

NOTICE: This is the author’s version of a work accepted for publication by Elsevier. Changes

resulting from the publishing process, including peer review, editing, corrections, structural

formatting and other quality control mechanisms, may not be reflected in this document. A

definitive version was subsequently published in the Journal of Systems and Software, Volume

86, Issue 2, pp. 278-301, February 2013.

Efficient Support of Dynamic Inheritance for Class-
and Prototype-based Languages

Jose Manuel Redondo, Francisco Ortin
University of Oviedo, Computer Science Department, Calvo Sotelo s/n, 33007, Oviedo, Spain

Abstract

Dynamically typed languages are becoming increasingly popular for different software devel-
opment scenarios where runtime adaptability is important. Therefore, existing class-based plat-
forms such as Java and .NET have been gradually incorporating dynamic features to support the
execution of these languages. The implementations of dynamic languages on these platforms com-
monly generate an extra layer of software over the virtual machine, which reproduces the reflective
prototype-based object model provided by most dynamic languages. Simulating this model fre-
quently involves a runtime performance penalty, and makes the interoperation between class- and
prototype-based languages difficult.

Instead of simulating the reflective model of dynamic languages, our approach has been to
extend the object-model of an efficient class-based virtual machine with prototype-based seman-
tics, so that it can directly support both kinds of languages. Consequently, we obtain the runtime
performance improvement of using the virtual machine JIT compiler, while a direct interoperation
between languages compiled to our platform is also possible. In this paper, we formalize dynamic
inheritance for both class- and prototype-based languages, and implement it as an extension of an
efficient virtual machine that performs JIT compilation. We also present an extensive evaluation
of the runtime performance and memory consumption of the programming language implementa-
tions that provide dynamic inheritance, including ours.

Keywords: Dynamic inheritance, prototype-based object-oriented model, delegation, dynamic
languages, structural intercession, reflection, JIT compilation, SSCLI, virtual machine
2000 MSC: 68-04

1. Introduction

Dynamically typed programming languages have turned out to be suitable for specific scenar-
ios such as Web development, application frameworks, game scripting, interactive programming,
rapid prototyping, dynamic aspect-oriented programming, and any kind of runtime adaptable or

Email addresses: redondojose@uniovi.es (Jose Manuel Redondo), ortin@uniovi.es (Francisco Ortin)
URL: http://www.di.uniovi.es/~redondojose/ (Jose Manuel Redondo),

http://www.di.uniovi.es/~ortin (Francisco Ortin)

Preprint submitted to Journal of Systems and Software July 3, 2012

adaptive software. The main benefit of these languages is the simplicity they offer for modeling
the dynamicity that is sometimes required to build highly context-dependent software. Common
features of dynamic languages are meta-programming, reflection, dynamic inheritance, mobility,
and dynamic reconfiguration and distribution.

For example, in Web engineering, Ruby [1] has been successfully used together with the Ruby
on Rails framework for creating database-backed web applications [2]. This framework has con-
firmed the simplicity of implementing the DRY (Don’t Repeat Yourself) [3] and the Convention
over Configuration [2] principles with this kind of languages. Currently, JavaScript [4] is widely
used to create interactive Web applications with AJAX (Asynchronous JavaScript And XML) [5],
while PHP (PHP Hypertext Preprocessor) is one of the most popular languages for developing
Web-based views. Python [6] is used for many different purposes: two well-known examples
are the Zope application server [7] (a framework for building content management systems, in-
tranets, and custom applications) and the Django Web application framework [8]. Due to its
portability, small size, and ease of integration, Lua [9] has gained great popularity for extending
games [10]. Finally, a wide range of dynamic aspect-oriented tools have been built over dynamic
languages [11, 12, 1, 13], offering a greater runtime adaptiveness than the common static ones.

The benefits offered by dynamically typed programming languages have caused the addition
of their functionalities in some existing statically typed platforms. For instance, the .NET platform
was initially released with introspective and low-level dynamic code generation services. Version
2.0 included dynamic methods and the CodeDom namespace for modeling (and generating) the
structure of high-level source code documents. The Dynamic Language Runtime (DLR) adds
an extra layer to the .NET platform, providing a set of services to facilitate the implementation of
dynamic languages [14]. Microsoft has also included a dynamic type to C# 4.0, providing dynamic
duck typing (passing a message to an object without knowing its static type). ExpandoObjects,
together with the dynamic type, provide structural intercession. The DLR is released as part of
the .NET Framework 4.0.

Java has also followed this trend. The last addition to support the features of dynamic lan-
guages was the Java Specification Request (JSR) 292 [15], partially included in Java 1.7. The JSR
292 incorporates the new invokedynamic opcode in the Java Virtual Machine (JVM) in order to
support the duck typing features of dynamic languages. The other feature in the JSR 292 was
hot-swapping: the ability to modify the structure of classes at runtime. This important feature,
provided by many dynamic languages, was not finally included in Java 1.7. Since its implemen-
tation requires extending the JVM semantics, Oracle launched the Da Vinci Machine project [16].
This project aims at prototyping a number of enhancements to the JVM, so that it can run non-Java
languages, especially dynamic ones, with a performance level comparable to that of Java itself.

However, the great flexibility of dynamically typed languages is offset by two major draw-
backs: there is no early detection of type errors, and usually there is a considerable runtime
performance penalty. Statically typed languages offer the programmer the detection of type er-
rors at compile time, making it possible to fix them immediately rather than discovering them at
runtime—when the programmer’s efforts might be aimed at some other task, or even after the pro-
gram has been deployed [17]. Moreover, the runtime type inspection and type checking performed
by dynamically typed languages commonly involve a significant performance penalty.

Since both approaches offer important benefits, the definition of a common platform that sup-

2

ports both types of languages using the same object model would combine the best characteristics
of class- and prototype-based languages. An important performance improvement could be ob-
tained if a production JIT-based virtual machine (such as Java or .NET) is used to implement this
common platform. Moreover, if the extensions introduced in the virtual machine are backward
compatible (maintain the previous semantics), existing applications may be executed without any
change.

Most of the research which has aimed at supporting reflective dynamic languages over the
.NET and Java platforms has been restricted to compilers that generate Java or .NET bytecodes
simulating the reflective object-model of these languages. Taking Python as an example, there
exist different implementations for the Microsoft .NET platform that simulate Python features
(Python for .NET from the Zope Community, IronPython from Microsoft that uses the DLR, and
the Python for .NET research project from ActiveState). The existing implementation that uses the
JVM (i.e., Jython) also follows this approach.

Instead of creating an extra layer over a statically typed virtual machine, our approach focuses
on extending an efficient platform with those primitives required in the execution of dynamic lan-
guages. The two operations that neither Java nor .NET provide natively are the reflective primitives
of structural intercession (adding, modifying, and removing members of classes and objects) and
dynamic inheritance (changing the type of objects and classes, and modifying type hierarchies at
runtime). In a previous paper, we added structural intercession to an existing JIT-compiler virtual
machine [18]. In this paper, we describe how to include the functionalities of dynamic inheritance.

The contributions of this paper are: 1) a formalization of dynamic inheritance in an object-
model that supports both the class- and prototype-based approaches; 2) an implementation of
the proposed formalization in a production JIT-compiler virtual machine; and 3) an extensive
evaluation of the runtime performance and memory consumption of the existing programming
language implementations that provide dynamic inheritance.

The rest of this paper is structured as follows. In the next section, we describe the basis of
dynamic inheritance over class- and prototype-based object models. Section 3 presents our reflec-
tive platform. Section 4 formalizes the dynamic inheritance primitives over both object-oriented
models, and our implementation is presented in Section 5. We assess the runtime performance and
memory consumption in Section 6. Section 7 discusses related work. Finally, Section 8 presents
the conclusions and future work.

2. Dynamic Inheritance

Dynamic inheritance refers to the ability of a programming language to add, modify, or remove
the base classes of another class at runtime. It also refers to the ability to dynamically change
the type of any object [19]. Languages that support this feature are able to dynamically change
inheritance hierarchies. For example, it is possible to insert new types within a specific part of
an inheritance hierarchy to dynamically extend the functionality of a group of classes. Moreover,
dynamically changing the type of instances allows the programmer to adapt the state and behavior
of objects at runtime. This flexible approach is used to create programs that can better adapt to
changing requirements.

3

Product
-author
-name

+getAuthor()
+getName()

Changing the base class of

to be PersistentItem

cd : Product
author = “Puccini”
name = “Nessun Dorma”

dvd : Product
author = “George Lucas”
name = “Star Wars”

to be PersistentItem

PersistentItem
-dataSource

+read()
+write()

Changing the base class of Product

PersistentItem

cd : Product
author = “Puccini”
name = “Nessun Dorma”
dataSource = null

dvd : Product
author = “George Lucas”
name = “Star Wars”
dataSource = null

PersistentItem

Figure 1: Example of dynamic inheritance in the class-based model.

The semantics of dynamic inheritance depends on the restrictions imposed by the object model
implemented by the programming language. The two following subsections explain the two exist-
ing approaches to providing dynamic inheritance in class-based and prototype-based object mod-
els.

2.1. Dynamic Inheritance in the Class-Based Model
In class-based object-oriented languages, inheritance is defined between classes (as opposed

to objects). Java, C#, and C++ are examples of class-based languages. The structure and behavior
of an object is defined by its class, which is usually its type. The structure defined in a class must
be followed by all its instances (objects) [20]. In the presence of inheritance, the structure of the
objects in a class-based language habitually follows a concatenation strategy, which defines the
structure of an object as the concatenation of the structure declared in its class and the structure
defined by all its superclasses in the inheritance hierarchy [21].

When implementing dynamic inheritance in the class-based model, every instance must have
a corresponding class defining all its attributes and methods (state and behavior) [20]. For this
reason, any structural change made to the classes has an impact on their instances. This is clearly
shown in class-based languages that provide dynamic inheritance [22, 23]: after modifying the
structure of a class, the structure of the derived classes and every related instance has to be updated
to reflect this change. This way, the concatenation-based inheritance strategy rule is maintained.
An example of this behavior is shown in Figure 1. If the Product class is changed so as to inherit
from PesistentItem, the dataSource attribute must be added to the cd and dvd instances and,
then, the read and write methods could be invoked. CLOS [22] and Smalltalk [23] are examples
of class-based languages that provide this functionality.

When the class of an instance is changed, those members that are not applicable in the new
type should be removed, and those in the new class that were not present in the old one should
be added. This mechanism is also referred to as a type reclassification in class-based languages:
changing the class membership of an object while preserving its identity [24, 25]. It has also been
referred to as schema evolution in the database world [26]. Examples of class-based languages

4

Product

-author
-name

+getAuthor()
+getName()

cd : Product

author = “Puccini”
name = “Nessun Dorma”

getAuthor
getName

Method Implementation
Method Implementation

author
name

null

null

author
name

“Puccini”
“Nessun Dorma”

Common
Translation

Product cd

TraitsProduct

Class-Based Object-Model Prototype-Based Object-Model

Prototype cloning

Traits Object

Figure 2: Common translation scheme between the class- and the prototype-based object model.

that allow changing the type of objects are CLOS [22], Smalltalk [27], Bigloo [28] and F ickleII
[25]—all of these will be given in detail in Section 7.2.

2.2. Dynamic Inheritance in the Prototype-Based Model
In the prototype-based object-oriented model, the main abstraction is the object, suppressing

the existence of classes [29]. Although this computational model is simpler than the class-based
one, any class-based program can be translated into the prototype-based model [30]. This is the
reason why it has been previously considered as a universal substrate for object-oriented lan-
guages [31, 20].

A common translation from the class-based to the prototype-based object-oriented model is
shown in Figure 2. Shared behavior (methods) in a class (Product) can be modeled with a traits
object (TraitsProduct) that simply collects the shared methods. The common instance structure
defined by classes can be represented with prototypes (Product object on the right of Figure 2)
that define the default state of each object. Object instantiation is performed by cloning a prototype
and assigning the specific attribute values to the new instance (cd).

In this model, the inheritance relationship is defined between objects (e.g., the relationship
between the cd and TraitsProduct objects in Figure 2). The is type of relationship is also
modeled with inheritance (e.g., cd is a type of product). Method invocation in the prototype-based
model is based on delegation [32]: when a message is passed to an object, it is checked whether
the object has a suitable method or not; in case it exists, it is executed; otherwise, the message is
passed to its base object recursively. If the message has not been implemented in the hierarchy,
usually an exception is thrown.

