besides, any
programming language is able to access the object model defined by the abstract machine.

Keywords: Abstract Machine, Structural and Computational Reflection, Language Inde-
pendence.

1. Introduction

1.1 Systems integration
There are some initiatives to integrate different computing systems, applications

and programming languages. Object architectures such as CORBA [8] or COM [13] speci-
fy a model in which objects interoperate because of the standard definition of language-
independent interfaces.

These systems lack the flexibility to modify the interconnection mechanism. Addi-
tional projects such as OpenCorba [14] try to remedy this using reflection. Besides, a sin-
gle computing system is not envisioned, but one in which an application divided in sub-
systems is interconnected by a middleware. Each subsystem should be compiled and may
use its local platform resources (not in an integral way).

Other alternatives propose to develop applications using assorted platforms and
languages. Computation is divided into multiple layers, departing from the client-server
concept. Interconnection is not done by invocating methods that appear in an interface.
Instead, self-described data is sent between the different systems. An example is an n-tier
system, in which XML [5] files are exchanged using HTTP or HTTPS protocols, inter-
connecting powerful hosts and thin clients. This is more flexible, as no fixed architectures
as COM or CORBA are used, but no single computing system is adopted. An application
must be divided into different physically-distributed platforms.

1.2 Our reflective solution
We favour a single distributed computing system developed on the basis of a very

simple object-oriented abstract machine, endowed with structural reflection. Upon this
foundation, the set of services of the computing system is built by dynamically accessing
objects by means of structural reflection. Then, a tool for the dynamic specification of
languages is developed, introducing computational reflection and language independence
in the system.

Next section overviews the description of the abstract machine and the design of
the computing environment by means of structural reflection. Section 3 shows how to get
computational reflection on the existing machine. Section 4 presents a particular design to
get language independence that builds on the reflection introduced in the system. Conclu-
sions are drawn in the final section.

2. A Computing System based on Structural Reflection
Developing and using a single distributed computing system is more powerful than

the before-mentioned systems. As an example, garbage collection, thread scheduling and
object mobility would be carried on the set of computers assembling the system in an inte-
gral way. Using an abstract machine helps the implementation of the system, as it offers a
single object model easing object interoperability.

The system will add functionalities such as persistence, distribution and security,
being at the same time flexible enough to modify and extend any of the services (the per-
sistence system of a platform could be modified [6], for example). The machine should
also be small enough as to be easily portable to any platform.

2.1 Flexibility by means of structural reflection
Our previous research for integral-computing systems used an abstract machine

with a basic object model [3]. Then, different features such as distribution, capability-
based security and persistence were added to the machine, mostly in "user" space, but re-
quired some changes to the basic machine. An object-oriented database engine [6] was
built on the persistence feature. This kind of extensions to the machine had two limita-
tions:

1. Flexibility in these functionalities gets reduced, as some modifications do need
a recompilation of the abstract machine.

2. The size of the abstract machine, although not excessive, gets increased. This
limits portability to size-constrained platforms. Maintenance of versions gets
worse, also.

We then decided to redesign the abstract machine that forms the basis of the sys-
tem, to reincarnate as a basic system of object computing primitives, with structural reflec-
tion as the built-in flexibility and extensibility mechanism. The machine (the kernel of the
system) will then be as lean as possible, but powerful enough as to be extended with func-
tionality adapted to the target environment of the system.

2.2 The abstract machine of the computing system
The abstract machine provides a pure object model based on prototypes [2]. This

object model is simpler than object models based on classes, retaining the same expressive
power [2]. Self [10], and to some extent Smalltalk [7] are some platforms that use this
model. Our machine, however, has a simpler structure and computing primitives.

The object is the only abstraction. An object can dynamically inherit from other
object (this is also called delegation), and can contain an unlimited number of object refer-
ences (association relationships). There are only two primitive objects: the root object (nil)
and string objects.

