Optimizing Runtime Performance of
Hybrid Dynamically and Statically Typed Languages
for the .Net Platform

Jose Quiroga?, Francisco Ortin?*, David Llewellyn-Jonesb, Miguel Garcia?

a University of Oviedo, Computer Science Department,
Calvo Sotelo s/n, 33007, Oviedo, Spain
b Liverpool John Moores University, Department of Networked Systems and Security, James
Parsons Building, Byrom Street, Liverpool, L3 3AF, UK

Notice: This is the authors’ version of a work accepted for publication in Journal of
Systems and Software. Please, cite this document as:

Jose Quiroga, Francisco Ortin, David Llewellyn-Jones, Miguel Garcia. Optimizing Runtime
Performance of Hybrid Dynamically and Statically Typed Languages for the .Net Platform.
Journal of Systems and Software, volume 113, pp. 114-129, March 2016, doi:

Optimizing Runtime Performance of
Hybrid Dynamically and Statically Typed Languages
for the .NET Platform

Jose Quiroga?, Francisco Ortin®*, David Llewellyn-Jones®, Miguel Garcia®

®Unwversity of Oviedo, Computer Science Department,
Calvo Sotelo s/n, 33007, Oviedo, Spain
b Liverpool John Moores University, Department of Networked Systems and Security,
James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK

Abstract

Dynamically typed languages have become popular in scenarios where high
flexibility and adaptability are important issues. On the other hand, stati-
cally typed languages provide important benefits such as earlier type error
detection and, usually, better runtime performance. The main objective of
hybrid statically and dynamically typed languages is to provide the benefits
of both approaches, combining the adaptability of dynamic typing and the
robustness and performance of static typing. The dynamically typed code of
hybrid languages for the .NET platform typically use the introspection ser-
vices provided by the platform, incurring a significant performance penalty.
We propose a set of transformation rules to replace the use of introspection
with optimized code that uses the services of the Dynamic Language Run-
time. These rules have been implemented as a binary optimization tool, and
included as part of an existing open source compiler. Our system has been
used to optimize 37 programs in 5 different languages, obtaining significant
runtime performance improvements. The additional memory resources con-

*Corresponding author
Email addresses: quirogajose@uniovi.es (Jose Quiroga), ortin@uniovi.es
(Francisco Ortin), D.Llewellyn-Jones@ljmu.ac.uk (David Llewellyn-Jones),
garciarmiguel@uniovi.es (Miguel Garcia)
URL: http://www.di.uniovi.es/~ortin (Francisco Ortin),
http://www.flypig.co.uk/?style=3&page=research (David Llewellyn-Jones),
http://www.miguelgr.com (Miguel Garcia)

Preprint submitted to Journal of Systems and Software November 18, 2015

sumed by optimized programs have always been lower than the corresponding
performance gains obtained.

Keywords: hybrid static and dynamic typing, dynamic language runtime,
runtime performance optimization, .NET

1. Introduction

Dynamic languages have turned out to be suitable for specific scenarios
such as rapid prototyping, Web development, interactive programming, dy-
namic aspect-oriented programming and runtime adaptive software [1]. For
example, in the Web development scenario, Ruby [2] is used for the rapid
development of database-backed Web applications with the Ruby on Rails
framework [3]. This framework has confirmed the simplicity of implementing
the DRY (Do not Repeat Yourself) [4] and the Convention over Configura-
tion [3] principles in a dynamic language. Nowadays, JavaScript [5] is being
widely employed to create interactive Web applications [6], while PHP is one
of the most popular languages for developing Web-based views. Python [7]
is used for many different purposes; two well-known examples are the Zope
application server [8] (a framework for building content management sys-
tems, intranets and custom applications) and the Django Web application
framework [9).

On the contrary, the type information gathered by statically typed lan-
guages is commonly used to provide two major benefits compared with the
dynamic typing approach: early detection of type errors and, usually, signif-
icantly better runtime performance [10]. Statically typed languages offer the
programmer the detection of type errors at compile time, making it possi-
ble to fix them immediately rather than discovering them at runtime —when
the programmer efforts might be aimed at some other task, or even after the
program has been deployed [I1]. Moreover, avoiding the runtime type inspec-
tion and type checking performed by dynamically typed languages commonly
involve a runtime performance improvement [12| [13].

Since both approximations offer different benefits, some existing lan-
guages provide hybrid static and dynamic typing, such as Objective-C, Visual
Basic, Boo, StaDyn, Fantom and Cobra. Additionally, the Groovy dynam-
ically typed language has recently become hybrid, performing static type
checking when the programmer writes explicit type annotations (Groovy
2.0) [14]. Likewise, the statically typed C# language has included the

dynamic type in its version 4.0 [15], indicating the compiler to postpone
type checks until runtime.

The example hybrid statically and dynamically typed Visual Basic (VB)
code in Figure[l]shows the benefits and drawbacks of both typing approaches.
The statically typed TrianglePerimeter method computes the perimeter of
a Triangle as the sum of the length of its edges. The first invocation in the
Main function is accepted by the compiler; whereas the second one, which
passes a Square object as argument, produces a compiler error. This error is
produced even though the execution would produce no runtime error, because
the perimeter of a Square can also be computed as the sum of its edges. In
this case, the static type system is too restrictive, rejecting programs that
would run without any error.

Module Figures

Public Class Triangle Public Function PolygonPerimeter(poly) As Double
Public edges(3) As Integer Dim result As Double = @
Public Sub New(edgel As Integer, For Each edge In poly.edges
edge2 As Integer, edge3 As Integer) result += edge
Me.edges = {edgel, edge2, edge3} Next
End Sub Return result
End Class End Function
Public Class Square Sub Main()
Public edges(4) As Integer Dim perimeter As Double
Public Sub New(edge As Double) Dim triangle As Triangle = New Triangle(3,4,5)
Me.edges = {edge, edge, edge, edge} Dim square As Square = New Square(3)
End Sub Dim circ As Circumference =
End Class New Circumference(4)
Public Class Circumference perimeter = TrianglePerimeter(triangle)
Public radius As Integer 'compiler error
Public Sub New(rad As Integer) perimeter = TrianglePerimeter(square)
Me.radius = rad
End Sub perimeter = PolygonPerimeter(triangle)
End Class perimeter = PolygonPerimeter(square)
Public Function TrianglePerimeter("runtime error
poly As Triangle) As Double perimeter = PolygonPerimeter(circ)
Dim result As Double = @ End Sub
For Each edge In poly.edges End Module
result += edge
Next

Return result
End Function

Figure 1: Hybrid static and dynamic typing example in Visual Basic.

The PolygonPerimeter method implements the same algorithm but us-
ing dynamic typing. The poly parameter is declared as dynamically typed
in VB by omitting its type. The flexibility of dynamic typing supports duck
typing [16], meaning that any object that provides a collection of numeric

edges can be passed as a parameter to PolygonPerimeter. Therefore, the
first two invocations to PolygonPerimeter are executed without any error.
However, the compiler does not type-check the poly parameter, and hence
the third invocation produces a runtime error (the class Circumference does
not provide an edges property).

As mentioned, the poly.edges expression in the PolygonPerimeter method
is an example of duck typing, an important feature of dynamic languages.
VB, and most hybrid languages for .NET and Java, implement this runtime
type checking using introspection, causing a performance penalty [16]. In
general, the runtime type checks implemented by dynamic languages gen-
erally cause runtime performance costs [I7]. To minimize the use of these
introspection services, a cache mechanism could be implemented to improve
runtime performance of the dynamic inference of types.

The Dynamic Language Runtime (DLR) is a set of .NET libraries that
provide, among other services, different cache levels for the typical opera-
tions of dynamically typed code. Although the DLR is exploited by the C#
compiler (when the dynamic keyword is used) and some dynamic languages
(e.g., IronPython 24, IronRuby and PowerShell), it has not been used in any
other hybrid typing language. Our research is based on the hypothesis that
the DLR can be used to optimize different features of dynamic typing code
in hybrid typing languages. The use of a runtime cache may incur a runtime
performance penalty at start-up. It may also increase the memory resources
used at runtime. Therefore, we must measure these values and evaluate when
the use of the DLR may be appropriate.

The main contribution of this work is the optimization of the common
dynamically typed operations of hybrid typing languages for the .NET plat-
form using the DLR, evaluating the runtime performance gain obtained and
the additional memory resources required. We have built a tool that pro-
cesses binary .NET files compiled from the existing hybrid typing languages
for that platform, and produces new binary files with the same behavior
and better runtime performance. We have also included the proposed opti-
mizations in the implementation of an existing compiler for .NET, obtaining
similar results.

The rest of the paper is structured as follows. Section |2| describes the
DLR architecture and its main components. The architecture of both the
binary code optimizer and the optimizing compiler is presented in Section [3]
That section also formalizes the transformation rules defined to optimize
VB. Section |4| describes some implementation issues, and Section [5| presents

4

the evaluation of runtime performance and memory consumption. Section [0]
discusses related work, and Section (7| presents the conclusions and future
work. [Appendix A shows the dynamic typing operations supported by the
DLR. Appendixes B, C, D, E and F present the optimization rules for VB,
Boo, Cobra, Fantom and StaDyn, respectively.

2. The Dynamic Language Runtime

The Dynamic Language Runtime (DLR) is a set of libraries included
in the .NET Framework 4 to support the implementation of dynamic lan-
guages [18]. The DLR is built on the top of the Common Language Runtime
(CLR), the virtual machine of the .NET Framework. The DLR provides
high-level services and optimizations common to most dynamic languages,
such as a dynamic type checking, dynamic code generation and a runtime
cache to optimize dynamic dispatch and method invocation [1§]. Therefore,
it facilitates the development of dynamic languages for the .NET platform,
and provides interoperability among them. The DLR services are currently
used in the implementation of the IronPython 2+, IronRuby and PowerShell
dynamic languages. It is also used in C# 4+ to support the new dynamic
type. This section briefly describes the components of the DLR used in our
work; more detailed information can be consulted in [18].

The key elements of the DLR are call-sites, binders and its runtime cache.
A call-site is any expression with (at least) one dynamically typed operand.
The DLR adds the CallSite class to the .NET Framework to provide the
dynamic typing services and optimizations for dynamically typed expression.
Figure @ shows two examples of dynamically typed operations executed
with (right-hand side) and without (left-hand side) DLR CallSites. The
complete list of the dynamically typed operations supported by the DLR is
shown in [18].