The delegation approach facilitates the implementation of both structural changes to objects
and dynamic inheritance operations [19]. Replacing any object in an inheritance hierarchy can be
done simply by modifying the relationships between the involved objects, without modifying any
other entity. Changing the type of an object is also straightforward, because the object only has to
be associated with the new “type” modifying the inheritance relationship. Unlike in class-based

5

Method Implementation

B1Method1
B1Method2

Method Implementation
Method Implementation

BaseTraits1

B2Method1
B2Method2

Method Implementation
Method Implementation

BaseTraits2

DMethod1
DMethod2 Method Implementation

DerivedTraits

T1Method1
T1Method2

Method Implementation
Method Implementation

Traits1

T2Method1
T2Method2

Method Implementation
Method Implementation

Traits2

Dynamic Inheritance

Dynamic Inheritance
(Inheritance Tree Change)

attribute1
attribute2

value1
value2

object1

attribute1
attribute2

value1
value2

object2

Dynamic Inheritance
(Type Change)

Figure 3: Example scenario of dynamic inheritance in the prototype-based model.

models, attributes are neither added nor deleted. The existing attributes of objects are maintained,
because objects are responsible for holding their own set of attributes. The delegation strategy
ensures that whenever a member is searched, the most up to date hierarchy structure is used,
taking into account the dynamic changes that might have just been made.

The behavior of dynamic inheritance in the prototype-based object-model is described in Fig-
ure 3. If the parent of DerivedTraits is changed from BaseTraits1 to BaseTraits2 (inher-
itance tree change), then object1 derived from DerivedTraits will be automatically able to
respond to the B2Method1 and B2Method2 messages. However, it will no longer be able to un-
derstand the B1Method1 and B1Method2 messages, due to the delegation method search strategy.
Likewise, if the base object of object2 is changed from Traits1 to Traits2 (type change),
that particular instance will be able to understand the T2Method1 and T2Method2 messages, and
will no longer be able to respond to T1Method1 and T1Method2. Existing prototype-based lan-
guages that provide dynamic inheritance are for example Self [33], Cecil [34], Python [35] and
JavaScript [4]—see Section 7.1.

Our research goal is to implement the dynamic inheritance semantics of both class- and prototype-
based models as part of a production JIT-compiler virtual machine, which allows efficient support
for both kinds of languages. We will first describe how we have added structural intercession to
an implementation of the .NET virtual machine (in the next section). Then we will give in detail
the design, implementation, and assessment of dynamic inheritance.

3. Adding Structural Intercession to the SSCLI

Reflective Rotor, or zRotor [36], is our extended version of the Microsoft SSCLI (Shared
Source Common Language Infrastructure, also known as Rotor) [37], a shared source implemen-
tation of the CLI standard [38]. Microsoft SSCLI is a source code distribution that includes a
fully functional implementation of the ECMA-334 C# language standard. This is the only general
purpose high-level programming language that is included with this platform. SSCLI also con-
tains the ECMA-335 Common Language Infrastructure specification, various tools, and a set of

6

libraries suitable for research purposes. zRotor offers an efficient implementation of the structural
intercession primitives provided by most dynamic languages [18].

3.1. Structural Intercession Primitives
We extended the introspective capabilities of the .NET CLI at the abstract machine level with

structural intercession. A new System.Reflection.Structural namespace was incorporated
in the Base Class Library (BCL), supporting two different groups of primitives:

• Field manipulation. Runtime addition, deletion, access and replacement of fields. Besides
modifying the structure of a class (modifying the structure of all of its instances), the struc-
ture of a single instance can also be modified (object-level reflection).

• Method manipulation. Runtime addition, deletion, invocation, and replacement of meth-
ods. The set of messages accepted by an object can be changed at runtime depending on
its dynamic context. We provide the functionality of copying methods from one object
or class to another, and they can also be dynamically generated by means of the existing
System.Reflection.Emit namespace. Duck typing [1] was included in the semantics of
the platform: an object is interchangeable with any other object that implements the same
dynamic interface, regardless of whether both objects have a related inheritance hierarchy or
not. Duck typing is a widely-used feature provided by the majority of dynamic languages.

All instance and class manipulation primitives were integrated with the new NativeStructural
class of the BCL. Every class in this library is accessible by all the languages compiled to the vir-
tual machine, so our new features will be available to any language without requiring further
changes. In fact, we have not performed any change in the C# compiler to access the new services
included in the platform.

3.2. The zRotor Computational Model
Since the prototype-based object model supports object-level intercession in a coherent way

[18], dynamic languages use this model to provide this level of structural reflection. Therefore, we
added the prototype-based model semantics to the virtual machine so that object-level structural
intercession could be provided. We maintained the existing class-based model of the original vir-
tual machine to provide backward compatibility. zRotor can execute any existing .NET language
application previously compiled to the SSCLI. Backward compatibility is provided because our
extension does not modify the semantics of the original class-based model.

The resulting modified CLI virtual machine (zRotor) is a platform capable of supporting mul-
tiple high-level programming languages. Both class- and prototype-based object-oriented models
are supported: the former for running statically typed class-based .NET applications; the latter for
executing dynamic reflective programs. .NET compilers are responsible for selecting which ser-
vices of either model are appropriate, depending on the language being compiled and its features.
Class-based (e.g., C#) and prototype-based (e.g., Python) languages are directly supported by the
virtual machine. Likewise, dynamic (e.g., Ruby) and static typing (e.g., Eiffel) services can also
be selected by the compiler. Even hybrid dynamically and statically typed languages (e.g., VB and

7

Boo) are directly supported by zRotor without needing an extra layer to simulate their reflective
model (e.g., the DLR).

In conclusion, our reflective extension of the .NET platform supports structural intercession
with both class- and prototype-based computational models, implementing static and dynamic
typing (the former, performed by the compiler, and the latter, by the virtual machine). This is the
foundation from which we have built the support for dynamic inheritance.

4. Dynamic Inheritance Design

We will now formalize dynamic inheritance for the class- and the prototype-based object mod-
els supported by our platform. Notice that, while both models are supported, they will not both be
present at the same time. Languages could be either class-based or prototype-based, but they will
not be both. The language processor is responsible for choosing the appropriate object model.

Dynamic inheritance is provided by a new setSuper primitive added to the NativeStructu-
ral class. This primitive is available to all the languages compiled to the platform. This approach
offers the advantage of providing all these functionalities to any language, offering it as a library
service rather than as a syntactic extension.

As was described in Section 2, two dynamic inheritance operations are implemented for each
object model: Inheritance Tree Change (ITC) and Type Change (TC). These two operations rely
on the reflective primitives provided by zRotor—see Section 3:

• Inheritance Tree Change. The base type of a class is replaced by another one, performing
the necessary changes in the structure of all the classes and instances involved. The changed
class, its subclasses, and all their instances, are granted proper access to the members of
the new assigned base type. Besides, they cannot access those members that are no longer
applicable due to the new hierarchy structure. All changes observe the restrictions of the
class-based object model, as described in Sections 2.1 and 2.2.

• Type Change. The type of an instance is replaced by another one, performing the appropri-
ate changes on the structure of the objects. These changes provide access to the members
(attributes and methods) exposed by its new type, and forbid access to those members that
are no longer applicable. Its effective runtime type is also changed, and it can be obtained
through reflection.

We will use the example class diagram in Figure 4 to illustrate the specification of our dynamic
inheritance primitives. This diagram represents the entities of a multimedia product factory appli-
cation. We will take some freedom to change the inheritance relationships in this example to better
illustrate all the primitives we have implemented in a simple unique class diagram. A multime-
dia product is represented by the Product class, which stores its author and name information.
Item represents a generalization of the Product class, allowing products to be managed by other
modules without knowing the exact type of product. The Item class stores an identifier (id) that
uniquely identifies a product. Products can be in two different stages during their life cycle:

8

Item

- id

+getId()

Product

-author
-name

+getAuthor()
+getName()

UnderProduction

-manufacturer

StandardRelease

-price

PersistentItem

-dataSource

+read()
+write()

TransientItem

- lastTimeUpdated

+getLastTimeUpdated()

+getManufacturer()

UpcomingRelease

-releaseDate

+getReleaseDate()

+getPrice()
+setPrice()

BundledRelease

-items

+getBundledItems()
+getTotalPrice()

Figure 4: Example class diagram to be adapted by means of dynamic inheritance.

• Unreleased products, which are not on the market yet. They may be under production
(UnderProduction) or about to be released (UpcomingRelease). An UpcomingRelease
is also an UnderProduction product. When a product is under production, it is assigned
to a manufacturer. When the manufacturer finishes the product, the item is changed to an
UpcomingRelease state, assigning a new releaseDate field to it.

• Released products. There are two types of released products in our example system. A
StandardRelease is composed of the product, with no extra items. A price is assigned to
this kind of release so that the release can be sold. The other type of release (BundledRelease)
represents the releases that package the product with several promotional items in order to
help sales.

Products can be transient (TransientItem), storing the last time the instance has been up-
dated (lastTimeUpdated) during the application execution. On the other hand, PersistentItem
allows existing objects to be stored and read from an external data source (dataSource).

Our design describes single dynamic inheritance because the base virtual machine we have
used, the SSCLI, does not support multiple inheritance (the same happens in the Java VM). We
first define the following sets:

9

• Ca represents the attribute set of class C.

• Cm represents the method set of class C. The elements in Cm are mangled names that com-
bine the method identifier and the type of its parameters, because the virtual machine pro-
vides method overloading.

• Cp represents the member set of the class C (Cp = Ca ∪ Cm).

• The full set of attributes accessible from C is calculated by

C+
a =Ca∪D+

a ,∀D ∈ baseClassO f (C) (1)

• The full set of methods accessible from C is defined by

C+
m =Cm∪D+

m,∀D ∈ baseClassO f (C) (2)

• Finally, all the members of a particular class C are calculated by

C+
p =C+

a ∪C+
m (3)

4.1. Class-Based Model
When defining dynamic inheritance in the class-based object model, every instance must have

a corresponding class defining all its attributes and methods (states and behaviors). The design of
an instance type change is defined as follows.

Suppose X and Y are classes, and that o : X (o is an instance of X). Using the member set
defined in (3), the setSuper(o,Y) primitive call modifies the structure of o by

1. deleting from o the member set D defined by

D = X+
p − (X+

p ∩Y p
+) (4)

2. adding to o the member set A defined by

A = Y+
p −X+

p (5)

Figure 5 shows an example of performing a type change in the class-based model—in this
figure, and the three following, we include methods in the object diagrams to explicitly describe the
messages accepted by each object. It shows the process of releasing a product (changing cd from
UpcommingRelease to StandardRelease), adding its selling price, and deleting the information
that is no longer appropriate to its new state (manufacturer and releaseDate). In addition,
the new getPrice and setPrice messages are available, whereas the getManufacturer and
getReleaseDate are no longer applicable.

We now specify the inheritance tree change primitive in the class-based model. Suppose X and
Y are classes, and let Z be the base class of X . The setSuper(X ,Y) primitive call modifies the
structure of the X class by

10

cd : StandardRelease
id
lastTimeUpdated
author
name
price

getId()
getLastTimeUpdated()
getAuthor()
getName()
getPrice()
setPrice()

setSuper(cd, StandardRelease)

cd : UpcomingRelease
id
lastTimeUpdated
author
name
manufacturer
releaseDate

getId()
getLastTimeUpdated()
getAuthor()
getName()
getManufacturer()
getReleaseDate()

D = { manufacturer, releaseDate,
getManufacturer, getReleaseDate }

A = { price, getPrice, setPrice }

Figure 5: Example type change scenario (class-based model).

1. deleting from X the member set D defined by

D = Z+
p − (Z+

p ∩Y+
p) (6)

2. adding to X the member set A defined by

A = Y+
p −Z+

p (7)

Figure 6 shows an example of an inheritance tree change operation in the class-based model. It
shows the process of adapting all the products in the system (cd and pack) to be stored in a persis-
tent storage, adding those members that are necessary to make them persistent (the dataSource
attribute, plus the read and write methods). When products are persistent, controlling their last
update time (lastUpdateTime attribute and getLastTimeUpdated method) is no longer needed.

The attributes to be added to an object or class specified by A in (5) and (7) have the default
values defined in the ECMA-334 [39] standard specification of the C# language (0 for numeric
values, null for object references, and false for bool values).

As we have seen, dynamic inheritance may involve the dynamic addition and deletion of mem-
bers of objects and classes. These runtime addition and deletion operations are part of the structural
intercession features provided by zRotor. When an inheritance relationship is changed, the struc-
ture of all the derived classes, and all their instances, must also be changed. As a large number of
members can be involved in this operation, members of the modified classes will be dynamically
updated only when they are about to be used (lazy adaptation mechanism), improving runtime
performance [18].