An object's structure is accessible at runtime by means of structural reflection. An
object can send a message to other object using an object. Computing is performed by
evaluating an object as a computation (like the eval function of LISP, evaluates a list as an
instruction). Therefore, objects are the only abstraction. The methods of an object are then
just aggregate objects than can be evaluated.

The basic primitives for constructing and destroying objects, message passing and
the inheritance mechanism are implemented by the machine, and belong to the nil object
that is the root of every object.

*nil
*new,*get,
set,:, ...

*String
concat,+,
*-, *() ,...

Car
paint

getYear

miCar
colour
year

yourCar
colour
year

< c←params:get(<0>);
self:set(<colour>,c); >

< self:get(<year>); >

< 1989 >

< blue >< red >

< 2000 >

* → Primitive Objects

 → Inheritance/Delegation

 → Association/Aggregation

Figure ¡Error! Argumento de modificador desconocido.: Prototype based object representation.

Any additional functionality such as garbage collection, scheduling, persistence,
distribution, etc. will be implemented if needed as objects external to the machine. Struc-
tural reflection allows to modify the objects without the need to modify the machine itself,
thus flexibility to adapt the functionality is achieved. Garbage collection, for example, will
extend the way objects are created, recording additional information to implement this
collection.

3. Computational Reflection by means of Structural Reflection
A flexible computing system is achieved using structural reflection through an ab-

stract machine that defines an object model. A dependence on the language of the virtual
machine exists, though, as applications still have to be developed using that language.

3.1.Endowing the System with Computational Reflection
Computational reflection is the behaviour shown by a computing system that can

access and act upon itself with the support of a causal connection mechanism [9]. So,
computational reflection reifies computation in a system, and therefore its behaviour. A
computational-reflective system may change its own semantics. As an example message
passing mechanism could be increased to develop a distributed system.

To achieve computational reflection in the system we will develop an interpreter
on the computing system, and then language independence is also achieved.

3.2.Design Strategy for the Interpreter
An interpreter for a high-level language is built. By means of a reifying instruction

in the language, it is possible to evaluate a set of instructions of the abstract machine. The
interpreter will take these instructions and will pass them to the machine for evaluation.

These instructions can modify (using structural reflection) the objects of the inter-
preter itself (and therefore the objects describing the computation). In this way, a program
written in a given programming language is able to modify the semantics or even the lan-
guage itself in which it is implemented.

The end result is a system which exhibits computational reflection by means of
structural reflection using a two-level interpreter tower [1].

class Car {
 const char *colour;
 unsigned year;
public:
 reify “p←System:get(<parserCpp>);
 p:add(...);”

 unsigned getYear() const;
};

< // Retrieval of instr.
 s←locals:get(<0>);
 // Evaluation
 nil:s(); >

1: C++ code is
being interpreted

2: Code to be reified (adding part
of the syntactic features to the
language)

3: The interpreter takes the code
and passes it to the machine. The
execution modifies the language’s
specification.

4: The machine
modifies the
interpreter

5: Code continues
evaluating with
new semantics

Interpreter

System
Objects

Figure ¡Error! Argumento de modificador desconocido.: Achieving Computational Reflection.

4. Language independence
The interpreter achieves language independence as it can be modified at run time.

However, the dynamic change of an interpreter is a complex task, which needs a well-
defined structure in order to be done in a simple way.

4.1 Language specification
There are many tools for developing language processors. Lex and Yacc are classic

examples. Javacc [11] and antlr [12] are newer. These tools use a specification of a lan-

guage written in a given format, which is then pre-processed and compiled. This pre-
processing step limits the dynamic modification of the specification of the language.

We propose to use a lexical, syntactic and semantic specification tool based on an
object structure. The interpretation of a language is defined by an object graph built with
objects of the object model of the machine. The evaluator of this graph making use of the
Visitor pattern [4] will produce the interpretation of the language specified.