Figure [2| shows how a new CallSite instance is created for each single
dynamically typed expression (the addition in Add and the method invoca-
tion in Show). Every CallSite receives a CallSiteBinder as an argument
upon construction. A CallSiteBinder encapsulates the specific kind of ex-
pression represented by a CallSite (e.g., binary addition and method invo-

!The VB code has been simplified the following way: 1) CallSite type definitions are
shortened, 2) lazy initializations of CallSites have been replaced by initializations in the
declaration; and 3) arguments of CallSiteBinders have been omitted.

Public callSite@ As CallSite(Of..) = CallSite(Of..)
.Create(Binder.BinaryOperation(

Public Module Callsites !
1
i
Return paraml + param2 H ExpressionTvpe. Add
End Function I—}: P ype.Add))
i
1
1
L

Function Add(paraml, param2) |

Public Function Add(paraml, param2)
Return callSite@.Target(callSite@, paraml, param2)

Sub Show(output, message) End Function
1

output.WriteLine(message)

End Sub
ottt oottt oottt
Sub Main() ! Public callSitel As CallSite(Of..) = CallSite(Of..) i
Show(Console.Out, "JS&S" + ! .Create(Binder.InvokeMember("WriteLine™) !
A:jd("ze" "15mY)) L—p! Public Sub Show(output, mesage) !
End Sub ’ 1 callSitel.Target(callSitel, output, message) !
End Module i End Sub i

__

Figure 2: Example VB program with (right-hand side) and without (left-hand side) DLR
optimizations.

cation). With this information, the CallSiteBinder dynamically generates
a method that computes that expression. Since the method is generated at
runtime, the particular dynamic types of the operands are known. Therefore,
the generated code does not need to consult the operand types, implying a
runtime performance benefit [I8 [13]. The types of the operands are stored
in a cache implemented by the CallSite. Later invocations to the CallSite
may produce a cache hit, if the operand types remain unchanged. Other-
wise, a cache miss is produced; and another method is generated by the
CallSiteBinder. CallSites implement three distinct cache levels, using
introspection upon the third cache miss [18].

We previously measured that the runtime cache provided by the DLR
provides a significant performance improvement compared to the use of intro-
spection [16]. The key insight behind our work is to replace the dynamically
typed operations (including the introspective ones) used by .NET languages
with DLR CallSites, and evaluate if the new code provides significant per-
formance improvements. Besides, we should measure the cost of the dynamic
code generation method implemented by the DLR, because it may incur a
performance penalty at start-up. The additional memory resources consumed
by the DLR must also be evaluated.

3. Optimization of .Net Hybrid Typing Languages

As mentioned, we optimize the existing hybrid typing languages for the
.NET platform, using the services provided by the DLR. These optimizations
have been applied to the language implementations following the two differ-

AST I
Compilation

Transformation O//&
[A DLR
LTy T Executable

CLR

Executable ol ccl

ccl

Decompilation
AST
Generation

AST with dynamic
operations

AST with CallSites

a) Optimization of binary .Net files (assemblies)
Compiler

Options
CLR
Executable
Code
Source N
Code D D D D Generation

Tokens iR
AST AST with Type Executable

Information

AST Decoration

Lexing
Parsing

e [

b) Optimization as part of a compiler implementation

Figure 3: Architecture of the two optimization approaches.

ent approaches shown in Figure [3} as an optimizer of .NET executable files
(Figure a), and as part of an open source compiler (Figure .b).

Figure [3}a shows the binary optimization approach implemented for pro-
grams coded in VB, Boo, Cobra and Fantom. Using the Microsoft Research
Common Compiler Infrastructure (CCI) [19], the Abstract Syntax Trees
(ASTs) of binary files (i.e., assemblies) are obtained. Our optimizer traverses
each AST, searching for dynamically typed expressions. Those expressions
are replaced by semantically equivalent expressions that use DLR CallSites
(Section [3.1)). Finally, the ASTs are saved as new optimized binary files that
use the DLR.

The proposed optimizations have also been included in a compiler (Fig-
ure b). We have modified the existing implementation of the StaDyn hybrid
typing language [20]. StaDyn is an extension of C# that provides type in-
ference of dynamic references. The StaDyn compiler performs type inference
with 5 traversals of the AST [21]. Afterwards, the code generation phase
generates binary files for the CLR. We have added a new server command-
line option to the compiler. When this option is passed, we optimize the only
dynamically typed references that the StaDyn compiler does not manage to
infer: dynamic method arguments . Otherwise, the types of
the dynamic parameters are inspected using introspection —the types of local
variables and fields are inferred by the compiler using union and intersection
types [22].

3.1. Runtime Performance Optimizations

In this section, we formalize the performance optimizations implemented
for VB, which follow the .NET binary optimization approach presented in
Figure [3la. Appendixes C, D and E detail the binary optimizations for Boo,
Cobra and Fantom, respectively. presents the optimizations
included in the StaDyn compiler, following the architecture presented in Fig-
ure [3Lb.

Figure |3 shows how every optimization is based on the idea of replacing
an AST with another AST that uses the DLR services. Figures[4]to[7] present
the most significant inference rules used to optimize VB. An example of these
transformations is replacing the program in the left-hand side of Figure[2] with
the code in the right-hand side. This AST transformation is denoted by ~-,
so that e; ~» e, represents that the AST of the expression e; is replaced with
the AST of e,.

The meta-variables e range over expressions; C', f, m and w range over
class, field, method and member names, respectively; and T ranges over
types. e:T denotes that the e expression has the T type. For the two ar-
chitectures showed in Figure 3| (binary code transformation and compiler
internals), our transformations can make use of the types of expressions. In
the binary code transformation scenario, the CCI tool provides us this infor-
mation (Section ; for the compiler approach, we obtain expression types
from the annotated AST [21). C' x Ty x ... x T,, — T, represents the type
of a (instance or static) method of the C' class, receiving n parameters of
Ti,...,T, types, and returning T;.. T7,_puir—in represents the built-in types of
the L languageEL and we use the dynamic type to indicate that an expression
is dynamically typed (although VB represent dynamic types by removing
type annotations —as shown in Figure |1)).

Figure[dshows the proposed optimizations for arithmetic expressions. BI-
NARYOP optimizes binary expressions when at least one of the operands is
dynamically typed; similarly, UNARYOP optimizes unary dynamically typed
expressions. In both cases, a fresh CallSite object is created for each ex-
pression, passing the operator as an argument (& and © represent the VB
binary and unary operators, respectively). Then, original dynamically typed
expressions are replaced with an invocation to the Target method of the new

2For VB, the types in T\B_puiit_in are Boolean, Byte, Char, Date, Decimal, Double,
Integer, Long, SByte, Short, Single, String, UInteger, ULong and UShort.

(BINARYOP)
e1 : dynamicV es : dynamic
@ € {+,-,%*,/,Mod, ==,<> > >= < <= And, Or, Xor}
callsite = New CallSite(Binder.BinaryOperation(ExpressionType.®)

e1 @ ey ~ callsite.Target (callsite, eq, e3)

(UNARYOP)
e : dynamic © € {Not, -}
callsite = New CallSite(Binder.UnaryOperation(ExpressionType.S)

© e ~» callsite. Target (callsite, e)
Figure 4: Transformation of common expressions.

CallSite object, passing the two operands as arguments.

Figure [5| shows different optimizations when a type conversion is required,
using the Convert binder provided by the DLR [18]. CCAST describes ex-
plicit type conversion (casting) for built-in types. In VB, the CType function
explicitly converts the type of an expressio. When the expression is dynam-
ically typed, we replace the operation with the appropriate Convert binder
provided by the DLR.

When a dynamically typed expression is assigned to a statically typed
one, CASSIGN replaces the dynamic type conversion with a DLR operation.
As with CCAST, this optimization is only performed when the type of the
left-hand side expression is built-in. CFUNCTION converts a dynamically
typed argument into the built-in type of the corresponding parameter. In
CFUNCTION, e represents any expression evaluated as a method, since VB
provides methods as first class entities (the so-called delegates) [23].

The conversion of a dynamically typed expression into a non-built-in type
is done by VB with just one castclass instruction of the IL assembly lan-
guage [24]. Since the implementation of that instruction is so efficient, the

DLR does not provide any optimization for non-built-in type conversions
(Table [A.1)). Therefore, the explicit conversions in CCAST, CASSIGN and

3Although VB provides additional conversion functions (CBool, CByte, CChar, CDate,
CDec, CDbl, CInt, CLng, CSByte, CShort, CSng, CStr, CUInt, CULng and CUShort), all of
them can be expressed with CType.

(CCasT)
e : dynamic
T € TVB_built—in callsite = New CallSite(Binder.Convert(T))

CType(e,T) ~~ callsite.Target (callsite, e)

(CASSIGN)
er: T T €TIvB_puitt—in
es : dynamic callsite = New CallSite(Binder.Convert (7))

e1=es ~~ e1=callsite.Target (callsite, ea)

(CFUNCTION)
e; : dynamic e:CxTx...xT;x...xT,—"1T,
T; € TNB—built—in callsite = New CallSite(Binder.Convert(T;))

e(er,...,€iy...,en) ~eley,...,callsite. Target (callsite,e;), ..., ey,)
(CIF)
e : dynamic callsite = New CallSite(Binder.Convert(Boolean))

If e Then stmt;} (Else stmt);)" End If ~»
If callsite.Target (callsite,e) Then stmt: (Else stmt:lse)? End If

Figure 5: Transformation of common type conversions.

CFUNCTION are only applied to built-in types.

VB requires the type of the expression in a conditional statement to be
Boolean. CIF performs this type conversion when the condition is dynam-
ically typed. Similar inference rules for typical do-while (CDWHILE and
CRWHILE) and repeat-until (CDUNTIL and CRUNTIL) loops are detailed
in Likewise, CINDEX in performs the same opti-
mization for array indexing expressions, converting the index to Integer.

Figure [6]shows the optimization of array indexing operations, when arrays
are dynamically typed. In VB, parentheses are used for both array index-
ing and method invocation. However, the CCI generates different ASTs for
each kind of operations, facilitating us the transformation of programs. VB
provides the indexing operation not only for arrays, but also for other types
such as dictionaries, lists and strings (i.e., any type that implements indezer
properties [23]). When the collection is dynamically typed, the GetIndex
binder is used for reading operations and SetIndex for writing.

10

(GETINDEX)
e1 : dynamic callsite = New CallSite(Binder.GetIndex))

ey (e2) ~» callsite.Target (callsite, ey, ea)

(SETINDEX)
e1 : dynamic callsite = New CallSite(Binder.SetIndex))

e1 (eg)=e3 ~~ callsite.Target (callsite, ey, ea, €3)
Figure 6: Transformation of indexing operations.