4.2. Prototype-Based Model
We also provide dynamic inheritance primitives for the prototype-based model. The instance

type change primitive is specified as follows. Suppose X and Y are classes, and that o : X (o is an
instance of X). Taking the method set defined in (2), the setSuper(o,Y) primitive call modifies
the structure of o by

1. deleting from o the method set D defined by

D = X+
m − (X+

m ∩Y+
m) (8)

11

setSuper(Product,

cd : StandardRelease
id
lastTimeUpdated
author
name
price

getId()
getLastTimeUpdated()
getAuthor()
getName()
getPrice()

D = { lastTimeUpdated
getLastTimeUpdated

A = { dataSource

pack : BundledRelease
id
lastTimeUpdated
author
name
price
items

getId()
getLastTimeUpdated()
getAuthor()
getName() getPrice()

setPrice()
getName()
getPrice()
setPrice()
getBundledItems()
getTotalPrice()

cd : StandardRelease
id
author
name
price
dataSource

getId()
getAuthor()
getName()
getPrice()
setPrice()

(Product, PersistentItem)

lastTimeUpdated,
getLastTimeUpdated }

dataSource, read, write }

pack : BundledRelease
id
author
name
price
items
dataSource

getId()
getAuthor()
getName()
getPrice() setPrice()

read()
write()

getPrice()
setPrice()
getBundledItems()
getTotalPrice()
read()
write()

Figure 6: Example inheritance tree change scenario (class-based model).

setSuper(cd, StandardRelease)

D = { getManufacturer,
getReleaseDate }

A = { getPrice, setPrice }

id
lastTimeUpdated
author
name
manufacturer
releaseDate
getId()
getLastTimeUpdated()
getAuthor()
getName()
getManufacturer()
getReleaseDate()

id
lastTimeUpdated
author
name
manufacturer
releaseDate
getId()
getLastTimeUpdated()
getAuthor()
getName()
getPrice()
setPrice()

cd:UpcomingRelease cd:StandardRelease

Figure 7: Example type change scenario (prototype-based model).

2. adding to o the method set A defined by

A = Y+
m −X+

m (9)

We use the same examples as in the previous section to see the differences between both
models. Figure 7 shows an example of type change in the prototype-based model, representing the
release of an existing product. We can see how the difference is that, as mentioned in Section 2.2,
in the prototype-based model, attributes are neither added nor deleted (the A and D sets only
contain methods).

Similarly, we define the inheritance tree change primitive. Suppose X and Y are classes, and
let Z be the base class of X . The setSuper(X ,Y) primitive call modifies the structure of the X
class by

1. deleting from X the method set D defined by

D = Z+
m − (Z+

m ∩Y+
m) (10)

2. adding to X the method set A defined by

A = Y+
m −Z+

m (11)

12

setSuper(Product,

D = { getLastTimeUpdated

A = { read

id
lastTimeUpdated
author
name
price
items
getId()
getLastTimeUpdated()
getAuthor()
getName()

pack:BundledRelease

id
lastTimeUpdated
author
name
price
getId()
getLastTimeUpdated()
getAuthor()
getName()
getPrice()

cd:StandardRelease

getPrice()
setPrice()
getBundledItems()
getTotalPrice()

setPrice()

(Product, PersistentItem)

getLastTimeUpdated }

read, write }

id
lastTimeUpdated
author
name
price
Items
getId()
getAuthor()
getName()
getPrice()

pack:BundledRelease

id
lastTimeUpdated
author
name
price
getId()
getAuthor()
getName()
getPrice()
setPrice()

cd:StandardRelease

getPrice()
setPrice()
getBundledItems()
getTotalPrice()
read()
write()

read()
write()

Figure 8: Example inheritance tree change scenario (prototype-based model).

Figure 8 shows the example of inheritance tree change (making the products persistent) in the
prototype-based object-oriented model. As in the previous example, only methods are added and
deleted, preserving the attributes of each object.

5. Implementation

The implementation of the previously described dynamic inheritance primitives have been
made at two levels. The first level (Section 5.1) consists of managed C# code that defines the
interface to allow any language to access the new functionalities provided by the underlying virtual
machine. Most of the services in this level are simple invocations to native routines implemented
in the second level. The second level (Section 5.2) is unmanaged C/C++ code responsible for
efficiently implementing dynamic inheritance in the virtual machine internals. In this second level,
the JIT compiler, the virtual machine core functions, and the main data structures that support the
object model have been modified to achieve our goal. To obtain a high runtime performance, the
existing virtual machine services and data structures have been reused whenever possible.

5.1. The setSuper Primitive Interface
This is the interface we have defined for the setSuper primitive:

• setSuper(Object, Type, bool): Changes the type of the instance referenced by the first
parameter to the one described by the second. Classes are represented by the class Type in
the .NET platform. The bool parameter allows choosing between the class-based object-
oriented model (if its value is true) and the prototype-based one. This way, a language
processor of a specific language may choose the appropriate implementation, depending on
its object model (Section 4).

• setSuper(Type, Type, bool): Changes the superclass of the class represented by the first
parameter to the class described by the second. The third parameter represents the object
model (as above).

13

public class DynamicInheritance {

 public Object releaseProductWithPrice(UpcomingRelease product, int price) {

 // Changes the type of product to be StandardRelease (class-based)

 NativeStructural.setSuper(product, typeof(StandardRelease), true);

 // Gets the setPrice method
 MethodInfo method = typeof(StandardRelease).GetMethod("setPrice");

 String sig = NativeStructural.createSignatureFor(method);

 method = (MethodInfo)NativeStructural.getMethod(product, sig);

 // Invokes the method using reflection (duck typing)

 object[] pars = { price };

 NativeStructural.invoke(product, method, method.GetParameters(), pars);

 return product;

 }

 public void storeProducts(Product[] products) {

 // Changes the base type of Product to be PersistenteItem (class-based)

 NativeStructural.setSuper(typeof(Product), typeof(PersistentItem), true);

 // Gets the write method

 MethodInfo method = typeof(PersistentItem).GetMethod("write");

 //Create a suitable mangled name to perform the method search

 String sig = NativeStructural.createSignatureFor(method);

 method = (MethodInfo)NativeStructural.getMethod(typeof(PersistentItem), sig);

 // Writes all the products in the persistence store

 for (int i = 0; i < products.Length; i++)

 NativeStructural.invoke(products[i], method, method.GetParameters(), null);

 }

}

Figure 9: Sample C# code illustrating the use of setSuper (scenarios in Figures 5 and 6).

Figure 9 shows some sample C# code that makes use of setSuper in zRotor. The first method,
releaseProductWithPrice, models the publication of an UpcomingRelease product shown in
Figure 5: it modifies its type to StandardRelease following the class-based model, and then
invokes its new setPrice method using introspection (note that the static type system does not
allow passing that message to product). The second method, storeProducts, implements the
scenario displayed in Figure 6, which makes all products persist: the superclass of Product is
changed to be PersistentItem (in the class-based model), and then the new write message is
reflectively passed to the products.

5.2. Extending the Virtual Machine Internals
The second level of our implementation is C/C++ code that provides dynamic inheritance in-

side the virtual machine. As we saw in Section 4, implementing dynamic inheritance requires the
dynamic addition and deletion of class and object members. We used the SyncBlock [37] mem-
ory blocks provided by the virtual machine to store these members inside the virtual machine.
SyncBlock is an internal virtual machine class that was designed to hold additional control struc-
tures attached to each individual instance or class in the system. Every object or class in the virtual
machine can have a privately owned SyncBlock [18].

14

We used this memory for adding the delegation inheritance strategy of prototype-based lan-
guages to the concatenation-based one, originally provided by the SSCLI. If a non-reflective lan-
guage is being processed, the information is obtained from the original SSCLI data structures.
In case dynamic inheritance (or structural intercession) is used, the member information is first
consulted in each object’s SyncBlock, following a delegation strategy [40]. When a message is
passed to an object, the method lookup starts by analyzing the current object’s SyncBlock. If the
method is not found, its actual Type (class) is checked at runtime. The SyncBlock of the class
(reflective member set) is analyzed first, and then its MethodTable (original member set). If the
method is still not found, this algorithm is recursively applied to its superclass. Finally, if the
search reaches the Object class (there are no more base classes), a MissingMethodException is
thrown. With this scheme, both computational models are supported. At the same time, dynamic
binding semantics is not changed because we start searching from the actual type of the object.

The use of the new dynamic inheritance primitives should involve the adaptation of running
programs. However, legacy code does not make explicit calls to the Reflection.Structural
namespace and, thus, dynamic inheritance changes would not be taken into account within the
original program. For instance, a third-party compiled application uses the callvirt IL1 state-
ment to pass a message to an object, instead of using introspection (as does the example code in
Figure 9). This is the reason why the dynamic inheritance primitives defined in Section 4 require
extending the semantics of some specific IL statements, making existing .NET binary applications
adaptable at runtime, without needing to recompile them.

Figure 10 shows an example of some IL code that implements the releaseProductWithPrice
C# method in Figure 9, but using the new IL semantics instead of introspection (and hence
obtaining a better runtime performance). This code might have been generated by a compiler
that supports dynamic inheritance and generates code to zRotor. It loads the first argument
(product), the StandardRelease class (two next IL statements), the true constant (i.e., 1 in
IL), and calls setSuper. The next paragraph loads the product and the price arguments and
invokes setPrice. Notice that, in this invocation, the compiler does not know the type of the
product object and it uses duck typing. For this reason, the Object (or any other) class is used
to indicate the type where the setPrice method is placed. This type is not actually considered by
the virtual machine, and a delegation method search strategy is used instead.

In order to extend the semantics of IL, we have modified the native code the JIT compiler
generates for some IL statements: ldfld, ldsfld, ldflda, stfld, and stsfld for attributes, and
call and callvirt for methods. For example, the call and callvirt opcodes used in Figure 10
allow executing a method following both the delegation and concatenation inheritance strategies.

The extension of the semantics of IL is performed when the virtual machine JIT-compiler trans-
lates IL into x86 native code. A program coded in any .NET high-level programming language is
compiled to IL instructions (i.e., .exe or .dll .NET assemblies), not directly to x86 native code.
These instructions use names to refer to members instead of offsets (Figure 10). Upon execu-
tion, the .NET JIT compiler translates the IL code into executable x86 native code, transforming
member names into memory offsets. Our implementation modifies the binary code generated by
the JIT compiler, changing the member access to an invocation of a helper function we added to

1IL is the Intermediate language of the CLI.

15

.method public hidebysig instance object releaseProductWithPrice(

 class UpcomingRelease product, int32 price) cil managed {
 // setSuper(product, typeof(StandardRelease), true)

 ldarg.1

 ldtoken StandardRelease
 call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle(

 valuetype [mscorlib]System.RuntimeTypeHandle)

 ldc.i4.1

 call void [mscorlib]System.Reflection.NativeStructural::setSuper(object,object,bool)

 // Duck typing: Object does not have a setPrice method

 ldarg.1

 ldarg.2

 callvirt instance void [mscorlib]System.Object::setPrice(int32)

 ldarg.1

 ret

}

Figure 10: Example IL code that uses the extended semantics of the virtual machine.

the runtime environment. This function has dynamic access to the up-to-date data in memory,
examining the suitable SyncBlocks to provide the appropriate behavior. If access to a runtime
added member is requested, its memory address is dynamically computed and returned; access to
a deleted member causes a runtime exception.

The inclusion of structural reflective information into the SyncBlock made us tackle the inter-
action with garbage collector (GC) operations. The SyncBlock is not part of the heap, and hence
is not altered by the GC executions. However, dynamically created fields and methods do refer
to memory placed in the GC heap, which may be moved or deleted by the GC. In order to solve
that problem, the SSCLI manages a data structure (the handle table) that allows data stored in the
execution engine memory to safely point to data placed in the GC heap [38]. This way, the hash
tables added to the SyncBlock store member handles pointing to entries in a handle table, which
hold the actual member data.

Method code is not physically removed when methods are deleted by means of intercession
or dynamic inheritance. This fact is particularly important when different threads are accessing
objects whose members are being erased. Since the SSCLI does not implement a code pitching
mechanism (releasing native code from the JIT heap), the binary code of the method is never
freed. The handle table not only supports GC interaction but also thread synchronization. The
CreateHandle function is used when members are about to be added, and the DeleteHandle
function is used for deleting them. These two functions are synchronized to manage handles in a
thread-safe way, supporting the concurrent manipulation of fields.

Since the original virtual machine implements a concatenation inheritance strategy [37], chang-
ing the base class pointer of a class representation does not involve adapting either its structure or
the structure of its instances. This leaves the system in an inconsistent state, allowing access to
members that must not be accessible. Before modifying the base class pointer, the definitions (6),
(7), (10) and (11) described in Section 4 are worked out and the class structure is appropriately
modified.