Dynamic modification of the objects that specify the language can be done by
means of the structural reflection of the system. We are then able to change at runtime the
language being interpreted. Different specifications of programming languages can be
stored (by using the persistence subsystem implemented on the machine [6]) and then a
selection of the appropriate language can be invoked.

Interpreter

Visitor Semantic
Specification

Lexical
Specification

Sy
nt
ac
tic

Sp
ec
ifi
ca
tio
n

Persistence
System

Figure ¡Error! Argumento de modificador desconocido.: Structural Reflective Language Rep-
resentation.

The end result is a flexible distributed computing environment with a single object
model that can be accessed using any programming language.

5. Conclusions
The integration and interconnection of heterogeneous systems currently has differ-

ent approaches, but a flexible single integral computing system that is able to easily modi-
fy and extend system services has not been achieved yet.

Reflection is the key feature we deem essential to achieve that goal. Initially, struc-
tural reflection is used to develop a computing environment based on a simple abstract
machine that defines a reflective object model based on prototypes, with only two primi-
tive objects: string objects and the nil object that has the primitive operations for con-
structing and destroying objects, message passing and inheritance. The functionality of the
machine is extended by dynamically accessing the structure of the objects.

There is a dependence on the language of the machine. Developing an interpreter
on the machine is the way to get computational reflection and language independence. The
interpreter is built with a graph of machine objects, which are evaluated using the Visitor
pattern to produce the interpretation of the language. Using structural reflection these ob-
jects are modified to change the semantics of the interpreted language, thus achieving
computational reflection.

A tool for the structural specification of programming languages is proposed to de-
velop these interpreters in a generic and methodical way. Modification of these interpret-
ers is done following a well-defined scheme.

Applications written in an arbitrary programming language can be executed, dy-
namically loading the specification for the language previously. Before executing a
source program, the language being interpreted is specified and modified using computa-
tional reflection.

Reflection achieves a flexible integral computing system that defines an object
model that can be accessed with independence from the programming language.

6. References
[1] B. C. Smith. Reflection and Semantics in a Procedural Language. MIT-LCS-TR-272.

Massachusetts Institute of Technology. 1982.
[2] Borning, A.H. Classes Versus Prototypes in Object-Oriented Languages. In Proceed-

ings of the ACM/IEEE Fall Joint Computer Conference. 1986.
[3] Darío Álvarez, et al. An object-oriented abstract machine as the substrate for an object-

oriented operating system. 11th European Conference on Object-Oriented Program-
ming (ECOOP’97). Jyväskylä (Finland). June 1997.

[4] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns. Ad-
dison-Wesley. 1994.

[5] Extensible Markup Language (XML) 1.0. World Wide Web Consortium. February
1998.

[6] Francisco Ortin, Dario Alvarez, Belen Prieto and Juan M. Cueva. An Implicit Persis-
tence System on an OO Database Engine using Reflection. International Conference
on Information Systems Analysis and Synthesis (ISAS'99). Orlando (USA). July 1999.

[7] Goldberg A. y Robson D. Smalltalk-80: The language and its Implementation. Addi-
son-Wesley. 1983.

[8] Object Management Group (OMG). The Complete Formal CORBA/IIOP Specifica-
tion. October 1999.

[9] Pattie Maes. Issues in Computational Reflection. Meta-Level Achitectures and Reflec-
tion. North-Holland. Belgium. August 1987.

[10] Randall B. Smith, David Ungar. Programming as an Experience: The Inspiration for
Self. Sun Microsystems Laboratories. 1995.

[11] Sun Microsystems. Java Compiler Compiler 0.8pre1. 1999.

[12] Terence Parr. Antlr Reference Manual. Magelang Institute. January 2000.
[13] The Component Object Model Specification. Microsoft Corporation. October, 1995.

[14] Thomas Ledoux. OpenCorba: a Reflective Open Broker. Reflection'99. Saint-Malo.

France. July 1999.