IOIMETHOD in Figure [7| shows the optimization of instance method in-
vocation, when the method may be overloaded and one of the arguments (e;)
is dynamically typed. Method overloading is represented with intersection
types: the type of an overloaded method is an intersection type holding all the
types of its different implementations [25]. The 3 Tij . Tij # dynamic? € 1-m
condition checks that at least one method implementation declares a stati-
cally typed ' parameter. Otherwise, the argument would not need to be
type checked (it is already dynamic). Unlike CFUNCTION in Figure |5 the
generated InvokeMember call-site receives the object and all the parameters
to resolve method overloading at runtime [26]. describes how
we optimize overloaded class methods.

IMETHOD optimizes an instance method invocation when the object that
receives the message is dynamically typed. The number of parameters must
be greater than zero, because field access and zero-argument method invoca-
tion is performed with the same low-level operation in VB (parenthesis are
not required to invoke a method with no arguments). LATEGET represents
this special case scenario. Since we do not have enough information to know
if the expression is either a zero-argument method invocation or a member
access, we perform additional runtime checks. We statically create two dif-
ferent call-sites for each alternative: GetMember and InvokeMember. Then,
the HandleCallSiteCall method of the LateGet Utils class calls the ap-
propriate call-site depending on the dynamic type of w (field or method).
Our implementation of HandleCallSiteCall includes a runtime cache stor-

ing the type of each member [27]. [Appendix B| describes how we optimize
the assignment of fields and properties.

11

(IOIMETHOD)

m:CxXTEx. . XTrx . xT TN ANCKT x o x T x .. x T — T
e:C e; : dynamic 3 Tij . Tij # dynamic? € ™
callsite = New CallSite(Binder.InvokeMember (m))

e.m(ey,...,€,...,en) ~ callsite. Target (callsite,e,e1,... e ..., epn)

(IMETHOD)
e : dynamic
n>0 callsite = New CallSite(Binder.InvokeMember (m))

e.m(eq,...,e,) ~ callsite. Target (callsite, e, eq,. .., e,)
(LATEGET)
e : dynamic callsite; = New CallSite(Binder.GetMember (w))

callsiteo = New CallSite(Binder.InvokeMember (w))

e.w ~» LateGet_Utils.HandleCallSiteCall (e, w, callsitey, callsites)
Figure 7: Transformation of method invocation and field access.

4. Implementation

4.1. Binary Program Transformation

As mentioned, our .NET binary transformation tool has been developed
using the Microsoft Common Compiler Infrastructure (CCI). The CCI li-
braries offer services for building, analyzing and modifying .NET assem-
blies [19]. Figure [8|shows the design class diagram of the binary optimization
tool (classes provided by the CCI are represented with the CCI stereotype).
First, our DLROptimizer class uses a CCI PEReader to read each program
assembly, returning an IAssembly instance. Each IAssembly object rep-
resents an AST. The second step is transforming the ASTs into optimized
ones, following the Visitor design pattern [28]. Finally, the modified ASTs
are saved as new assemblies with PEWriter.

In the general process described above, the most complex task is the AST
transformation algorithm, which is divided in three different phases. First,
the dynamically typed expressions to be optimized are identified, traversing
the AST. For each language, we implement a Visitor class (e.g., VBCode-
Visitor and BooCodeVisitor) that identifies the expressions to be opti-
mized, following the specific language optimization rules described in this

12

paper. For each expression, the corresponding call-site pattern is stored
in a CallSiteContainer object. Second, the code that instantiates the
CallSites is generated. As shown in Figure [2| and Table an instance
of the DLR CallSite class must be created for each optimized expression
collected in CallSiteContainer. The code that creates these call-site in-
stances is generated by the DLROptimizer, using the CodeDOM API [29].
Finally, the OptimizerCodeRewriter class traverses the original IAssembly
AST, returning the optimized one, where the dynamically typed expressions
are replaced with appropriate invocations to the call-sites created.

«CCl» «CCl» «CCl»
PEReader PEWriter |Assembly

e 1 S
L N F
CodeDOMCompiler DLROptimizer «CCl»
CodeVisitor
]
1 1 1
CallSiteContainer OptimizerCodeVisitor OptimizerCodeRewriter
1
A :
1 1
]]
L A S |
CallSite VBCodeVisitor BooCodeVisitor | |CobraCodeVisitor| |FantomCodeVisitor

Figure 8: Class diagram of the binary program transformation tool.

4.2. Compiler Optimization Phase

The optimization of StaDyn programs have been implemented as part of
the compiler internals. After lexical and syntax analysis, the StaDyn com-
piler performs type inference in 5 phases [21]. Code generation is performed

13

afterwards, traversing the type-annotated AST and following the Visitor de-
sign pattern [28]. Originally, the existing code generator produced .NET
assemblies for the CLR (Figure[3|b). We have added code generation for the
DLR using the Parallel Hierarchies design pattern [30]. The optimizations
proposed are applied when the server command-line option is passed to the
compiler. The code generation templates of dynamically typed expressions

are detailed in

5. Evaluation

In this section, we evaluate the runtime performance gains of the proposed
optimizations. We measure the execution time and memory consumption of
the original programs, and compare them with the optimized versions. We
measure different benchmarks executed in all the existing hybrid static and
dynamic programming languages for the .NET platform.

5.1. Methodology

This section comprises a description of the languages and the benchmark
suites used in the evaluation, together with a description of how data is
measured and analyzed.

5.1.1. Selected Languages
We have considered the existing hybrid typing languages for the .NET
platform, excluding C# that already uses the DLR:

— Visual Basic 11. The VB programming language supports hybrid typ-
ing [23]. A dynamic reference is declared with the Dim reserved word,
without setting a type. With this syntax, the compiler does not gather
any type information statically, and type checking is performed at run-
time.

— Boo 0.9.4.9. An object-oriented programming language for the CLI
with Python inspired syntax. It is statically typed, but also provides
dynamic typing by using its special duck type [31]. Boo has been
used to create views in the Brail view engine of the MonoRail Web
framework [32], to program the Specter object-behavior specification
framework [33], in the implementation of the Binsor domain-specific
language for the Windsor Inversion of Control container for .NET [34],
and in the development of games and mobile apps with Unity [35].

14

— Cobra 0.9.6. A hybrid statically and dynamically typed programming
language. It is object-oriented and provides compile-time type in-
ference [36]. As C#, dynamic typing is provided with a distinctive
dynamic type. Cobra has been used to develop small projects and
to teach programming following the test-driven development and the
design by contract approaches [36].

— Fantom 1.0.64. Fantom is an object-oriented programming language
than generates code to the Java VM, the .NET platform, and JavaScript.
It is statically typed, but provides the dynamic invocation of methods
with the specific -> message-passing operator [37]. The Fantom lan-
guage provides an API that abstracts away the differences between the
Java and .NET platforms. Fantom has been used to develop some
projects such as the Kloudo integrated business organizer [3§], the
SkySpark analytics software [39], and the netColarDB object-relational
mapping database [40].

— StaDyn. StaDyn is a hybrid static and dynamic typing object-oriented
language for the .NET Framework, created as an extension of C# [20].
It supports implicitly (and explicitly) typed references. Unlike C#,
the StaDyn compiler gathers type information for dynamic references,
improving compile-time error detection and runtime performance [21].

5.1.2. Selected Benchmarks
We have used different benchmark suites to evaluate the performance gain
of our implementations:

— Pybench. A Python benchmark designed to measure the performance
of standard Python implementations [41]. Pybench is composed of
a collection of 52 tests that measure different aspects of the Python
dynamic language.

— Pystone. This benchmark is the Python version of the Dhrystone
benchmark [42], which is commonly used to compare different imple-
mentations of the Python programming language. Pystone is included
in the standard Python distribution.

— A subset of the statically typed Java Grande benchmark implemented
in C# [43], including large scale applications:

15

o Section 2 (Kernels). FFT, one-dimensional forward transforma-
tion of n complex numbers; Heapsort, the heap sort algorithm over
arrays of integers; and Sparse, management of an unstructured
sparse matrix stored in compressed-row format with a prescribed
sparsity structure.

o Section 3 (Large Scale Applications). RayTracer, a 3D ray tracer
of scenes that contain 64 spheres, and are rendered at a resolution
of 25 x 25 pixels.

— Points. A hybrid static and dynamic typing program designed to mea-
sure the performance of hybrid typing languages [22]. It computes
different properties of two- and three-dimensional points.

We have taken Python (Pybench and Pystone) and C# (Java Grande and
Points) programs, and manually translated them into the rest of languages.
Although this translation might introduce a bias in the runtime performance
of the translated programs, we have thoroughly checked that the same oper-
ations were executed in all the implementations. We have verified that the
benchmarks compute the same results in all the programs.

Those tests that use a specific language feature not provided by the other
languages (i.e., tuples, dynamic code evaluation, and Python-specific built-in
functions) have not been considered. We have not included those that use
any input/output interaction either. Therefore, 31 tests of the 52 programs
of the Pybench benchmark have been measured [27]. All the references in
the programs have been declared as dynamically typed.

5.1.3. Data Analysis

We have followed the methodology proposed in [44] to evaluate the run-
time performance of applications, including those executed on virtual ma-
chines that provide JIT-compilation. In this methodology, two approaches
are considered: 1) start-up performance is how quickly a system can run
a relatively short-running application; 2) steady-state performance concerns
long-running applications, where start-up JIT compilation does not involve
a significant variability in the total running time.

For start-up, we followed the two-step methodology defined to evaluate
short-running applications:

16

1. We measure the elapsed execution time of running multiple times the
same program. This results in p (we have taken p = 30) measurements
x; with 1 <7 <p.

2. The confidence interval for a given confidence level (95%) is computed
to eliminate measurement errors that may introduce a bias in the eval-
uation. The confidence interval is calculated using the Student’s t-
distribution because we took p = 30 [45]. Therefore, we compute the
confidence interval [c1, ¢5] as:

- S - S
€1 =2 — tl—a/Q;p—ljp Co =10+ tl—a/Q;p—ljﬁ

Where 7 is the arithmetic mean of the z; measurements; o = 0.05(95%);
s is the standard deviation of the x; measurements; and ¢_,/2,—1 is
defined such that a random variable T', which follows the Student’s t-
distribution with p — 1 degrees of freedom, obeys Pr[T" < t1_q/2p-1] =
1 —a/2. In the subsequent figures, we show the mean of the confidence
interval plus the width of the confidence interval relative to the mean
(bar whiskers). If two confidence intervals do not overlap, we can con-
clude that there is a statistically significant difference with a 95% (1 -
«) probability [44].

The steady-state methodology comprises the following four steps:

1. Each application (program) is executed p times (p = 30), and each
execution performs at least k (k = 10) different iterations of bench-
mark invocations, measuring each invocation separately. We refer x;;
as the measurement of the j** benchmark iteration of the i** application
execution.