In order to help the runtime performance of our dynamic inheritance implementation, we have
followed a lazy policy adaptation of object and class structures. The system performs the changes

16

to objects and classes the first time they are accessed, postponing the adaptation to the moment
that it is actually required. The following is the general algorithm implemented to provide this
lazy behavior.

1. The method table (type change) or the base class pointer (inheritance tree change) is updated.
2. When the type of an instance is modified, all its members are marked as changed, deferring

its adaptation. In the inheritance tree change scenario, the modified types are saved in a list
and no instance is marked.

3. When a marked member is accessed, the object adaptation is actually performed. Using
delegation, the member is searched for up the hierarchy and the access is finally resolved,
unmarking or deleting the member. This search is also carried out when accessing instances
of adapted types (inheritance tree change). The first time they are accessed, all their mem-
bers are marked as changed.

4. If a marked member is not found in a member access, it is then removed from the object
or class; otherwise, it is unmarked as changed. Unmarked members are not dynamically
searched with delegation, acting as a cache.

6. Performance Evaluation

We have evaluated the runtime performance and memory consumption of the programming
languages that provide dynamic inheritance (both class- and prototype-based). This section presents
the experimental methodology employed, and the evaluation of the different types of benchmarks.

6.1. Methodology
Three distinct sets of benchmarks have been used to evaluate the efficiency (the runtime per-

formance and memory consumption) of different implementations of dynamic inheritance:

1. Microbenchmark. We have developed a set of synthetic microbenchmarks to measure the ef-
ficiency of the dynamic inheritance primitives. We have measured the four possible working
scenarios: type and inheritance tree change primitives, using both the class- and prototype-
based object models.

2. Existing benchmarks that use dynamic inheritance. We have used several programs that
implement the State design pattern using dynamic inheritance. This design pattern is a
common scenario where dynamic inheritance is applicable. In fact, the Gang of Four state
that one possible implementation of this pattern is using dynamic inheritance by changing
the object’s class at run-time, but this is not possible in most object-oriented programming
languages [41]. These programs combine the use of dynamic inheritance and some other
typical computations.

3. The cost of reflection. We have compared the original implementation of the SSCLI 1.0
for Windows with our reflective platform. This has been done to evaluate the performance
penalty caused by the introduction of structural intercession and dynamic inheritance. We
have used real applications that do not employ any of the new features added to the SSCLI
described in this paper. We have also compared the results with the Microsoft CLR 4.0

17

CLI implementation to estimate what might be the efficiency of our system in case it was
included as part of the CLR.

We have selected some dynamically typed object-oriented languages that implement dynamic
inheritance following the prototype- and class-based models. The above mentioned benchmarks
were ported to the following languages.

• CPython 2.7 and CPython 3.2 [35] for Windows. These are the most widely used Python
implementations, developed in C. We have included version 2.7 because, right now, more
existing third party software is compatible with Python 2 than with Python 3. The Python
programming language implements the prototype-based object-oriented model (classes are
actually traits objects; see Section 7.1).

• Jython 2.5.2 [42] (formerly called JPython) over the Java HotSpot Client VM build 1.7 for
Windows. This is a 100% pure Java implementation of the Python programming language,
seamlessly integrated with the Java platform.

• IronPython 2.7 over the 32-bit CLR 4.0. It is an implementation of the Python language
on top of the Common Language Runtime (CLR). It compiles Python programs into IL
bytecodes that run on either Microsoft’s .NET or the Mono open source platform [43]. Iron-
Python 2 has been designed to use the services of the DLR [14]. The DLR is a set of services
implemented over the CLR to facilitate dynamic language implementations over the .NET

platform.

• Allegro Common Lisp 8.2. This is a mature implementation of the CLOS programming
language, available for Windows operating systems [44]. The newer versions have been built
focusing on improving their runtime performance [45]. The CLOS language implements the
class-based object-oriented model.

• Steel Bank Common Lisp 1.0.37. This is an open-source high-performance Common Lisp
compiler [46]. We have used the latest available version for the Windows platform. This
implementation offer the best runtime performance among Common Lisp implementations
thanks to its native code generation.

• GNU Smalltalk 3.2.3 (GST). This is a free implementation of the Smalltalk-80 language.
Other implementations of the Smalltalk programming language, such as VisualWorks Small-
talk [47] and Dolphin Smalltalk [48], have significant restrictions in their dynamic inheri-
tance operations. In these implementations, dynamic inheritance can only be applied to
classes that are structurally compatible. Two classes are structurally compatible if they have
the same number of members. This is because type change operations reuse existing mem-
ber slots, so if the source and the destination classes have a different number of members,
the operation fails at runtime (errPrimitiveFailed). This is the reason why we have not
included these implementations in the evaluation. The Smalltalk language implements the
class-based object-oriented model.

18

• Evil Ruby [49] over the Ruby 1.8 language [50]. This is a special Ruby library that extends
the Ruby semantics by accessing its internals. It allows the programmer to perform sev-
eral operations not available in the standard Ruby language [51]. The operations provided
include dynamic inheritance. It does not support the Ruby 1.9 language yet. The Ruby lan-
guage implements the prototype-based object-oriented model (as in Python, classes actually
represent traits objects).

These implementations have been evaluated together with zRotor, compiled in the free op-
eration mode without debug information and with the highest degree of code optimization. The
source code has been written in C#, combined with IL when dynamic typing is required (as the
example code shown in Figure 10).

The selected programs have been translated into the languages mentioned above, ensuring
that the values calculated by each program are actually the same. Class hierarchies were also
maintained the same, and the most appropriate data structures were selected. We have translated
the two dynamic inheritance primitives (type and inheritance tree change) in the following way.

1. Type change: setSuper(Object, Type) in zRotor; changing the __bases__ attribute in
Python; the change-class: message in CLOS; changing the class property in Ruby; and
the changeClassTo: method in Smalltalk.

2. Inheritance tree change: setSuper(Type, Type) in zRotor; changing the value of the
__class__ attribute in Python; class redefinition in CLOS; the superclass property Ruby;
and the superclass: message in Smalltalk.

All tests were made with code that registers the value of high-precision performance counters
that are provided by the Windows operating system [52]. In each test, memory consumption was
measured using the PeakWorkingSet variable supplied by the Windows Management Instrumen-
tation module.

The measurements were carried out on a lightly loaded 2.67 GHz Intel I7 920 system with 3
GB of RAM running an updated 32-bit version of Windows XP Professional SP3. To evaluate the
average percentages, ratios, and multiples, we used the geometric mean.

Regarding the data analysis, we followed the methodology proposed in [53] to evaluate the
performance of virtual machines that provide JIT-compilation. We measured the runtime per-
formance once the system reached a steady state, excluding class loading, JIT compilation, and
dynamic compilation (of Allegro and SBCL). The methodology was applied by executing each
application five times. Each application execution carried out at least ten different iterations of
benchmark invocations, measuring each invocation separately. The execution reached a steady
state when the coefficient of variation (CoV, defined as the standard deviation divided by the
mean) of the last ten iterations fell below the threshold, 2%. We took the mean value of these last
ten iterations. A full-heap garbage collection was done before performing each measurement, to
reduce the non-determinism across multiple invocations.

6.2. Microbenchmarks
We created four different synthetic microbenchmarks to measure the efficiency of the dynamic

inheritance primitives. These microbenchmarks execute type and inheritance tree changes in both
19

the class- and prototype-based object models. All the tests are based on the example class hierar-
chy presented in Section 4.

6.2.1. Increasing the Number of Invocations
We first evaluated the efficiency of setSuper and the influence of the number of calls on the

runtime performance. For this purpose, we measured the execution of the scenarios displayed in
Figures 5, 6, 7, and 8. The setSuper primitive was used to change types and inheritance trees
in prototype- and class-based models. The number of invocations was 1000, 5000, 10,000, and
20,000.

Table 1 shows the execution times in milliseconds of each primitive and tested language. The
languages were divided into two groups, depending on their object model. The execution times
of the class-based languages are on the left side of the table, and those of the prototype-based
languages are on the right. These benchmarks have two implementations in zRotor, one using
the class-based model (left) and one using the prototype model (right). The first four rows show
the assessment of the type change primitive (TC)—the scenario in Figure 5 for the class-based
model, and Figure 7 for the prototype-based one. The four last rows show the inheritance tree
change (ITC)—the scenario in Figure 6 for the class-based model, and that in Figure 8 for the
prototype-based model.

Class-based Model Prototype-based Model
Invocations zRotor GST ACL SBCL zRotor Ruby CPy2 CPy3 Jy IPy

T
C

1,000 1.25 1.13 15 31 1.61 5,203 1.01 1.01 10.52 4.76
5,000 5.07 5 63 125 6.53 26,093 4.24 3.47 25.06 6.97

10,000 12.20 16 109 265 11 52,218 7.35 7.83 35.68 10.46
20,000 21.29 27 171 469 22.57 104,593 14.69 14.37 52.31 17.75

IT
C

1,000 1.07 1 4,188 5,250 1.01 2,969 1.97 79 7.65 3.41
5,000 5.4 4 250,048 32,328 4.23 14,766 6.07 390 10.59 7

10,000 9.78 20 1,038,704 83,531 8.54 29,516 12.08 766 22.21 12.18
20,000 20.08 34 3,555,363 265,531 14.13 59,062 24.35 1,531 37.68 22.97

Table 1: Execution time (ms) of the microbenchmark, incrementing the number of invocations to setSuper (GST
stands for GNU Smalltalk, ACL for Allegro Common Lisp, SBCL for Steel Bank Common Lisp, CPy for CPython,
Jy for Jython, and IPy for IronPython; TC stands for Type Change and ITC for Inheritance Tree Change).

We can see in Table 1 that a linear increase in the number of invocations involves a linear
increase in the execution times. Performing a regression analysis for a linear relationship between
the number of invocations and the execution time, the lowest value of the Pearson coefficient,
obtained by ACL in the ITC primitive, was 0.97879. The two implementations of Lisp, ACL
and SBCL, obtained the highest increase of execution time relative to the increase in the number
of invocations. On the other hand, both Jython and IronPython have the lowest such increase.
For these two Python implementations, we augmented the number of invocations to 20,000,000,
measuring the execution time per invocation. This measurement became stable in both languages
(in the range of 100,000 and 500,000 invocations). Jython spends 1.127 (TC) and 1.732 (ITC)
microseconds per invocation, whereas IronPython spends 1.004 (TC) and 1.204 (ITC). zRotor
stabilizes at 0.914 (TC) and 0.706 (ITC) microseconds per invocation.

Figure 11 shows the geometric mean of the runtime performance relative to zRotor. When
an execution time ratio is much higher than the rest, its representation has been reduced in order

20

1.62

3.71

3.39

1.90
2

3

4

10.17

23.26

4,607 42,967

7,589

2,865

91.5

E
x

e
cu

ti
o

n
T

im
e

 r
e

la
ti

v
e

 t
o

 Я
R

o
to

r

1 1
1.10

1.24

0.65

1.62

0.62

1.24

0

1

2

Type Change Inheritance Tree Change

ЯRotor GNU Smaltallk Allegro CL SBCL Ruby Python 2 Python 3 Jython IronPython

E
x

e
cu

ti
o

n

Figure 11: Average execution time relative to zRotor, incrementing the number of invocations to setSuper (lower
values are better).

to improve the visualization of the figure (the values are displayed over each bar). The languages
with the higher values are Ruby, Steel Bank Common Lisp (SBCL), and Allegro Common Lisp
(ACL), whose execution time was 4607, 23, and 10 times that obtained by zRotor for type change,
and 2865, 7589 and 42,967 times slower in the case of changing the inheritance tree.

Comparing our system with the two implementations of Python over a virtual machine, i.e.,
Jython and IronPython, zRotor is 2.71 times faster than Jython at executing the type change
primitive, and 2.39 for the inheritance tree change. Reflective Rotor was 24% and 90% faster than
IronPython. In the case of Smalltalk, our system offers 10% and 24% better runtime performance
at running these two primitives.

Only the CPython implementations of the type change functionality had a better performance
than ours (53.84% for CPython 2 and 61.29% for CPython 3), whereas zRotor offers a faster
execution of the inheritance tree change primitive (by 62.84% over CPython 2 and 90 times that
of CPython 3). This huge difference between the two versions of CPython in the execution of
the second primitive—also observed in the rest of measurements—makes us think that the imple-
mentation of this primitive in CPython 3 may not include the optimizations of its previous version
yet.