2. For each 7 invocation of the benchmark, we determine the s; iteration

where steady-state performance is reached. The execution reaches this
state when the coefficient of variation (CoV, defined as the standard
deviation divided by the mean) of the last k iterations (from s;_j41 to
s;) falls below a threshold (2%).
To avoid an influence of the previous benchmark execution, a full heap
garbage collection is done before performing every benchmark invoca-
tion. Garbage collection may still occur at benchmark execution, and
it is included in the measurement. However, this method reduces the
non-determinism across multiple invocations due to garbage collection
kicking in at different times across different executions.

17

3. For each application execution, we compute the 7; mean of the k bench-
mark iterations under steady state:

>
— J=Si—k+41
4. Finally, we compute the confidence interval for a given confidence level
(95%) across the computed means from the different application invoca-
tions using the Student’s t-statistic described above. The overall mean
is computed as T = Y »_, T;/p. The confidence interval is computed

over the T; measurements.

5.1.4. Data Measurement

To measure the execution time of each benchmark invocation, we have
instrumented the applications with code that registers the value of high-
precision time counters provided by the Windows operating system. This
instrumentation calls the native function QueryPerformanceCounter of the
kernel32.d11 library. This function returns the execution time measured
by the Performance and Reliability Monitor of the operating system [46]. We
measure the difference between the beginning and the end of each benchmark
invocation to obtain the execution time of each benchmark run.

The memory consumption has been also measured following the same
methodology to determine the memory used by the whole process. For that
purpose, we have used the maximum size of working set memory employed
by the process since it was started (the PeakWorkingSet property). The
working set of a process is the set of memory pages currently visible to the
process in physical RAM memory. These pages are resident and available for
an application to be used without triggering a page fault. The working set
includes both shared and private data. The shared data comprises the pages
that contain all the instructions that the process executes, including those
from the process modules and the system libraries. The PeakWorkingSet has
been measured with explicit calls to the services of the Windows Management
Instrumentation infrastructure [47].

All the tests were carried out on a 3.30 GHz Intel Core i7-4500U system
with 8 GB of RAM, running an updated 64-bit version of Windows 8.1 and
the .NET Framework 4.5.1 for 32 bits. The benchmarks were executed after
system reboot, removing the extraneous load, and waiting for the operating

18

9,574%

3,62% 2,730%
2290%um

1.500% -

1.000% -

Performance Gain

500% -

0% -

l ®mVB mBoo mFantom M Cobra lStaDyn|

Figure 9: Start-up performance improvement for Pybench.

system to be loaded.

If the P, and P, programs run the same benchmark in 7" and 2.5 x T
milliseconds, respectively, we say that runtime performance of P; is 150% (or
2.5 times) higher than P, P; is 150% (or 2.5 times) faster, P, requires 150%
(or 2.5 times) more execution time than P, or the performance benefit of P,
compared to P, is 150% —the same for memory consumption. To compute
average percentages, factors and orders of magnitude, we use the geometric
mean.

5.2. Start-up Performance

Figures [9] and [10] show the start-up performance gains obtained with our
optimizations, relative to the original program. First, we analyze the results
of the Pybench micro-benchmark (Figure [J) to examine how the optimiza-
tions introduced may improve the runtime performance of each language
feature. Afterwards, we analyze more realistic applications in Figure [10]

The average runtime performance gains in Pybench range from the 141%
improvement for VB up to the 891% benefit obtained for the Fantom lan-
guage. The proposed optimizations speed up the average execution of Boo,
StaDyn and Cobra programming languages in 190%, 252% and 772%, re-
spectively.

Figure |10/ shows the start-up performance improvements for all the pro-
grams —average results for Pybench are included. Our optimizations show
the best performance gains for Fantom, presenting a 915% average speedup.

19

2,000%
885% 1,380%
884% 873%
703% 780%

600% -

400% -

Performance Gain

200% -

0% -
Pybench FFT HeapSort SparseMatmult RayTracer Points Pystone

‘ HVB MBoo MFantom MCobra M StaDyn |

Figure 10: Start-up performance improvement.

For Cobra, StaDyn, VB and Boo, the average performance improvements are
406%, 120.5%, 87.4% and 44.6%, respectively.

5.2.1. Discussion

Analyzing the previous start-up performances, we can identify different
discussions. Considering the different kind of operations in Figure [9] Boo,
Fantom and Cobra obtain the highest performance improvements when run-
ning the programs that perform arithmetic and comparison computation,
and string manipulations (arithmetic, numbers and strings). For these oper-
ations, the three languages use reflection, which is highly optimized by the
DLR cache [16]. Thus, the DLR provides important performance benefits for
introspective operations.

For arithmetic operations, VB and StaDyn show little improvement com-
pared to the rest of languages (Figure@[). Both languages already support an
optimization based on nested dynamic type inspections, avoiding the use of
reflection [21] —unlike StaDyn, VB also provides this optimization for num-
ber comparisons (the numbers test). Fantom, Cobra and StaDyn do not
provide any runtime cache for dynamically typed method invocation (calls),
and vector (lists) and map (dicts) indexing, causing high performance gains
—VB and Boo show lower improvements because they implement their own
caches. So, when the language implementation provides other runtime opti-
mizations to avoid the use of reflection, the performance gains of using the
DLR are decreased.

20

Exceptions, instances and new instances are the programs for which our
optimizations show the lowest performance gains. This inferior performance
edge is because almost no dynamically typed reference is used in these tests.
For example, the exceptions test has the loop counter as the only dynamically
typed variable (for Fantom and Cobra, the benefit is higher than for the rest
of languages because their runtimes do not implement a cache for dynamic
types). Therefore, the DLR provides little performance improvement when
just a few dynamically typed references are used.

In the execution of the RayTracer and Points programs (Figure , the
performance gains for Boo are just 6.84% and 5.12%, respectively. These two
programs execute a low number of DLR call-sites, and hence the DLR cache
does not provide significant performance improvements. The initialization
of the cache, together with the dynamic code generation technique used to
generate the cache entries [1§], incur a performance penalty that reduces
the global performance gain. As we analyze in the following subsection, for
long-running applications (steady-state methodology) this performance cost
is almost negligible.

5.3. Steady-State Performance

We have executed the same programs following the steady-state method-
ology described in Section [5.1.3. Figure [11] shows the runtime performance
improvements for all the programs. In this scenario, the performance gains
for every language are higher than those measured with the start-up method-
ology. The lowest average improvement is 244% for VB; the greatest one is
1113%, for Cobra. We speed up Boo, StaDyn and Fantom in 322%, 368%
and 1083%, respectively.

5.3.1. Discussion

Table [1| compares the performance improvements of short- and long-
running applications (start-up and steady-state). It shows how the proposed
optimizations provide higher performance gains for long-running applications
than for sort-running ones, in all the benchmarks.

Boo and VB are the two languages that show the highest performance
difference depending on the methodology used. Average steady-state per-
formance improvements are 758% (Boo) and 442% (VB) higher than the
start-up ones. This dependency is because both languages implement their
own dynamic type cache, reducing the benefits of the DLR optimizations
in start-up. As the number of DLR cache hits increases in steady-state, the

21

2,503% 2100% 2,003% 2,752% 2,145%

1,801%

1.000% -

Performance Gain

Pybench FFT HeapSort SparseMatmult RayTracer Points Pystone

| mVB mBoo mFantom mCobra mStaDyn |

Figure 11: Steady-state performance improvement.

performance edge is also improved. Therefore, the DLR increases the steady-
state performance gains of languages that provide their own type cache, com-
pared to start-up.

Table |1| shows how Fantom is the language with the smallest steady-
state performance gain compared to the start-up one. The average steady-
state benefit (1897%) is 107% higher than the start-up one (915%). In the
Fantom language, every dynamically typed operation generates the same
type of call-site: InvokeMember (detailed in . Since the DLR
creates a different cache for each type of call-site [18], the optimized code
for Fantom incurs lower performance penalties caused by cache initialization
in start-up. Therefore, in languages that use the same type of call-site for
many different operations, the start-up performances may be closer to the
steady-state ones.

When analyzing the performance gains per application, Pybench shows
the lowest performance improvements across methodologies (Table [1). The
synthetic programs of the Pybench benchmark perform many iterations over
the same code (i.e., call-sites). This causes many cache hits, bringing the
steady-state performance gains closer to the start-up ones. So, the impor-
tant steady-state performance improvements are applicable not only to long-
running applications, but also to short-running ones that perform many it-
erations over the same code.

22

Benchmark VB Boo Fantom Cobra StaDyn

Pvbench (startup) 149% 228% 884% 885% 288%
y (steady) 203% 307% 047% 1,141% 377%
FFT (startup) 24% 70% 2,000% 540% 179%
(steady) 370% 415% 2,503% 916% 423%

HeapSort (startup) 56% 37% 1,380% 703% 187%
p (steady) 325% 202% 2,104% 1,281% 426%
Sparse (startup) 27% 106% 781% 188% 61%
Matmult (steady) 583% 817% 2,003% 542% 237%
RavTracer (startup) 378% 7% 873% 307% 44%
y (steady) 1,312% 731% 2,752% 877% 518%
Points (startup) 246% 5% 531% 262% 104%
(steady) 964% 250% 1,500% 847% 215%

Pvstone (startup) 5% 161% 608% 358% 136%
y (steady) 207% 312% 2,155% 1,801% 227%

Table 1: Performance benefits for both start-up and steady-state methodologies.

5.4. Memory Consumption

Figure [12] (and Table [2)) shows the memory consumption increase intro-
duced by our performance optimizations. For each language and application,
we present the memory resources used by the optimized programs (DLR),
relative to the original ones (CLR). Optimized Fantom, Boo, StaDyn, Cobra
and VB programs consume 6.42%, 45.32%, 53.75%, 57.67% and 64.48% more
memory resources than the original applications.

5.4.1. Discussion

We compare the memory consumption increase caused by the DLR (Fig-
ure with the corresponding performance gains (Figures and . In
both start-up and steady-state scenarios, performance benefits are signifi-
cantly higher than the corresponding memory increase, for all the languages
measured.

Fantom is the language with the smallest memory increase. Table[2[shows
how Fantom is the language that originally requires more memory resources,
hence reducing the relative memory increase value. Additionally, in the pre-
vious section we mentioned that Fantom uses the same type of DLR call-site
for every dynamic operation. Since the DLR has a shared cache for each
type of call-site [18], Fantom does not consume the additional resources of
the rest of call-sites. Therefore, the memory increase introduced by the DLR
may depend on the number of services used.

23

Memory Consumption Increase

Pybench FFT HeapSort RayTracer SparseMatmult Points Pystone

| EVB mBoo mFantom M Cobra mStaDyn ‘

Figure 12: Memory consumption increase.

VB Boo Fantom Cobra StaDyn

CLR DLR CLR DLR CLR DLR CLR DLR CLR DLR
Pybench 13.93 22.58 14.03 20.99 22.29 23.30 13.67 21.65 19.06 23.43
FFT 15.00 26.18 15.02 23.12 22.94 24.89 15.54 24.79 17.66 22.67
HeapSort 14.31 24.61 14.67 23.01 22.23 24.29 14.10 24.30 11.94 21.97
RayTracer 14.87 27.40 16.96 24.88 23.73 26.50 15.68 26.35 13.78 22.54
SparseMatmult 14.47 25.21 14.79 23.09 23.34 24.31 15.43 24.58 14.07 22.29
Points 19.72 22.97 20.59 22.79 23.42 24.13 17.26 23.09 14.35 21.58
Pystone 14.65 26.21 15.55 23.24 23.36 24.31 16.05 24.95 12.27 22.01

Table 2: Memory consumption expressed in MBs.

Analyzing the applications in Figure the Points program shows the
lowest average memory increase. This application also presents the smallest
average start-up and steady-state performance gains (Sections and .
As discussed in the previous paragraph, Points is the application that exe-
cutes the smallest number of DLR call-sites, causing the lowest performance
and memory increases.

6. Related Work

The optimization of hybrid static and dynamic typing code has been faced
in different ways. We first describe the works related to the optimization of
hybrid typing languages. Afterwards, we identify research aimed at opti-
mizing dynamically typed code at the virtual machine level. Finally, some

24

particular optimizations of dynamically typed languages are discussed.

6.1. Hybrid Static and Dynamic Typing Languages

There are different works aimed at optimizing hybrid static and dynamic
typing languages. The theoretical works of quasi-static typing [48], hybrid
typing [49] and gradual typing [50] perform implicit conversions between dy-
namically and statically typed code, employing the subtyping relation in the
case of quasi-static and hybrid typing, and a consistency relation in gradual
typing. The gradual type system for the \’, functional calculus provides the
flexibility of dynamic typing when type annotations are omitted by the pro-
grammer, and the benefits of static typing when all the function parameters
are annotated [50]. Gradual typing has also been defined for object-based
languages, showing that gradual typing and subtyping are orthogonal and
can be combined [51]. The gradually typed lambda calculus \?, was also ex-
tended with type variables, integrating unification-based type inference and
gradual typing to aid programmers in adding types to their programs [52].

Thorn is a programming language that allows the combination of dynami-
cally and statically typed code [53]. Thorn offers 1ike types, an intermediate
point between static and dynamic types [54]. Occurrences of 1ike types vari-
ables are checked statically within their scope but, as they may be bound
to dynamic values, their usage must be still checked at runtime. like types
increase the robustness of the Thorn programming language, and programs
developed using like types have been assessed to be about 3x and 6x faster
than using dynamic [54].

C# 4.0 added the dynamic type to its static type system, supporting
the safe combination of dynamically and statically typed code. In C#, type
checking of the references defined as dynamic is deferred until runtime [15].
This hybrid type system was formalized by Bierman et al., defining a core
fragment of C# that is translated to a simplification of the DLR [15]. The
operational semantics of the target language reuse the compile-time typing
and resolution rules, implying that the dynamic code fragments are type-
checked and resolved using the same rules as the statically typed code [15].
The cache implemented by the DLR provides significant runtime performance
benefits compared to the use of reflection [26].

There exist some other hybrid static and dynamic typing languages such
as Boo, Visual Basic, Cobra, Dylan, Strongtalk, Groovy 2, Fantom, StaDyn
and Objective-C. Some programming languages have taken the approach of

25

adding a new dynamic type as proposed in [55] (dynamic in StaDyn and Co-
bra, duck in Boo, and id in Objective-C), whereas others represent dynamic
types by removing type annotations in variable declarations (VB, Dylan and
Groovy 2) [23]. Fantom and Objective-C provide the => and [] operators,
respectively, to allow passing any message to an object, postponing type
checking until runtime. Strongtalk follows a completely different approach
based on the concept of pluggable type systems [56]. In these languages,
dynamic types are implicitly coerced to static ones following the approach
defined in [48] and [51], opposite to the explicit use of a conversion instruction
like the typecase operator proposed by [55]. Since these implicit coercions
may fail at runtime, a dynamic type-check is inserted in the generated code
as described in [49]. The StaDyn compiler gathers type information of dy-
namically typed references to optimize the generated code [57].

6.2. Dynamucally Typed Virtual Machines

Other research works are aimed at optimizing some specific features of
dynamic languages at the virtual machine level. Smalltalk is a class-based dy-
namically typed programming language [58]. Although the initial implemen-
tations were based on byte-code interpreters, some later versions included JIT
compilation to native code (e.g., VisualWorks, VisualAge and Digital) [59].
JIT compilation provided important performance benefits, making Visual-
Works to be, on average, 3 times faster than GNU Smalltalk [60].

Self is a dynamic prototype-based object-oriented language supported
by a JIT-compiler virtual machine [61]. When a dynamic method is exe-
cuted, runtime type information is gathered to perform type specialization of
method invocations, using the specific types inferred for each argument [62].
The overhead of dynamically bound message passing is reduced by means
of inline caches [59], introducing polymorphic inline caches (PIC) for poly-
morphic invocations [63]. Some other adaptive optimization strategies where
implemented to improve the performance of hotspot functions while the pro-
gram is running [64].

These JIT-compiler adaptive optimizations have been recently added
to JavaScript virtual machines. V8 is the Google JavaScript engine used
in Chrome, which can run standalone and embedded into C++ applica-
tions [65]. V8 uses a quick response JIT compiler to generate native code.
For hotspot functions detected at runtime, a high performance JIT compiler
applies aggressive optimizations. These optimizations include inline caches,

26

type feedback, customization, control low graph optimizations and dead code
elimination [65].

SpiderMonkey is the new JavaScript engine of Mozilla, currently included
in the Firefox Web browser and the GNOME 3 desktop [66]. It uses three
optimization levels: an interpreter, the baseline JIT-compiler, and the Ton-
Monkey compiler for more powerful optimizations. The slow interpretation
collects profiling and runtime type information. The baseline compiler gen-
erates binary code dynamically, collecting more accurate type information
and applying basic optimizations. Finally, lonMonkey is only triggered for
hotspot functions, providing optimizations such as type specialization, func-
tion inlining, linear-scan register allocation, dead code elimination, and loop-
invariant code motion [66].

ARotor is an extension of the .NET SSCLI virtual machine implemen-
tation that provides JIT-compilation of the structural reflective primitives
provided by dynamic languages [60]. A hybrid class- and prototype-based
object-oriented model is formally described, and then implemented as part
of a shared source release of the .NET CLI [16]. On average, fIRotor performs
4 times better than the DLR, consuming 65% less memory resources [67].

The work of Wiirthinger et al. modifies an implementation of the Java
Virtual Machine to allow arbitrary changes to the definition of loaded classes,
providing dynamic inheritance [68]. The static type checking of Java is main-
tained; and the dynamic verification of the current state of the program
ensures the type safety of the changes in the class hierarchy. Runtime per-
formance after code evolution implies an approximate performance penalty of
15%, but the slowdown of the next run after code evolution was measured to
be only about 3% [69]. This system is currently the reference implementation
of the hot-swapping feature (JSR 292) of the Da Vinci Machine project [70].

6.3. Dynamic Typing Programming Languages

There are also some other works based on gathering static type informa-
tion of dynamically typed code to optimize its execution. Brian Hackett and
Shu-yu Guo defined a hybrid static and dynamic type inference algorithm
for JavaScript based on points-to analysis [71]. They propose a constraint-
based type system to unsoundly infer type information statically. Type in-
formation is extended with runtime semantic triggers to generate sound type
information at runtime, as well as type barriers to efficiently handle poly-
morphic code. The proposed system was implemented and integrated in the

27

JavaScript JIT compiler inside Firefox. The performance improvement on
major benchmarks and JavaScript-heavy websites was up to 50% [71].
PyPy is an alternative implementation of Python that provides JIT com-
pilation, memory usage optimizations, and full compatibility with CPython
[72]. PyPy implements a tracing JIT compiler to optimize program execution
at runtime, generating dynamically optimized machine code for the hot code
paths of commonly executed loops [72]. The optimization techniques imple-
mented have made PyPy outperform the rest of Python implementation in
many different benchmarks [17]. PyPy is designed to be language agnostic,
allowing the Just-in-Time (JIT) compilation of any dynamic language.

7. Conclusions

These are the key findings of this work:

— The dynamically typed operations of hybrid typing languages for the
.NET platform can be significantly optimized by using the runtime
cache implemented by the DLR.

— Performance gains for long-running applications (from 224% to 1113%)
are higher than those for short-running ones (from 44.6% to 406%).
Higher performance gains are also present in short-running applications
that perform many iterations over the same code.

— For those languages that use reflection, the performance gains are sig-
nificantly higher than for those that avoid reflection by providing their
own runtime cache.

— The runtime performance gains depend on the number of dynamically
typed references in the program.

— The initialization of the DLR cache may incur a performance penalty,
reducing the global performance gain (especially in start-up scenarios).

— The memory consumption increase (from 6.2% to 64.5%) is consider-
ably lower than the runtime performance gains (from 44.6% to 1113%).

— Both memory and performance increases depend on the types of the
DLR call-sites used in the optimizations.

28

— The proposed optimizations are effective when implemented as binary
transformations and as a compiler optimization phase.

Future work will be focused on including DLR optimizations in dynamic
languages for the .NET platform where the DLR is not used yet. Adding
these optimizations as a new compilation option would be convenient for
long-running application where the DLR cache benefits are more effective.

The binaries and source code of the optimization tool, the optimizing
StaDyn compiler, the benchmarks used in this paper, and all the execution
time and memory consumption tables can be downloaded from:
http://www.reflection.uniovi.es/stadyn/download/2015/jss

Acknowledgments

This work was partially funded by Microsoft Research to develop the
project entitled Fxtending Dynamic Features of the SSCLI, awarded in the
Phoenix and SSCLI, Compilation and Managed Execution Request for Pro-
posals. This work was also funded by the Department of Science and Inno-
vation (Spain) under the National Program for Research, Development and
Innovation: project TIN2011-25978, entitled Obtaining Adaptable, Robust
and Efficient Software by Including Structural Reflection in Statically Typed
Programming Languages. We have also received funds from the European
Union, through the European Regional Development Funds (ERDF); and
the Principality of Asturias, through its Science, Technology and Innovation
Plan (grant GRUPIN14-100).