The better runtime performance of CPython in the type change primitive may be due to the spe-
cific optimizations that can be implemented when only the prototype-based model is provided. The
implementation of type change in this model can be accomplished by merely changing the value
of a pointer (i.e., __class__). Since zRotor provides both object models, the additional work
to adapt the instance members to its new type causes this performance difference. As mentioned
in Section 5, when zRotor performs a type change, all the members in the object are marked as
changed in order to postpone the object adaptation to member access. This lazy adaptation policy

21

Class-based Model
Invocations zRotor GST ACL SBCL

T
C

1,000 6,647,808 7,888,896 47,566,848 34,258,944
5,000 7,884,800 7,966,720 48,025,600 37,941,248

10,000 8,466,432 7,970,816 48,697,344 42,561,536
20,000 9,555,968 8,101,888 48,697,344 43,159,552

IT
C

1,000 7,368,704 7,888,896 46,739,456 46,735,360
5,000 7,368,704 7,974,912 59,486,208 56,492,032

10,000 7,368,704 8,040,448 69,750,784 68,845,568
20,000 7,368,704 8,167,424 72,667,136 96,993,280

Prototype-based Model
Invocations zRotor Ruby CPy2 CPy3 Jy IPy

T
C

1,000 6,656,000 6,025,216 4,636,672 5,816,320 39,526,400 33,157,120
5,000 7,634,944 11,853,824 4,698,112 5,816,320 39,546,880 33,181,696

10,000 7,888,896 19,156,992 4,775,936 5,816,320 39,628,800 33,185,792
20,000 9,527,296 33,746,944 4,886,528 5,816,320 38,653,952 33,198,080

IT
C

1,000 7,348,224 5,353,472 4,648,960 5,828,608 38,494,208 33,148,928
5,000 7,348,224 8,581,120 4,710,400 5,828,608 39,084,032 33,148,928

10,000 7,348,224 12,623,872 4,792,320 5,828,608 39,501,824 33,177,600
20,000 7,348,224 20,697,088 4,898,816 5,828,608 39,526,400 33,640,448

Table 2: Memory consumption (KB) of the microbenchmark, incrementing the number of invocations to setSuper.

involves a performance optimization when running more realistic workloads (see Section 6.3), but
is not as fast as simply changing a pointer (i.e., the CPython approach).

We have also measured the memory consumption. Table 2 shows the values obtained in
KBytes. In the type change primitive, all the implementations but CPython 3 increase their mem-
ory consumption as the number of invocations increases. For the inheritance tree change, only the
memory consumption of zRotor and CPython 3 remains constant as the number of invocations
increases.

Figure 12 displays the geometric mean of memory consumption relative to zRotor. The fol-
lowing languages require several times more memory than zRotor in the type and inheritance
tree change primitives: ACL (4.98 and 7.31), SBCL (3.87 and 7.79), Jython (4 and 4.33), and
IronPython (3.22 and 3.53). Ruby consumes 82% and 42% more memory than our platform,
but Smalltalk is almost the same as out platform (1% less for type change, and 9% more in the
inheritance tree manipulation). CPython implementations require less memory than ours. They
require 60% (CPython 2) and 74% (CPython 3) of the memory we use in type change, and 65%
and 79% for the second primitive. This difference may be caused by the common memory con-
sumption introduced by the use of JIT compilation [54]. The performance advantages offered by a
JIT compiler are commonly offset by its higher memory consumption [54]. This fact is observed
in the four different implementations of Python, where those that use a JIT-compiler (Jython and
IronPython) require significantly more memory than the interpreted-based ones (CPython 2 and
3)—this trend is visible in the results for all the benchmarks presented in this paper.

6.2.2. Increasing the Number of Members
After analyzing the effect of the number of invocations of the setSuper primitive on the

runtime performance, we now analyze the influence of the number of members involved in a
dynamic inheritance operation. As explained in Section 4, dynamic inheritance operations are

22

5.98

8.31

4.87

8.79

5.00
5.33

4.22
4.535

6

7

8

9

C
o

n
su

m
p

ti
o

n
 r

e
la

ti
v

e
 t

o
 Я

R
o

to
r

1 10.99 1.09

1.82
1.42

0.60 0.650.74 0.79

0

1

2

3

4

Type Change Inheritance Tree Change

ЯRotor GNU Smaltallk Allegro SBCL Ruby Python 2 Python 3 Jython IronPython

M
e

m
o

ry
C

o
n

su
m

p
ti

o
n

 r
e

la
ti

v
e

Figure 12: Average memory consumption relative to zRotor, increasing the number of invocations to setSuper
(lower values are better).

composed of the addition and deletion of members to classes and objects. Figure 5 shows that
changing the cd instance from UpcomingRelease to StandardRelease involves the addition of
the members manufacturer, releaseDate, getManufacturer, and getReleaseDate, and the
deletion of price and getPrice. This second microbenchmark increases the number of methods
and attributes (10, 100, and 1,000) to be added and deleted (the A and D sets defined in Section 4)
in the invocation of setSuper—the number of invocations has been fixed at 5000. The scenarios
are those described by Figures 5, 6, 7, and 8.

Table 3 shows the execution times in milliseconds. There are two interesting observations to
make regarding the influence of the number of members on the runtime performance. The first
issue is that an increase in the number of methods does not seem to involve a notable decrease
in the runtime performance in any language. We carried out a regression analysis for a linear
relationship between the number of methods and the execution time, conducting an Analysis of
Variance (ANOVA). In that analysis, Jython obtained the greatest variable coefficient of execution
time, but only 0.0163 for type change and 0.0098 for inheritance tree modification. We think this
low dependence is produced by the fact that methods are placed in the representations of classes in
both models, and changing the inheritance and type relationships does not produce a modification
of the internal structures of classes and objects.

The second issue we have identified from the data in Table 3 is that, unlike prototype-based
languages, the runtime performance of class-based languages seems to deteriorate when the num-
ber of attributes is increased (zRotor is an exception because we provided a hybrid approach).
GST, ACL, and SBCL (all class-based languages) show a clear dependence of the execution time
on the number of attributes, for both primitives, whereas the execution times of Python and Ruby
(prototype-based) have almost no variation. The class-based object model requires the object
structure to be modified when dynamic inheritance is used, causing a runtime performance penalty.
This penalty does not take place with methods, because it does not involve the dynamic evolution

23

of classes and objects.
The performance of zRotor does not depend significantly on the number of members, even

though it is implemented over a class-based virtual machine. This is because of the lazy adaptation
strategy we followed in the implementation (Section 5), which is closer to the prototype-based
object-model semantics.

Class-based Model Prototype-based Model
Memb. zRotor GST ACL SBCL zRotor Ruby CPy2 CPy3 Jy IPy

T
C A

ttr
ib

. 10 6.33 2 125 219 5.89 26,156 3.71 3.66 27.49 7.78
100 14.55 16 1,562 1,804 14.55 26,171 3.81 3.58 23.46 11.13

1,000 14.83 1,219 15,574 66,625 16.35 27,953 3.23 3.59 25.99 59.81

M
et

h. 10 6.38 5 47 125 6.09 26,375 3.72 3.18 24.22 7.61
100 6.61 17 47 125 6.71 26,500 3.83 3.4 39.23 7.18

1,000 6.76 18 47 125 6.6 26,797 3.85 3.65 46 7.92

IT
C A

ttr
ib

. 10 5.30 16 254,672 35,234 5.47 14,781 5.94 375.00 10.01 7.74
100 5.58 18 599,102 103,805 5.27 14,906 5.89 375.00 12.80 10.70

1,000 5.48 1,216 3,880,875 937,406 5.25 15,484 6.14 375.00 12.98 37.80

M
et

h. 10 4.99 4 208,547 32,578 4.89 14,797 5.68 375.00 12.99 7.88
100 5.18 15 296,953 32,140 5.27 15,062 6.28 360.00 19.23 7.19

1,000 5.71 16 326,648 33,609 4.79 15,219 6.17 437.00 25.00 7.47

Table 3: Execution time (ms) of the microbenchmark, incrementing the number of members.

Figures 13 and 14 display the geometric mean of the execution times relative to zRotor ob-
tained from the data in Table 3. The results are very similar to those analyzed in the previous
section. ACL, SBCL, and Ruby are many times slower than zRotor: ACL is 66 (TC attributes),
6.62 (TC methods), 114,046 (ITC attributes), and 64,767 (ITC methods) times slower; 146 (TC
attributes), 19 (TC methods), 17.8 (ITC attributes), and 5.14 (ITC methods) for SBCL; and 2,913
(TC attributes), 4,287 (TC methods), 2,753 (ITC attributes), and 2,815 (ITC methods) for Ruby.
Jython is 1.6, 3.99, 1.29, and 2.35 times slower than zRotor in the four different scenarios. We
are also 41%, 14%, 140%, and 54% faster than IronPython, and 54%, 1%, 347%, and 5% faster
than Smalltalk.

As before, the two implementations of CPython are the fastest for the type change primitive.
CPython 2 requires only 38% and 60% of the time zRotor employs to run the same code, and
these percentages are 37% and 56% for CPython 3. However, in the inheritance tree change tests
zRotor was 19% and 26% faster than CPython 2, and 74 and 80 times faster than CPython 3. As
in the previous section, the runtime performances of these two implementations of Python differed
notably when executing this dynamic inheritance primitive.

The memory consumption of this second microbenchmark is shown in Table 4. Figure 15
shows the geometric mean of the memory consumption relative to zRotor for each language and
operation. The results are similar to those obtained in the previous memory measurements. The
memory consumption of ACL, SBCL, Jython, and IronPython is several times (from 3.1 to 11.57)
greater than that of zRotor. On average, Ruby and Smalltalk use 31.36% and 7.84%, respectively,
more memory than our platform. As in the previous section, CPython implementations are the
ones that require less memory: the average consumption is 70.36% and 86.08% of that of zRotor.

IronPython has more memory consumption and worse runtime performance than zRotor, even
though these two are based, respectively, on the CLR and SSCLI implementations of the CLI. Iron-
Python uses the DLR (see Section 7). Even though the CLR is notably faster than the SSCLI—3.34

24

67.4

7.62

147.6

20.27

2,914 4,288

4.99

4

5

6

7

8

T
im

e
 r

e
la

ti
v

e
 t

o
 Я

R
o

to
r

1 1

1.54

1.01

0.38
0.60

0.37 0.53

2.60

1.41
1.14

0

1

2

3

4

Type Change (attributes) Type Change (methods)

ЯRotor GNU Smalltalk Allegro CL Steel Bank Common Lisp Ruby Python 2 Python 3 Jython IronPython

E
x

e
cu

ti
o

n
T

im
e

 r
e

la
ti

v
e

Figure 13: Average execution time relative to zRotor, running the type change primitive (lower values are better).

4.47

114,047
64,768

18,864
6,146

2,754 2,816

75.28 81.47

4

5

T
im

e
 r

e
la

ti
v

e
 t

o
 Я

R
o

to
r

1 1 1.051.19 1.26

2.29

3.35

2.40

1.54

0

1

2

3

4

Inheritance Tree Change (attributes) Inheritance Tree Change (methods)

ЯRotor GNU Smalltalk Allegro CL Steel Bank Common Lisp Ruby Python 2 Python 3 Jython IronPython

E
x

e
cu

ti
o

n
T

im
e

 r
e

la
ti

v
e

Figure 14: Average execution time relative to zRotor, running the inheritance tree change primitive (lower values are
better).

times faster in the assessment detailed in Section 6.4—zRotor (based on the SSCLI) is signifi-
cantly more efficient than IronPython (based on the CLR).

6.3. Execution of Existing Benchmarks
The objective of the previous microbenchmarks was to measure the efficiency of the dynamic

inheritance primitives, including an analysis of its dependence on the number of invocations and
members. Although this first assessment provides basic information about the efficiency of these

25

Members zRotor GST ACL SBCL

T
C A

ttr
ib

. 10 8,105,984 8,245,248 47,136,768 42,676,224
100 8,278,016 9,998,336 58,019,840 45,342,720

1,000 8,417,280 9,633,792 156,074,261 61,313,024

M
et

h. 10 7,905,280 7,983,104 47,022,080 40,124,416
100 7,933,952 8,081,408 71,077,888 45,473,792

1,000 8,413,184 8,560,640 311,635,968 62,521,344
IT

C A
ttr

ib
. 10 7,348,224 8,249,344 59,486,208 57,511,936

100 7,348,224 9,957,376 78,864,384 62,443,520
1,000 7,442,432 9,637,888 291,754,150 132,182,016

M
et

h. 10 7,352,320 8,048,640 52,940,800 57,061,376
100 7,389,184 8,155,136 53,116,928 57,245,696

1,000 7,827,456 8,568,832 54,878,208 76,152,832

Members zRotor Ruby CPy2 CPy3 Jy IPy

T
C A

ttr
ib

. 10 8,105,984 11,964,416 4,694,016 5,820,416 38,977,536 33,206,272
100 8,278,016 11,759,616 4,919,296 5,980,160 40,493,056 33,169,408

1,000 8,417,280 13,312,000 6,742,016 8,183,808 43,900,928 34,455,552

M
et

h. 10 7,905,280 11,956,224 4,706,304 5,828,608 38,760,448 33,177,600
100 7,933,952 11,759,616 4,853,760 6,135,808 42,418,176 33,284,096

1,000 8,413,184 13,266,944 8,118,272 9,555,968 78,995,456 34,476,032

IT
C A

ttr
ib

. 10 7,348,224 8,572,928 4,710,400 5,836,800 38,690,816 33,189,888
100 7,352,320 8,433,664 4,923,392 5,996,544 40,415,232 33,189,888

1,000 7,450,624 9,867,264 6,742,016 8,183,808 44,244,992 34,447,360

M
et

h. 10 7,348,224 8,572,928 4,718,592 5,840,896 39,591,936 33,202,176
100 7,393,280 8,429,568 4,870,144 6,148,096 41,349,120 33,222,656

1,000 7,827,456 9,818,112 8,118,272 9,555,968 58,920,960 34,422,784

Table 4: Memory consumption (KB) of the microbenchmark, incrementing the number of members.

8.24

12.54 12.57

7.13

5.64
6.00

9.76

8.36

4.98

6.27

5.50
6.10

4.10 4.16
4.54 4.47

6

8

10

12

14

C
o

n
su

m
p

ti
o

n
re

la
ti

v
e

 t
o

 Я
R

o
to

r

1 1 1 11.09 1.02 1.21 1.10
1.49 1.52

1.20 1.19
0.64 0.71 0.71 0.760.78 0.87 0.87 0.93

4.10 4.16

0

2

4

Type Change (attributes) Type Change (methods) Inheritance Tree Change (attributes) Inheritance Tree Change (methods)

ЯRotor GNU Smalltalk Allegro CL Steel Bank Common Lisp Ruby Python 2 Python 3 Jython IronPython

M
e

m
o

ry
 C

o
n

su
m

p
ti

o
n

Figure 15: Average memory consumption relative to zRotor, increasing the number of members (lower values are
better).

primitives, the benchmarks did not consider realistic workloads. As an example, we measured the
time required to change the type of an object, but its new members were not accessed afterwards.
This is the reason why in this section we now evaluate the efficiency of dynamic inheritance under
more realistic workloads. We have translated three existing benchmarks that use dynamic inheri-
tance into the selected languages, evaluating their runtime performance and memory consumption.

26

Class-based Model
zRotor GST ACL SBCL

Execution Time 172 421 36,203 16,562
Memory Consumption 10,485,760 12,353,536 47,439,872 71,847,936

Prototype-based Model
zRotor Ruby CPy2 CPy3 Jy IPy

Execution Time 172 371,437 421 36,203 16,562 371,437
Memory Consumption 10,485,760 107,589,632 12,353,536 47,439,872 71,847,936 107,589,632

Table 5: Execution time (ms) and memory consumption (KB) of the Word Count application.

6.3.1. Word Count
Word Count [55] is the first application of the set of three existing benchmarks we have used

to evaluate dynamic inheritance. Words, lines, and characters within a text are counted, examining
each character individually. This program implements the State design pattern [41] using dynamic
inheritance. An instance changes its type between classes that represent all the possible states of
an automaton. It defines three different states (inside a word, blank space, start of a new line),
each one modeled by a different class. The object (automaton) varies its behavior depending on
its state. Since the state change is a frequent operation, dynamic inheritance is intensively used at
runtime. We used a string with 70,000 characters to run this benchmark.

Table 5 shows the execution times and memory consumption of this program. Figure 16
displays the relative runtime performance, dividing the values in Table 5 by those exhibited by
zRotor. In this scenario, our platform obtains both the best runtime performance and the lowest
memory consumption (the highest efficiency). Smalltalk is the next best, consuming 145% more
time and 18% more memory. In this test, the CPython implementations are more than 2.7 times
slower, and the memory consumption of CPython 2 is almost the same as ours (although CPython
3 needs 2.49 times more memory). The rest of the systems have a similar pattern as in the previous
assessments. IronPython and Jython are 4.27 and 5.91 times slower. The ratios of SBCL, ACL,
and Ruby are 96, 210, and 2,161, respectively.

In the execution of a more realistic program, the use of a JIT-compiler seems to provide
significant runtime performance benefits with an efficient level of memory consumption. The
evaluated program makes frequent use of the type change operation. This primitive also in-
volves the use of duck typing because of the dynamic typing nature of dynamic inheritance (the
releaseProductWithPrice method in Figure 9 is an example of this connection). The runtime
performance benefits provided by zRotor when duck typing is used [18] also seem to have had a
considerable bearing on the comparative performance increase.

6.3.2. Pybench
We now evaluate the second existing benchmark that uses dynamic inheritance. Pybench is a

Python benchmark designed to measure the performance of standard Python implementations [56].
It is composed of a collection of 52 tests that measure different aspects of the Python programming
language. We have suppressed those tests that employ particular features of Python not provided
by the other languages (i.e., tuples, dynamic code evaluation, and Python-specific built-in func-
tions), and those that use any input/output interaction. We have translated 30 tests of the Pybench

27

210.6

96.36

6.85

2,161

10.26

6.91

5.276

8

10

T
im

e
 a

n
d

 M
e

m
o

ry
 C

o
n

su
m

p
ti

o
n

 r
e

la
ti

v
e

 t
o

 Я
R

o
to

r

1 1

2.45

1.18

4.52

3.82

1.01

3.73
3.49

4.58

5.27

3.7

0

2

4

6

Execution Time relative to ЯRotor (Word Count) Memory Consumption relative to ЯRotor (Word Count)

ЯRotor GNU Smalltalk Allegro CL Steel Bank Common Lisp Ruby Python 2 Python 3 Jython IronPython

E
x

e
cu

ti
o

n
T

im
e

 a
n

d
 M

e
m

o
ry

Figure 16: Average execution time and memory consumption relative to zRotor, running the Word Count application
(lower values are better).

benchmark.
Each test was modeled by a single class that implemented its execution in a run method. We

created an object whose type changes from one test to another, invoking its corresponding run
method. The 30 tests were sequentially run using dynamic inheritance. This benchmark makes
moderate use of dynamic inheritance and extensive use of dynamic typing operations.

Figure 17 shows the execution times and memory consumption relative to zRotor of exe-
cuting the whole Pybench benchmark. In this scenario, zRotor also obtained the best runtime
performance, and only the two CPython implementations employed less memory: 87% (version
2) and 97% (version 3). If we calculate efficiency as the ratio of runtime performance (the inverse
of execution time) to memory consumption, our platform obtains the best efficiency, being 103%
and 158% better than CPython 2 and 3, respectively.

Pybench combines dynamic inheritance with other common operations of dynamic languages.
The influence of these non-reflective operations has made IronPython improve its relative runtime
performance (between the two CPython implementations). However, IronPython consumes five
times more memory than CPython. Jython has also improved its runtime performance over the pre-
vious section. These two JIT-compiler VM Python implementations (IronPython and Jython) have
improved their runtime performance in this scenario, while requiring more memory resources. On
the other hand, Smalltalk has the opposite tendency (it does not implement a JIT-compiler): mem-
ory consumption is only 27% higher than zRotor, but runtime performance is 45 times worse—it
was significantly lower in the assessment of dynamic inheritance.

The source code in Pybench combines dynamic inheritance with other common operations of
dynamic languages. The influence of running these operations has given IronPython the better
runtime performance of the two CPython implementations, although the memory consumption
is significantly higher (more than a factor of five). Since this trend is also observed in Jython,

28

46.56

329

7.83

171.36

28.97

11.14

8

10

12

T
im

e
 a

n
d

 M
e

m
o

ry
 C

o
n

su
m

p
ti

o
n

 r
e

la
ti

v
e

 t
o

 Я
R

o
to

r

1 1
1.27

2.65
2.32

0.87

2.65

0.97

5.80
5.37

2.62

5.89

0

2

4

6

ЯRotor GNU Smalltalk Allegro CL Steel Bank Common Lisp Ruby Python 2 Python 3 Jython IronPython

Execution Time relative to ЯRotor (Pybench) Memory Consumption relative to ЯRotor (Pybench)

E
x

e
cu

ti
o

n
T

im
e

 a
n

d
 M

e
m

o
ry

Figure 17: Average execution time and memory consumption relative to zRotor, running the Pybench benchmark
(lower values are better).

it may be caused by the optimizations performed by Java and .NET JIT-compilers (commonly
requiring more memory resources). Smalltalk, however, has the opposite tendency (it does not
implement a JIT-compiler): the memory consumption is only 27% higher than zRotor, but the
runtime performance is 45 times worse—while it was by a factor less than one in the assessment
of dynamic inheritance.

Table 6 gives in detail the execution times of each single test in Pybench (the memory con-
sumption of the whole benchmark is shown in Table 7), allowing a more detailed analysis. In
many of the tests that perform Unicode string operations (ConcatUnicode, CreateUnicode-
WithConcat, and UnicodeMappings) CPython, IronPython and, in UnicodeMappings, Jython
and Ruby, obtain better runtime performance than zRotor. Therefore, we analyzed the runtime
performance of the original SSCLI running these Unicode string tests. We found out that the SS-
CLI is not very optimized when manipulating Unicode strings: its production version, the CLR,
is, on average, 3.6 times faster; and zRotor is only 5.4% slower.

IronPython performs better executing some tests (IfThenElse, NestedForLoops, ForLoops,
and DictCreation) where the CLR is much faster than the original SSCLI, and the reflective
features of zRotor are not used at all (see Section 6.4 for a more detailed comparison between
the SSCLI and the CLR). This fact is also observed in SBCL, which implements a compiler to
native code. In 9 of the 30 tests, SBCL has a better runtime performance. These tests do not
make extensive use of dynamic features. The exception handling implementation of this language
(together with ACL, the other Lisp implementation) involves an important runtime performance
penalty. However, if this test is not considered, zRotor is still 95.26% faster than SBCL.

29

Class-based Model Prototype-based Model
Pybench test zRotor GST ACL SBCL Ruby CPy2 CPy3 Jy IPy
SimpleIntegerArith. 25 11,104 42,033 516 1,344 422 610 1,500 234
SimpleFloatArith. 181 4,799 43,006 31 2,219 485 422 921 266
SimpleIntFloatArith. 135 11,058 44,056 156 1,344 421 609 1,438 250
SimpleLongArith. 59 14,580 22,252 152 1,641 375 469 1,219 281
ConcatUnicode 711 28,968 23,985 4,031 3,797 515 843 1,140 609
CompareUnicode 281 10,792 23,422 15 2,187 422 344 563 312
CreateUnicodeWithC. 446 10,769 13,062 1,172 2,406 250 375 797 343
UnicodeMappings 2,606 6,339 4,672 2,750 1,140 483 516 1,578 2,093
CompareIntegers 15 510 55,606 15 1,953 500 734 1,453 16
CompareFloats 10 531 36,517 15 1,562 453 438 750 16
CompareFloatsInt. 8 343 39,035 15 1,062 468 1,609 766 297
CompareLongs 9 1,274 32,219 15 1,781 1,032 422 1,343 937
CreateNewInstances 40 564 5,562 109 2,016 515 484 1,235 266
NormalClassAttr. 273 1,401 64,048 172 4,593 516 1,016 1,062 1,531
NormalInstanceAttr. 339 1,179 62,985 219 1,234 484 578 969 1,546
SimpleListManip. 81 3,940 31,547 1,406 1,937 422 453 1,359 531
ListSlicing 78 133,443 3,156 63 203 750 781 8,953 1,875
CreateInstances 54 744 6,950 141 2,656 672 657 969 641
TryExcept 27 4,475 1,196,239 1,219,843 922 391 328 219 359
DictCreation 154 18,680 44,187 1,297 4,562 484 500 1,531 109
DictWithStringKeys 52 19,404 43,542 219 3,797 469 469 797 922
DictWithFloatKeys 37 17,052 37,366 266 2,859 1,141 1,250 750 828
DictWithIntegerKeys 39 24,572 45,063 265 1,562 500 531 813 797
SimpleDictManip. 110 3,821 27,156 297 1,609 953 859 1,343 1,062
IfThenElse 15 310 32,278 16 1,937 437 640 2,500 187
NestedForLoops 304 1,020 73,896 78 6,937 594 579 1,062 250
ForLoops 378 632 81,250 78 8,297 453 390 1,078 219
PythonFunctionCalls 226 1,474 34,338 16 375 578 594 1,047 156
PythonMethodCalls 417 895 57,851 141 984 672 656 1,422 1,640
Recursion 66 564 55,656 78 2,390 875 922 1,219 297
Total 7,200 335,237 2,368,423 1,233,891 80,234 16,735 19,078 41,796 18,875

Table 6: Execution time (ms) of the Pybench benchmark.