Appendix A. DLR Call-Sites

Table shows the list of dynamically typed expressions that can be
represented with DLR CallSites. In this case, we use C# instead of VB
because some of the DLR call-sites cannot be used from VB (e.g., the Invoke-
Constructor binder for overloaded constructors). There is one row for each
binder. The column in the middle shows C# fragments where dynamically
typed expressions are used. The corresponding C# code that uses the DLR
call-sites is detailed in the last column —in fact, that code was obtained by
decompiling the binary assemblies. For the sake of legibility, the code shown
is simplified the following way: 1) CallSite type definitions are shortened,
2) the lazy initialization for CallSites has been replaced by initializations in
the declaration; and 3) arguments of CallSiteBinders have been omitted.

29

http://www.reflection.uniovi.es/stadyn/download/2015/jss

Binder name

Dynamically typed expressions

Explicit use of the DLR services

Binary
Operation

Unary

Operation

Convert

GetIndex

SetIndex

GetMember

SetMember

Invoke

Invoke
Constructor

Invoke
Member

dynamic Add(dynamic a,
dynamic b) {
return a + b;

}

dynamic Negation(dynamic a) {
return -a;

}

T CastToType<T>(dynamic obj) {
return (T)obj;
}

dynamic GetPosition(dynamic v,
dynamic i) {
return v[i];

}

void SetPosition(dynamic v,
dynamic i,
dynamic val) {

v[i] = val;

}

dynamic GetName(dynamic obj) {
return obj.Name;

}

void SetName(dynamic obj,
dynamic val) {
obj.Name = val;

}

dynamic Invoke(dynamic fun,
dynamic a,
dynamic b) {
return fun(a, b);

}

Decimal DecimalFactory(
dynamic argument) {
return new Decimal (argument) ;

}

dynamic InvokePrint(dynamic o,
dynamic arg) {
return o.Print(arg);

}

static CallSite<...> p_Sitel = CallSite<...>.Create(
Binder.BinaryOperation(ExpressionType.Add));
dynamic Add(dynamic a, dynamic b) {
return p_Sitel.Target(p_Sitel, a, b);
}

static CallSite<...> p_Site2 = CallSite<...>.Create(
Binder.UnaryOperation(ExpressionType.Negate)) ;
dynamic Negation(dynamic a){
return p_Site2.Target(p_Site2, a);
}

static CallSite<...> p_Site3=CallSite<...>.Create(
Binder.Convert (typeof (T)) ;
T CastToType<T>(dynamic obj) {
return p_Site3.Target(p_Site3, obj);
}

static CallSite<..> p_Site4=CallSite<...>.Create(
Binder.GetIndex());
dynamic GetPosition(dynamic v, dynamic i) {
return p_Site4.Target(p_Site4, v, i);
}

static CallSite<...> p_Siteb = CallSite<...>.Create(
Binder.SetIndex());
void SetPosition(dynamic v, dynamic i, dynamic val) {
p_Siteb.Target(p_Site5, v, i, val);
}

static CallSite<...> p_Site6=CallSite<...>.Create(
Binder.GetMember ("Name")) ;
dynamic GetName(dynamic obj) {
return p_Site6.Target(p_Site6, obj);
}

static CallSite<...> p_Site7 = CallSite<...>.Create(
Binder.SetMember ("Name")) ;
static void SetName(dynamic obj, dynamic val) {
p_Site7.Target(p_Site7, obj, val);
}

static CallSite<...> p_Site8=CallSite<...>.Create(
Binder.Invoke());
dynamic Invoke(dynamic fun, dynamic a, dynamic b) {
return p_Site8.Target(p_Site8, fun, a, b);
}

static CallSite<...> p_SiteQ=CallSite<...>.Create(
Binder.InvokeConstructor());
decimal DecimalFactory(dynamic argument) {
return p_Site9.Target(p_Site9, typeof(decimal),
argument) ;

}

static CallSite<...> p_Sitel0=CallSite<...>.Create(
Binder.InvokeMember ("Print"));
dynamic InvokePrint(dynamic o, dynamic arg) {
return p_Sitel0.Target(p_Sitel0, o, arg);
}

Table A.1: Call-sites provided by the DLR (coded in C#).

30

Appendix B. Additional VB Rules

This section completes the VB conversion rules shown in Section [3.1] In
Figure[B.1, the CDWHILE, CRWHILE, CDUNTIL and CRUNTIL rules show
the implicit conversions to Boolean, in the different loop statements provided
by VB.

CINDEX performs the optimization of array indexing expressions, when
the index is dynamically typed. The type of the index expression is converted
to Integer at runtime by the DLR. A premise in the inference rule requires
the array not to be dynamically typed, since otherwise the expression would
be optimized by the GETINDEX rule in Figure [6]

IOCMETHOD provides the optimization of class methods (i.e., shared in
VB, or static in C# and Java), when the method may be overloaded and
one of the arguments (e;) is dynamically typed. This rule is quite similar to
IOIMETHOD in Figure[7] In this case, the second parameter of the Target
method is Nothing, indicating that there is no implicit object, since the
method is shared.

SETMEMBER in Figure optimizes the assignment of fields and prop-
erties, when the object is dynamically typed. A SetMember call-site binder
is created for this purpose.

Appendix C. Optimization Rules for Boo

Figures and show the transformation rules implemented to op-
timize Boo programs. Although the Boo language provides the duck key-
word for dynamically typed variables, we keep using the dynamic type for
consistency. @py, and Op, represent, respectively, the optimized binary
and unary Boo operators. We also transform explicit (CCASTg,,) and im-
plicit (CASSIGNBo,, CFUNCTIONR,, and CMETHODg,,) type conversions.
CMETHODg,, optimizes the type conversion of methods. When the method
is overloaded, the types of the i’* parameter must be equal to be able to per-
form the type conversion. In case it is dynamic, no conversion is required.

As for VB, we also optimize indexing operations (GETINDEXg,, and
SETINDEXR,, in Figure , method invocations (IMETHODg,,) and mem-
ber accesses (GETMEMBERg,, and SETMEMBERg,,). In Boo, we add two
optimizations not implemented in VB. The first one, IDELEGATER,,, is the
use of dynamically typed delegates; i.e., methods and functions variables. In
this language, function and methods are first-class entities, and they can also

31

(CDWHILE)
e : dynamic callsite = New CallSite(Binder.Convert(Boolean))

Do Whilee stmtjo Loop ~» Do While callsite.Target (callsite, e) stmtjo Loop

(CRWHILE)
e : dynamic callsite = New CallSite(Binder.Convert(Boolean))

Do Stmt;fo Loop While e ~~ Do stmt;ii'o Loop While callsite.Target (callsite,e)

(CDUNTIL)
e : dynamic callsite = New CallSite(Binder.Convert(Boolean))

Do Untile stmt;fo Loop ~» Do Until callsite.Target (callsite,e) stmt;fo Loop

(CRUNTIL)
e : dynamic callsite = New CallSite(Binder.Convert(Boolean))

Do stmtjo Loop Until e ~~ Do stmtj{o Loop Until callsite.Target (callsite,e)

(CINDEX)
e1: 1T T # dynamic
ez : dynamic callsite = New CallSite(Binder.Convert(Integer))
e1(ez) ~ ey (callsite.Target (callsite, es))
(IOCMETHOD)
m:CxXTEx. XTrx xT TN L ANCKT x o x T x .. x T — T
e; : dynamic = Tij . Tij # dynamic’ €™
callsite = New CallSite(Binder.InvokeMember (m))
C.m(e1,...,€,...,en) ~ callsite. Target (callsite, Nothing, e1,...,€;,...,ey,)
(SETMEMBER)

e1 : dynamic callsite = New CallSite(Binder.SetMember (f))

e1.f = ey ~ callsite.Target (callsite, eq, e3)

Figure B.1: Additional optimization rules for VB.

32

be dynamically typed —in VB, they must be called with the invoke method.
The second new optimization is the invocation of constructors with (at least)
one of its parameters dynamically typed (ICONSTRUCTORg,,). In that case,
the expression is replaced with an InvokeConstructor call-site.

Appendix D. Optimization Rules for Cobra

Figure [D.1 shows the optimization rules for Cobra. This programming
language does not support type conversion for dynamically typed expressions.
As for Boo, ICONSTRUCTOR ohra Optimizes constructor invocation when one
of the arguments is dynamically typed.

Appendix E. Optimization Rules for Fantom

In Fantom, all the optimizations are done when the -> operator is used.
This operator sends a message to an object, but no static type checking
is performed. Therefore, Fantom does not define a dynamic type. All the
dynamically typed expressions are expressed with the -> operator. Conse-
quently, the Fantom optimizations transform method invocation expressions
into InvokeMember call-sites (Figure [E.1).

Fantom represents language operators as methods, so that the 1->plus(2)
dynamically typed expression corresponds to the 1+2 statically typed one.
Consequently, IMETHODFantom Optimizes both methods and operators. How-

ever, when the method represents the operator of a built-in type (e.g., 1->plus(2)),

Fantom calls a class method that performs nested type inspections that can-
not be optimized by the DLR [26]. To detect this special case, the premise
m € Moperators = T & Trantom—buitt—in checks that, when m is an operator, T
must not be a built-in type.

33

(BINARYOPpBo0)
e1 : dynamicV es : dynamic
DBoo € {+, =, %, /, %, ==, 1=,>>= < <=,<<,>> & |, and,or}
callsite = CallSite(Binder.BinaryOperation(ExpressionType. ®Boo)

e1 PBoo €2 ~ callsite.Target (callsite, e, e3)

(UNARYOPggo)
e :dynamic ~ ©Opgo € {not,-}
callsite = CallSite (Binder.UnaryOperation (ExpressionType.Spoo)

OBoo € ~ callsite.Target (callsite, e)

(CCASTBoo)

e : dynamic T # dynamic callsite = CallSite(Binder.Convert (7))
e cast T ~ callsite.Target (callsite, e)

(CASSIGNBoo)

(AN T

T # dynamic es : dynamic callsite = CallSite (Binder.Convert (7))
e1=eg ~~ e1=callsite.Target (callsite, e3)

(CFUNCTIONBgo)

e:Tll><...><Til><...><T,1—>Tr1/\.../\Tf><...><TZ.J'><...><T7JL'—>TZ/\...
AT XX T x o T = T ei : dynamic
T! =...=T" =T # dynamic callsite = CallSite (Binder.Convert (7))

K2
€y s €n) ~>eleq, ..., callsite. Target (callsite, e;),. .., ep)

eCe,...