Class-based Model Prototype-based Model
zRotor GST ACL SBCL Ruby CPy2 CPy3 Jy IPy

10,014,720 12,754,944 78,405,632 290,168,832 26,513,408 8,761,344 9,748,480 53,776,384 58,974,208

Table 7: Memory consumption (KB) of the Pybench benchmark.

6.3.3. The Shootout Benchmark
The last existing benchmark we used to evaluate the selected implementations is the Shootout

benchmark (also known as the Computer Language Benchmarks Game) [57]. This benchmark
implements different well-known algorithms for statically typed programming languages (no re-
flection is used at all). We have added dynamic inheritance the same way we did for the Pybench
benchmark. We ran the following tests, which do not perform any I/O interaction.

• NBody. Predicts the motion of a group of celestial objects that interact with each other
gravitationally.

• Fannkuch redux. This benchmark involves operations (mostly permutations) on vectors of
numbers.

• Spectral norm. Calculates the spectral norm (eigenvalue) of a square matrix using the power
method.

30

• Mandelbrot. Calculates a particular instance of the Mandelbrot fractal set.

• Binary trees. Allocates, walks, and deallocates many bottom-up binary trees.

Table 8 gives the details of the performance of the programs selected from the Shootout bench-
mark, while Table 9 shows the total memory consumption. Similarly, Figure 18 shows the total
execution times and memory consumption relative to zRotor.

zRotor obtained the better runtime performance, but the rest of the languages did not show
similar values to before. In this benchmark, where most of the code is statically typed, and dynamic
inheritance does not represent an important amount of the total execution time, SBCL was the
second fastest implementation after zRotor: it was only 40% slower than our system, while it
had been over 20 times slower in all of the previous tests. This difference seems to be due to
the kind of code executed. Since SBCL implements a high performance compiler [46], its best
optimizations are obtained when types are known at compile time. We have also realized that,
in those tests where SBCL obtained better runtime performance, the code usually is performing
computations using float numbers. This difference is because the JIT-compiler of the SSCLI does
not generate optimized code for float number computations. We have compared its performance
with that of the CLR, obtaining a difference by a factor of 20, while the average value obtained in
Section 6.4 had been 3.34. In order to test this idea, we also developed the Mandelbrot algorithm
of the Shootout benchmark (in both zRotor and SBCL), using integers instead of floats. The
result was that zRotor was 3.53 times faster than SBCL (with float numbers, it is the SBCL that
is 2.12 times faster than zRotor). Finally, SBCL employs 6.55 times more memory than zRotor.
If we compare the runtime performance ratio to memory consumption, zRotor is 4.4 times more
efficient than SBCL.

A discussion of the benefits of JIT-compilation can be made by comparing the different im-
plementations of Python. First, we can see how the difference in runtime performance between
zRotor and CPython increases as the applications use more statically typed code. This differ-
ence peaked (3.4 times faster) when running the Shootout benchmark and bottomed out (61.29%
slower) when executing our synthetic microbenchmark. Comparing the JIT-compiler IronPython
implementation with CPython2, the results are similar. The execution time ratios are: 1.9 (mi-
crobenchmark), 1.38 (word count), 1.12 (pybench), and 0.9749 (shootout). This trend was also
observed when comparing Jython, which uses the JIT-compiler of the JVM, with CPython 2. Re-
garding memory consumption, JIT-compiler implementations require more memory to run all the
tests, and there is no correlation with the type of benchmark. On average, Jython and IronPython
consume 5.4 and 4.7 times more memory than CPython 2.

Class-based Model Prototype-based Model
Shootout test zRotor GST ACL SBCL Ruby CPy2 CPy3 Jy IPy
NBody 344 9,854 2,750 547 3,953 953 889 1,655 625
Fannkuch 172 2,234 446 63 9,625 1,343 1,266 1,985 1,047
SpectralNorm 250 5,126 2,493 203 5,531 1,203 1,905 1,717 1,000
Mandelbrot 47 2,706 584 15 750 171 172 421 109
BinaryTrees 281 1,804 997 360 2,015 531 641 719 234
Total 1,109 21,724 7,270 1,551 21,875 4,203 4,875 6,500 3,016

Table 8: Execution time (ms) of the Shootout benchmark.

31

Class-based Model Prototype-based Model
zRotor GST ACL SBCL Ruby CPy2 CPy3 Jy IPy

6,057,984 10,371,072 47,706,112 45,756,416 6,483,968 5,332,992 8,818,688 38,535,168 34,222,080

Table 9: Memory consumption (KB) of the Shootout benchmark.

19.59

6.56

7.87
7.55

19.72

4.40

5.86
6.36

5.65

5

7

T
im

e
 a

n
d

 M
e

m
o

ry
 C

o
n

su
m

p
ti

o
n

 r
e

la
ti

v
e

 t
o

 Я
R

o
to

r

1 1

1.71
1.40

1.07

3.79

0.88

4.40

1.46

2.72

1

3

ЯRotor GNU Smalltalk Allegro CL Steel Bank Common Lisp Ruby Python 2 Python 3 Jython IronPython

E
x

e
cu

ti
o

n
T

im
e

 a
n

d
 M

e
m

o
ry

 C
o

n
su

m
p

ti
o

n
 r

e
la

ti
v

e
 t

o

Execution Time relative to ЯRotor (Shootout) Memory Consumption relative to ЯRotor (Shootout)

Figure 18: Average execution time and memory consumption relative to zRotor, running the Shootout benchmark
(lower values are better).

6.4. The Cost of Reflection
This last evaluation section compares the original SSCLI implementation with our platform,

using the same programming language (C#). We ran a set of benchmarks that use neither reflection
nor dynamic inheritance. The results give us a measurement of the cost of our reflective hybrid
class- and prototype-based object-oriented model, when non-reflective class-based statically typed
applications are executed. We also compared our base system (the SSCLI) with the production
implementation of the CLI: the CLR. This assessment aimed at estimating what might be the
efficiency of our system in case it was included in the CLR implementation.

We have selected three existing benchmarks:

• Bruckschlegel. This benchmark was designed by Thomas Bruckschlegel to evaluate the
characteristics of Java, C#, and C++ on Windows and Linux. It is composed of a set of 13
elementary tests that use fundamental data processing and arithmetic operations [58].

• Java Grande [59]. A port to C# of a subset of this benchmark suite developed by Chandra
Krintz [60]. This port consist of three sections.

1. Section 1 (low level operations). Arith, execution of arithmetic operations; Assign,
variable, object, and class variables, and array assignments; Cast, casting between
different primitive types; Create, object and array creation; and Loop, loop overheads.

32

2. Section 2 (Kernels). FFT, one-dimensional forward transformation of N complex num-
bers; Heapsort, the heap sort algorithm over arrays of integers; and Sparse, manage-
ment of an unstructured sparse matrix stored in compressed-row format with a pre-
scribed sparsity structure.

3. Section 3 (Large Scale Applications). RayTracer, a 3D ray tracer of scenes that contain
64 spheres, and are rendered at a resolution of N×N pixels, but removing the code that
paints these spheres on the screen (only the calculations are performed).

• Zorn. Three real C# applications collected by Ben Zorn [61], consisting of a collection
of managed code benchmarks available for performance studies of CLI implementations.
These programs are:

– LCSCBench. Based on the front-end of a C# compiler, it uses a generalized LR (GLR)
parsing algorithm. This benchmark is computationally and memory intensive, requir-
ing hundreds of megabytes of heap for the largest input file provided (a C# source file
with 125,000 lines of code).

– AHCBench. Based on compressing and uncompressing input files using Adaptive
Huffman Compression, the AHCBench size is 1,267 lines of computationally inten-
sive code, requiring a relatively small heap.

– SharpSATBench. Based on a clause-based satisfiability solver where the logic formula
is written in Conjunctive Normal Form (CNF), SharpSATbench is computationally
intensive, requiring a moderate-sized heap. This program has 10,900 lines of code.

The runtime performances and memory consumption obtained in the execution of these pro-
grams are shown in Table 10. The average execution times and memory consumption relative to
the SSCLI are displayed in Figures 19 and 20. Both representations show how our implementa-
tion involves an average runtime performance cost of 16.45%, and 4.26% more memory utilization
than the SSCLI. If we compare the runtime performance of the SSCLI with that of the CLR, the
latter is 3.34 times faster than the former, using only 4.23% more memory.

33

zRotor SSCLI CLR
Benchmark test Time Memory Time Memory Time Memory

Z
or

n LCSCBench 2,130 5,672 2,008 5,375 422 5,320
AHCBench 1,359 29,729 1,125 26,896 984 34,764
SharpSATBench 3,328 11,500 2,088 10,358 234 14,942

Ja
va

G
ra

nd
e

JGFArithBench 2,188 4,296 2,188 4,036 1,734 3,986
JGFAssignBench 672 4,316 266 4,308 31 4,212
JGFCastBench 328 4,564 328 4,244 141 4,212
JGFCreateBench 6,672 6,498 6,670 6,300 1,609 4,216
JGFLoopBench 281 4,556 266 4,232 31 4,148
JGFFFT 13,063 37,247 12,641 36,994 1,813 37,196
JGFHeapsort 2,406 8,182 1,719 7,924 313 6,158
JGFSparseMatmult 3,391 8,992 3,313 8,726 438 9,042
JGFRayTracer 61,438 5,218 38,641 5,016 2,469 4,806

B
ru

ck
sc

hl
eg

el

Int arithmetic 640 4,220 640 3,988 296 4,276
Double arithmetic 2,745 4,640 2,740 4,312 554 4,288
Long arithmetic 1,750 4,664 1,688 4,336 799 4,288
Trig 239 4,668 238 4,336 143 5,496
IO 145 4,668 145 4,336 43 5,496
Array 203 4,668 200 5,464 14 5,496
HashMap 17 5,968 17 6,464 5 5,568
HashMaps 109 5,968 73 6,464 21 5,568
Heapsort 130 7,328 124 6,464 21 5,568
Vector 15 7,328 10 6,464 4 5,568
Matrix Multiply 12,220 8,128 12,220 7,648 1,793 8,988
Nested Loops 1,047 8,132 1,047 7,648 278 9,000
String Concat 218 23,952 155 23,468 31 17,936

Table 10: Execution time (ms) and memory consumption (KB) of three different benchmarks that do not use dynamic
inheritance.

Although the memory consumption variance is low (6%), the coefficient of variation of the
runtime performance penalty is 29.9%. This is because a large number of tests have almost no
performance cost, whereas others do. This difference could be clearly seen in the two heap sort
algorithm implementations: although the cost is only 4% for the Bruckschlegel benchmark, it is
40% for the Java Grande benchmark. Analyzing the code, we realized that the main difference be-
tween them is that the former sorts an array local variable while the latter uses an object field. This
result was in contrast to the rest of the tests. Programs where there is a performance penalty are
those that perform more accesses to object members. Consequently, we evaluated the member ac-
cess and method invocation costs with a simple micro-benchmark. The results obtained converged
to the following percentages.

• The runtime performance cost of accessing an object’s field is 31.65%. This value is 93.12%
in the case of static (class) fields. The higher performance penalty of static field access
is due to the worse performance of the search mechanism for this type of member. This
penalty is caused by the code we added to provide compatibility with the storage mechanism
of the static attributes implemented by the SSCLI [18].

• Method invocation involves a performance penalty of 28.29% when the message is sent to
an object, and 29.51% when the receiver is a class.

This assessment confirms the performance penalties shown in Figure 19, identifying the places
where the addition of dynamic inheritance has involved higher costs. The JGFAssign benchmark

34

0.5

1

1.5

2

2.5

E
x

e
cu

ti
o

n
T

im
e

 r
e

la
ti

v
e

 t
o

 Я
R

o
to

r

0

ЯRotor SSCLI CLR

Zorn Java Grande Bruckschlegel

Figure 19: Average execution time relative to SSCLI, running three different benchmarks that do not use dynamic
inheritance (lower values are better).

evaluates different kinds of assignments, making a wide use of static fields. This is the rea-
son why it has the highest performance penalty (153%). The rest of the tests where the cost is
appreciable have penalties lower than 60% (16.45% on average).

7. Related Work

There have been different approaches to optimizing the support of dynamic inheritance. We
first analyze those approaches that provide dynamic inheritance using the prototype-based object
model, and then the ones that support it in the class-based one—as far as we know, there is no
other hybrid system that provides both. Finally, we will analyze those virtual machines aimed at
supporting specific features of dynamic languages.