(CMETHODgB0)
e:C e; : dynamic

m:CxTEx...x T} x
L OX NI X o x T x o x T = T
T! =...=T" =T # dynamic callsite = CallSite(Binder.Convert (1))

(2

...XTT}—>TT1/\.../\C><T1j><...><T27'><...><TTJL'—>T1Z'/\...

em(er,..., e, ...,en) ~ emley,...,callsite. Target (callsite,e;), ... en)

Figure C.1: Optimization of Boo basic expressions and type conversions.

34

(GETINDEXpoo)
e1 : dynamic callsite = CallSite(Binder.GetIndex())

e1 Lea] ~ callsite.Target (callsite, ey, ea)

(SETINDEXB0)
e1 : dynamic callsite = CallSite(Binder.SetIndex())

e1 Leal=e3 ~~ callsite.Target (callsite, e, ez, e3)

(IMETHODR0)

e : dynamic callsite = CallSite(Binder.InvokeMember (m))
em(ey,...,e,) ~ callsite.Target (callsite,e,eq, ..., ep)
(IDELEGATERo0)

e : dynamic callsite = CallSite(Binder.Invoke())
e(ey,...,en) ~ callsite.Target (callsite, e, eq,. .., €,)
(ICONSTRUCTORBo0)

Je; . e : dynamic ‘€1

callsite = CallSite(Binder. InvokeConstructor())

C(ey,...,en) ~ callsite.Target (callsite, C,eq, ..., ey)

(GETMEMBERB0)
e : dynamic callsite = CallSite (Binder.GetMember (w))

e.w ~ callsite . Target (callsite, e)

(SETMEMBERBo0)
e1 : dynamic callsite = CallSite (Binder.SetMember (w))

e1.w = eg ~~ callsite.Target (callsite, ey, e2)

Figure C.2: Optimization of Boo invocations, indexing and member access.

35

(BINARYOP(opra)

e1 : dynamicV es : dynamic
@Cobra S {+7) *7 /7 %7 <<7 >>7 &7 | 9 A? ==, <>7 <7 <=7 >7 >=7 +=7 =, %) /=7 %=7 &=7 I

=, ~=}
callsite = CallSite(Binder.BinaryOperation(ExpressionType. Pcobra)

€1 Pcobra €2 ~ callsite.Target (callsite, eq, e2)

(UNARYOP(opra)

e : dynamic OCobra € {not, "}

callsite = CallSite(Binder.UnaryOperation(ExpressionType . Scobra)

OCobra € ~ callsite.Target (callsite, e)

(GETINDEXogra)

e1 : dynamic callsite = CallSite(Binder.GetIndex())

e1 Lea] ~ callsite.Target (callsite, ey, ea)

(SETINDEXCopra)

e1 : dynamic callsite = CallSite(Binder.SetIndex())

e1 [eal=e3 ~~ callsite.Target (callsite, ey, ea, €3)

(IMETHODCogRa)

e : dynamic callsite = CallSite (Binder.InvokeMember (m))
emf(ey,...,e,) ~ callsite.Target (callsite,e,eq, ..., epn)
(ICONSTRUCTORCopra)

Je; . e : dynamic ‘€1

callsite = CallSite(Binder. InvokeConstructor())
C(ey,..

.,en) ~ callsite.Target (callsite, C,eq, ..., ey)
(GETMEMBER(CogRA)
e : dynamic callsite = CallSite (Binder.GetMember (f))

e. f ~ callsite.Target (callsite, e)

(SETMEMBER(ogRa)

e1 : dynamic callsite = CallSite(Binder.SetMember (f))

e1.f = ey ~ callsite.Target (callsite, ey, €3)

Figure D.1: Cobra optimization rules.

36

(IMETHOD®¥AxToM)

m e Moperators =T ¢ TFantom—built—in
callsite = CallSite (Binder.InvokeMember (m))

e->m(eq,...,e,) ~ callsite.Target (callsite, ey, ..., e,)

where Mopemtors S { negate, increment, decrement, toFloat, toDecimal,
upper, lower, toStr, chars, size, typeof, sqrt, tan, sin, plus,
minus, mult, div, mod, div, mod, pow, compare, equals, getRange,
removeAt, size, get, set } and
Trantom—built—in = { Bool, Long, Double, BigDecimal }

Figure E.1: Fantom optimization rules.

Appendix F. Optimization Rules for StaDyn

Figure shows the optimization rules included in the StaDyn com-
piler. StaDyn infers type information of all the dynamically typed references
but method arguments. Therefore, the expressions in our formalization are
dynamaic only when they are built from a dynamic argument. We optimize
method (IMETHODgapyn) and constructor (ICONSTRUCTORgtapyn) invoca-
tions, and field accesses (GETMEMBERgt,pyn and SETMEMBERgapyn). Lhe
rest of transformations are not applicable to StaDyn because it already op-
timizes the generated code by implementing the type system rules in the
generated code [21].

37

(IMETHOD s¢40yn)

e : dynamic callsite = new CallSite(Binder.InvokeMember (m))
emf(ey,...,e,) ~ callsite.Target (callsite,e,eq, ..., epn)
(ICONSTRUCTOR $taDyn)
i€l.n

de; . e : dynamic
callsite = new CallSite(Binder.InvokeConstructor())

new C'(eq,...,en) ~ callsite. Target (callsite,C ey, ..., e,)

(GETMEMBERStaDyn)
e : dynamic callsite = new CallSite(Binder.GetMember (f))

e.f ~ callsite.Target (callsite, e)

(SETMEMBERSt4Dyn)
e1 : dynamic callsite = new CallSite(Binder.SetMember (f))

e1.f = ey ~ callsite.Target (callsite, ey, e3)
Figure F.1: StaDyn optimization rules.

References

[1] F. Ortin, J. M. Cueva, Dynamic adaptation of application aspects, Jour-
nal of Systems and Software (2004) 229-243.

[2] D. Thomas, C. Fowler, A. Hunt, Programming Ruby, 2nd Edition,
Addison-Wesley, 2004.

[3] D. Thomas, D. H. Hansson, A. Schwarz, T. Fuchs, L. Breed, M. Clark,
Agile Web Development with Rails. A Pragmatic Guide, Pragmatic
Bookshelf, 2005.

[4] A. Hunt, D. Thomas, The pragmatic programmer: from journeyman to
master, Addison-Wesley Longman Publishing Co., Inc., Boston, Mas-
sachusetts, 1999.

[5] ECMA-357, ECMAScript for XML (E4X) Specification, 2nd edition,
European Computer Manufacturers Association, Geneva, Switzerland,
2005.

38

[6]

[10]

[11]

[12]

[13]

D. Crane, E. Pascarello, D. James, AJAX in Action, Manning Publica-
tions, Greenwich, 2005.

G. van Rossum, L. Fred, J. Drake, The Python Language Reference
Manual, Network Theory, United Kingdom, 2003.

A. Latteier, M. Pelletier, C. McDonough, P. Sabaini, The Zope book,
http://www.zope.org/Documentation/Books/ZopeBook/ (2008).

Django Software Foundation, Django, the web framework for perfection-
ists with deadlines, https://www.djangoproject.com (2015).

E. Meijer, P. Drayton, Static typing where possible dynamic typing when
needed: The end of the cold war between programming languages, in:
Proceedings of the OOPSLA Workshop on Revival of Dynamic Lan-
guages, ACM, Vancouver, Canada, 2004, pp. 1-6.

B. C. Pierce, Types and Programming Languages, The MIT Press, Cam-
bridge, Massachusetts, 2002.

F. Ortin, M. Garcia, J. M. Redondo, J. Quiroga, Combining static and
dynamic typing to achieve multiple dispatch, Information — An Interna-
tional Interdisciplinary Journal 16 (12) (2013) 8731-8750.

F. Ortin, P. Conde, D. F. Lanvin, R. Izquierdo, Runtime performance
of invokedynamic: an evaluation with a Java library, IEEE Software
31 (4) (2014) 82-90.

J. Strachan, Groovy 2.0 release notes, http://groovy.codehaus.org/
Groovy+2.0+release+notes (2014).

G. Bierman, E. Meijer, M. Torgersen, Adding dynamic types to C+#,
in: Proceedings of the 24th European Conference on Object-Oriented
Programming, ECOOP’10, Springer-Verlag, Maribor, Slovenia, 2010,
pp. 76-100.

F. Ortin, M. A. Labrador, J. M. Redondo, A hybrid class- and prototype-
based object model to support language-neutral structural intercession,
Information and Software Technology 44 (1) (2014) 199-219.

J. M. Redondo, F. Ortin, A comprehensive evaluation of widespread
python implementations, IEEE Software 34 (4) (2015) 76-84.

39

http://www.zope.org/Documentation/Books/ZopeBook/
https://www.djangoproject.com
http://groovy.codehaus.org/Groovy+2.0+release+notes
http://groovy.codehaus.org/Groovy+2.0+release+notes

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

B. Chiles, A. Turner, Dynamic Language Runtime, http://www.
codeplex.com/Download?ProjectName=dlr&DownloadId=127512
(2012).

M. Barnett, Microsoft Research Common Compiler Infrastructure,
http://research.microsoft.com/en-us/projects/cci/ (2015).

F. Ortin, D. Zapico, J. Perez-Schofield, M. Garcia, Including both static
and dynamic typing in the same programming language, IET Software
4 (4) (2010) 268-282.

M. Garcia, F. Ortin, J. Quiroga, Design and implementation of an ef-
ficient hybrid dynamic and static typing language, Software: Practice
and Experience (to be published). |doi:10.1002/spe.2291.

F. Ortin, Type inference to optimize a hybrid statically and dynamically
typed language, Computer Journal 54 (11) (2011) 1901-1924.

P. Vick, The Microsoft Visual Basic language specification, Microsoft
Corporation, Redmond, Washington, 2007.

ECMA-335, Common Language Infrastructure (CLI), European Com-
puter Manufacturers Association, Geneva, Switzerland, 2012.

B. C. Pierce, Programming with intersection types and bounded poly-
morphism, Tech. Rep. CMU-CS-91-106, School of Computer Science,
Pittsburgh, PA, USA (1992).

F. Ortin, J. Quiroga, J. M. Redondo, M. Garcia, Attaining multiple
dispatch in widespread object-oriented languages, Dyna 81 (186) (2014)
242-250.

J. Quiroga, F. Ortin, Optimizing runtime performance of hybrid dy-
namically and statically typed languages for the .NET platform (Web
page), http://www.reflection.uniovi.es/stadyn/download/2015/
jss (2015).

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software, Addison-Wesley Profes-
sional Computing Series, 1995.

40

http://www.codeplex.com/Download?ProjectName=dlr&DownloadId=127512
http://www.codeplex.com/Download?ProjectName=dlr&DownloadId=127512
http://dx.doi.org/10.1002/spe.2291
http://www.reflection.uniovi.es/stadyn/download/2015/jss
http://www.reflection.uniovi.es/stadyn/download/2015/jss

[29]

[30]

[31]

[32]

33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

Microsoft Developer Network, Dynamic source code generation and com-
pilation, http://msdn.microsoft.com/en-us/library/650ax5cx (v=
vs.110) .aspx (2015).

F. Ortin, M. Garcia, Modularizing different responsibilities into sepa-
rate parallel hierarchies, Communications in Computer and Information
Science 275 (2013) 16-31.

R. B. De Oliveira, The Boo programming language, http://boo.
codehaus.org (2014).

P. McEvoy, Brail, a view engine for MonoRail, http://docs.
castleproject.org/MonoRail.Brail.ashx (2015).

A. Davey, C. Vivier, Specter framework, a behaviour-driven develop-
ment framework for .NET and Mono, http://specter.sourceforge.
net (2015).

K. Kozmic, Castle windsor, mature inversion of control container
for .NET and Silverlight, http://docs.castleproject.org/Windsor.
MainPage.ashx (2015).

Unity Technologies, Unity3d, http://unity3d.com (2015).

J. Siegel, D. Frantz, H. Mirsky, R. Hudli, P. de Jong, A. Klein,
B. Wilkins, A. Thomas, W. Coles, S. Baker, M. Balick, COBRA fun-
damentals and programming, John Wiley & Sons, Inc., New York, NY,
USA, 1996.

B. Frank, A. Frank, Fantom, the language formerly known as Fan, http:
//fantom.org (2015).

NetVed Technologies, Kloudo, the simplest way to get your business
organized, http://www.kloudo.com (2015).

SkyFoundry, Skyspark, analytics software for a world of smart devices,
http://skyfoundry.com/skyspark (2015).

T. Colar, NetColarDB, ORM features on top of Fantom’s
SQL package, https://bitbucket.org/tcolar/fantomutils/src/
tip/netColarDb (2015).

41

http://msdn.microsoft.com/en-us/library/650ax5cx(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/650ax5cx(v=vs.110).aspx
http://boo.codehaus.org
http://boo.codehaus.org
http://docs.castleproject.org/MonoRail.Brail.ashx
http://docs.castleproject.org/MonoRail.Brail.ashx
http://specter.sourceforge.net
http://specter.sourceforge.net
http://docs.castleproject.org/Windsor.MainPage.ashx
http://docs.castleproject.org/Windsor.MainPage.ashx
http://unity3d.com
http://fantom.org
http://fantom.org
http://www.kloudo.com
http://skyfoundry.com/skyspark
https://bitbucket.org/tcolar/fantomutils/src/tip/netColarDb
https://bitbucket.org/tcolar/fantomutils/src/tip/netColarDb

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

P. S. Foundation, Pybench benchmark project trunk page, http://svn.
python.org/projects/python/trunk/Tools/pybench (2015).

R. P. Weicker, Dhrystone: a synthetic systems programming benchmark,
Communications of the ACM 27 (10) (1984) 1013-1030.

Krintz, Chandra, A collection of phoenix-compatible C# benchmarks,
http://www.cs.ucsb.edu/~ckrintz/racelab/PhxCSBenchmarks
(2015).

A. Georges, D. Buytaert, L. Eeckhout, Statistically rigorous Java per-
formance evaluation, ACM SIGPLAN Notices 42 (10) (2007) 57-76.

D. J. Lilja, Measuring computer performance: a practitioner’s guide,
Cambridge University Press, 2005.

Microsoft Technet, Windows server techcenter: Windows perfor-
mance monitor, http://technet.microsoft.com/en-us/library/
cc749249.aspx (2015).

Microsoft, Windows management instrumentation, http://msdn.
microsoft.com/en-us/library/windows/desktop/aa394582(v=vs.
85) .aspx (2015).

S. Thatte, Quasi-static typing, in: Proceedings of the 17th symposium
on Principles of programming languages (POPL), ACM, San Francisco,
California, United States, 1990, pp. 367-381.

C. Flanagan, S. N. Freund, A. Tomb, Hybrid types, invariants, and re-
finements for imperative objects, in: Proceedings of the International
Workshop on Foundations and Developments of Object-Oriented Lan-
guages (FOOL), ACM, San Antonio, Texas, 2006, pp. 1-11.

J. G. Siek, W. Taha, Gradual typing for functional languages, in:
Scheme and Functional Programming Workshop, 2006, pp. 1-12.

J. G. Siek, W. Taha, Gradual typing for objects, in: Proceedings of the
21st European Conference on Object-Oriented Programming (ECOOP),
Springer-Verlag, Berlin, Germany, 2007, pp. 2-27.

42

http://svn.python.org/projects/python/trunk/Tools/pybench
http://svn.python.org/projects/python/trunk/Tools/pybench
http://www.cs.ucsb.edu/~ckrintz/racelab/PhxCSBenchmarks
http://technet.microsoft.com/en-us/library/cc749249.aspx
http://technet.microsoft.com/en-us/library/cc749249.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582(v=vs.85).aspx

[52]

[53]

[54]

[58]

[59]

J. G. Siek, M. Vachharajani, Gradual typing with unification-based in-
ference, in: Proceedings of the Dynamic Languages Symposium, ACM,
Paphos, Cyprus, 2008, pp. 7:1-7:12.

B. Bloom, J. Field, N. Nystrom, J. Ostlund, G. Richards, R. Strnisa,
J. Vitek, T. Wrigstad, Thorn—robust, concurrent, extensible scripting
on the JVM, in: Proceedings of the Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA), ACM,
Orlando, Florida, 2009, pp. 117-136.

T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Ostlund, J. Vitek, Integrat-
ing typed and untyped code in a scripting language, in: Proceedings of
the 37th annual symposium on Principles of Programming Languages

(POPL), POPL’10, ACM, New York, NY, USA, 2010, pp. 377-388.

M. Abadi, L. Cardelli, B. C. Pierce, G. Plotkin, Dynamic typing in
a statically typed language, ACM Transactions on Programming Lan-
guages and Systems 13 (2) (1991) 237-268.

G. Bracha, Pluggable type systems, in: Proceedings of the OOPSLA
2004 Workshop on Revival of Dynamic Languages, ACM, Vancouver,
Canada, 2004, pp. 1-6.

F. Ortin, M. Garcia, Union and intersection types to support both dy-
namic and static typing., Information Processing Letters 111 (6) (2011)
278-286.

A. Goldberg, D. Robson, Smalltalk-80: the language and its implemen-
tation, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1983.

L. P. Deutsch, A. M. Schiffman, Efficient implementation of the
Smalltalk-80 system, in: Proceedings of the 11th ACM SIGACT-

SIGPLAN symposium on Principles of Programming Languages,
POPL’84, ACM, New York, NY, USA, 1984, pp. 297-302.

F. Ortin, J. M. Redondo, J. B. G. Perez-Schofield, Efficient virtual ma-
chine support of runtime structural reflection, Science of Computer Pro-
gramming 74 (2009) 836-860.

43

[61]

[62]

[64]

[65]

[66]

[67]

[68]

D. Ungar, R. B. Smith, Self: The power of simplicity, in: Conference
Proceedings on Object-oriented Programming Systems, Languages and
Applications, OOPSLA’87, ACM, New York, NY, USA, 1987, pp. 227—
242.

C. Chambers, D. Ungar, Customization: optimizing compiler technology
for Self, a dynamically-typed object-oriented programming language,
in: Conference on Programming language design and implementation

(PLDI), 1989, pp. 146-160.

U. Holzle, C. Chambers, D. Ungar, Optimizing dynamically-
typed object-oriented languages with polymorphic inline caches, in:
ECOOP’91 European Conference on Object-Oriented Programming,
Springer, 1991, pp. 21-38.

U. Holzle, D. Ungar, Reconciling responsiveness with performance in
pure object-oriented languages, ACM Transactions on Programming
Languages and Systems (TOPLAS) 18 (4) (1996) 355-400.

Google Inc., The V8 JavaScript engine, https://code.google.com/p/
v8 (2015).

Mozilla, The SpiderMonkey JavaScript engine, https://developer.
mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey (2015).

J. M. Redondo, F. Ortin, Efficient support of dynamic inheritance for
class- and prototype-based languages, Journal of Systems and Software
86 (2) (2013) 278-301.

T. Wiirthinger, C. Wimmer, L. Stadler, Dynamic code evolution for
Java, in: Proceedings of the 8th International Conference on the Princi-
ples and Practice of Programming in Java, PPPJ’10, ACM, New York,
NY, USA, 2010, pp. 10-19.

T. Wiirthinger, C. Wimmerb, L. Stadler, Unrestricted and safe dynamic
code evolution for Java, Science of Computer Programming 78 (5) (2013)
481-498.

Oracle, The Da Vinci Machine, a multi-language renaissance for the Java
virtual machine architecture, http://openjdk.java.net/projects/
mlvm (2012).

44

https://code.google.com/p/v8
https://code.google.com/p/v8
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
http://openjdk.java.net/projects/mlvm
http://openjdk.java.net/projects/mlvm

[71] B. Hackett, S.-y. Guo, Fast and precise hybrid type inference for
javascript, in: Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI’12, ACM,
New York, NY, USA, 2012, pp. 239-250.

[72] C. F. Bolz, A. Cuni, M. Fijalkowski, A. Rigo, Tracing the meta-level:
PyPy’s tracing JIT compiler, in: Proceedings of the 4th workshop on the
Implementation, Compilation, Optimization of Object-Oriented Lan-
guages and Programming Systems, ICOOOLPS’09, ACM, New York,
NY, USA, 2009, pp. 18-25.

45

	Introduction
	The Dynamic Language Runtime
	Optimization of .Net Hybrid Typing Languages
	Runtime Performance Optimizations

	Implementation
	Binary Program Transformation
	Compiler Optimization Phase

	Evaluation
	Methodology
	Selected Languages
	Selected Benchmarks
	Data Analysis
	Data Measurement

	Start-up Performance
	Discussion

	Steady-State Performance
	Discussion

	Memory Consumption
	Discussion

	Related Work
	Hybrid Static and Dynamic Typing Languages
	Dynamically Typed Virtual Machines
	Dynamic Typing Programming Languages

	Conclusions
	DLR Call-Sites
	Additional VB Rules
	Optimization Rules for Boo
	Optimization Rules for Cobra
	Optimization Rules for Fantom
	Optimization Rules for StaDyn