7.1. Prototype-Based Model
Self was the first prototype-based language, in which classes are not present and objects are

defined as a collection of slots representing both attributes and methods [33]. It is a reflective
language that supports intercession and an advanced JIT-compiler virtual machine that performs

35

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
e

m
o

ry
 C

o
n

su
m

p
ti

o
n

re
la

ti
v

e
 t

o
 Я

R
o

to
r

ЯRotor SSCLI CLR

Zorn Java Grande Bruckschlegel

Figure 20: Average memory consumption relative to SSCLI, running three different benchmarks that do not use
dynamic inheritance (lower values are better).

at up to half the speed of optimized C [62]. Self provides multiple inheritance. Any slot can be
turned into a pointer to a base object (usually called a parent) by adding an asterisk as a suffix.
Dynamic inheritance is provided by simply changing the value of this pointer. An object delegates
any message it does not understand to the parent objects [63], implementing a delegation method-
lookup approach.

Cecil is a pure object-oriented programming language developed by Craig Chambers [34]. Ce-
cil implements the prototype-based object model, suppressing the concept of classes—the object is
the only abstraction. Cecil incorporates multiple-dispatch methods (multi-methods), and a flexible
static type system which allows mixing statically and dynamically typed code. Cecil implements
a particular form of dynamic inheritance by means of predicate objects [64], a mechanism to cap-
ture runtime varying object behavior. When the expression in a predicate object is true, the object
associated to that predicate expression is considered as its base object. This controlled change of
the inheritance tree at runtime allows performing type checking at compile-time.

Anderson and Drossopoulou [65] defined δ, a simple calculus that provides a formal foun-
dation for an imperative prototype-based system with delegation and dynamic inheritance. They
defined the operational semantics of reflective languages that support the addition, update, and
deletion of object methods at runtime—attributes are modeled as methods, following the approach
defined by Cardelli and Abadi in their ς calculus [20]. In addition to the list of methods, an object
contains a collection of addresses pointing to its parents. The operational semantics of δ allows
the dynamic addition, update, and modification of this collection, providing a dynamic inheritance
mechanism with a delegation-based inheritance strategy.

Python is a mature dynamic language that provides a rich set of reflective features such as
structural intercession and dynamic inheritance [35]. Python has many implementations, CPy-
thon being the reference one. Python is not commonly referred to as a prototype-based language
because it provides the concept of class. However, we have classified it as such because its se-
mantics of structural reflection and dynamic inheritance follows the prototype-based model, as

36

described in Section 4: an object may hold its own structure, being different from the one defined
by its class; besides, adapting the class structure does not involve changing the structure of its in-
stances. Therefore, Python classes are actually traits objects. In Python, the type of an object can
be changed through the __class__ attribute, and base classes can be altered via the __bases__
one.

7.2. Class-Based Model
CLOS (Common Lisp Object System) is a Lisp extension for object-oriented programming

which is part of the ANSI Common Lisp [22]. It is a reflective class-based language that provides
intercession and dynamic inheritance. Classes can be redefined by evaluating a new defclass
form. When a class is redefined, the changes are propagated to its instances and to the instances of
any of its subclasses. Class redefinition provides the functionality of changing the inheritance tree
by simply declaring a different parent. Instance updating occurs at an implementation-dependent
time (eager or lazy), but no later than the next time a slot of that instance is read or written [66].
Instance identity is maintained. The generic function change-class changes the class of an
instance to a new class. Changing an instance class from C to C ’ alters the instance structure to
match the new class C ’ structure. This change involves removing all those members of C that are
not present in the C ’ class. If C has any slot with the same name in C ’, its value is retained. The
other new slots are initialized with default values [67].

The Smalltalk approach to implementing class-based dynamic inheritance is quite similar to
that of CLOS. The superclass: message is used to dynamically modify the class inheritance
tree [27]. When a class definition changes, the existing instances are also structurally modified
(by the ClassBuilder class) in order to match the definition of their new class. Smalltalk also
provides the functionality to change the type of an object with the changeClassTo method. How-
ever, this semantics is not followed in every implementation. Both VisualWorks [47] and Dolphin
Smalltalk [48] impose the same restriction on the type change primitive: both the new and old
classes must define the same physical structure for their instances [23].

The concept of wide classes, defined by Serrano [28], is an extension of the class-based model,
which allows instances to be temporarily widened, extending their structure and behavior. The
widening operation on a single instance allows it to be temporarily transformed into an instance of
a special subclass (a wide class). This approach also defines the opposite operation (shrinking an
instance), which reshapes the instance to its original class. Widened objects preserve the subtyping
relationship, since wide classes are always derived from the original class of the instance. It is
possible to widen an object with two disjoint sets of messages and, depending on runtime values,
to pass those recently added messages. Since wide classes should be explicitly declared, the type
of an instance cannot be widened to an arbitrary subclass. This approach was implemented in the
Bigloo programming language, an open implementation of Scheme [68].

F ickleII is a small class-based language that supports the type change primitive of dynamic
inheritance to demonstrate how this feature could be introduced in an imperative, statically typed,
class-based, object-oriented language [24]. They define the type change primitive as dynamic
object reclassification: a programming language feature that allows an object to change its class
membership at runtime while retaining its identity. In F ickleII, a class definition may be preceded
by the keywords root or state. Class reclassification can only occur within a hierarchy rooted

37

with a root class. state classes are subclasses of root classes and they are the only ones that can
be reclassified. Classes that are neither root nor state are respected by reclassification [25]. The
F ickleII implementation of object reclassification offers an advantage over similar approaches
(such as wide classes): F ickleII is type-safe, i.e., any type-correct program (in terms of the type
system) is guaranteed never to attempt to access non-existing fields or methods [69].

Predicate classes are a linguistic construct proposed by Chambers [64] aimed at providing
transparent type change functionality at runtime based on dynamically evaluated predicates. Like
a normal class, a predicate class has a set of superclasses, methods, and attributes. However, unlike
a normal class, an object is automatically an instance of a predicate class whenever it satisfies a
predicate expression associated with the predicate class. That predicate expression can test the
state of the object, thus providing a form of implicit property-based dynamic inheritance (type
change). This linguistic construct was added to the Cecil programming language [34]. Because
Cecil is prototype-based rather than class-based, the adaptation of predicate classes to Cecil’s
object model was renamed to predicate objects (see Section 7.1).

The work implemented by Würthinger et al. [70] modifies an early access development build
of the Java HotSpotTM VM for Java 1.7 to allow arbitrary changes to the definition of loaded
classes. This system follows our approach of modifying a JIT-compiled VM to obtain an effi-
cient implementation of dynamic inheritance. They allow arbitrary changes to the definition of
loaded classes, focusing on the class-based object model implemented by the JVM. The static
type checking of Java is maintained and dynamic verification of the current state of the program
is performed, ensuring the type safety of class hierarchy changes. However, the programmer still
has to ensure that the semantics of the modified program is correct, and that the new hierarchy can
start running from the state left behind by the previous one [70]. This system does not permit the
programmer to change the type of an object to a new class that is loaded at runtime (e.g., using
the Class.forName method). Dynamic changes are only applied at points where a Java program
can be suspended. The instance type change algorithm modifies the garbage collector in order
to increase the size of objects, so type change can only be performed at garbage collection time.
Runtime performance after code evolution implies an approximate performance penalty of 15%,
but the slowdown of the next run after code evolution was measured to be only about 3% [71].
This system is currently the reference implementation of the hot-swapping feature (JSR 292) of
the Da Vinci Machine project (see Section 7.3).

7.3. Virtual Machines that Support Dynamic Languages
The Dynamic Language Runtime (DLR) [72] is a set of services that run on the top of the CLR,

offering a new level of support for dynamic languages on .NET [14]. The DLR is shipped with
the .NET Framework 4.0 and it is used to support IronPython, IronRuby, SilverLight, and even C#
4.0, i.e., its new dynamic type [73]. Basically, the DLR is a redesign of the object model used in
IronPython, allowing any other dynamic language to seamlessly work together, sharing libraries
and frameworks. The DLR is a new software layer over the CLR: no modification of the virtual
machine was performed to support dynamic languages. It provides duck typing, introspection, and
object-level intercession by means of a special ExpandoObject class. Dynamic inheritance is not
provided.

38

Parrot is an open source virtual machine designed to efficiently compile and execute bytecode
for dynamic languages [74]. The virtual machine is register-based rather than stack-based, and
employs continuations as the core means of flow control. Data types in Parrot are defined by means
of Polymorphic Containers (PMCs), which model the structure and behavior of each non-built-in
type. The Parrot platform implements two object-oriented PMCs: Object PMC and Class PMC.
With these PMCs, Parrot provides a class-based object model that provides structural intercession
and dynamic inheritance. However, a strong limitation is imposed: these operations throw an
exception if the current class has been instantiated [75]. Therefore, neither dynamic inheritance
nor intercession allows changing any class structure if the class has any running instance.

The Java Specification Request (JSR) 292 is aimed at supporting dynamically typed languages
over the Java platform [15]. Although the JVM has already been used to support dynamic lan-
guages such as Groovy or Jython, its runtime performance was not as good as that provided by
C-based implementations (e.g., CPython). A key part of the JSR 292 is the new invokedynamic
opcode added to the JVM. This instruction has been designed to support the implementation of
the message passing mechanism provided by dynamically typed object-oriented languages (duck
typing). It provides a dynamic linkage mechanism that helps language implementers to generate
bytecode that runs faster in the JVM. The invokedynamic specification of the JSR 292 has been
included as part of Java 1.7.

The JSR 292 specification also investigates support for hot-swapping: the ability to modify
the structure of classes at runtime. Although this feature was also expected to be delivered in Java
SE 1.7 [15], it was not finally included. However, the Da Vinci Machine (also called the Multi
Language Virtual Machine) project [16] has the objective, among others, to provide hot-swapping
to the OpenJDK implementation. This project is aimed at prototyping a number of enhancements
to the JVM, so that it can run non-Java languages (especially dynamic ones) with a performance
level comparable to that of Java itself. This approach is similar to the one presented in this paper
in the sense that we extended the semantics of a virtual machine instead of creating a new software
layer (as does the DLR). Working at the virtual machine level provides better runtime performance,
taking advantage of the JIT-compiler optimizations.

The Zero programming system is a vehicle for learning object-oriented prototype-based pro-
gramming, and a demonstration of the benefits of container-based persistence [76]. It implements
the prototype-based object model, and supports features of dynamic languages such as dynamic
inheritance, duck typing, and structural intercession. This system consists of a language-neutral
virtual machine (Zero VM), an assembler language, and a standard library. To facilitate pro-
gramming for the Zero VM, a macro-assembler and the programming languages Prowl and J– are
offered. PROWL (PROtotype Writing Language) is a programming language designed to provide
a maximum of flexibility during program development: it is prototype-based, dynamically-typed,
and structurally intercessive [77]. A distinctive feature of the Prowl language is its mechanism for
conditional inheritance, which reduces the programming complexity associated to the use of un-
restricted dynamic inheritance. This mechanism was inspired by the predicate objects of the Cecil
programming language [34]. The J– programming language is a subset of Java, showing how Zero
VM, a prototype-based dynamically typed platform, is able to support class-based statically-typed
programming languages such as Java.

The zRotor project is aimed at providing direct support of dynamic languages by a JIT-

39

compiler virtual machine that already provides efficient execution of a wide set of programming
languages [78]. First, we developed in C# all the reflective primitives provided by common dy-
namic languages inside the BCL. Once the primitives were validated in this first prototype, we
implemented these primitives in C as part of the execution environment, without altering the BCL
interface [36]. Since we used the internal SSCLI structures, data types, and routines, the runtime
performance of our previous implementation was greatly improved. The next phase was to modify
the JIT compiler in order to extend the semantics of some IL instructions to support structural
reflection and duck typing [18]. Accessing the new services in IL instead of calling the BCL
library was another significant improvement in its runtime performance. The present paper has
presented the next step of this project: adding dynamic inheritance support to the hybrid class-
and prototype-based model provided by zRotor.

8. Conclusions

The present paper presents a design of dynamic inheritance for both the class- and the prototype-
based object models that, implemented in a JIT-compiler virtual machine, was then evaluated as
providing significant runtime performance benefits with low memory consumption. The resulting
platform supports both dynamically and statically typed languages. Depending on the language
to be compiled, compilers can select the appropriate object model, generating code that uses the
specific features of dynamic inheritance and structural reflection. Since we have extended the se-
mantics of the base virtual machine, backward compatibility with existing .NET applications was
maintained. Instead of implementing an extra layer over the virtual machine that simulates dy-
namic inheritance and intercession (as does the DLR), we extended its implementation to provide
direct support for these features, obtaining significant performance benefits.

In the evaluation of different applications with realistic workloads (written in distinct lan-
guages) that made use of dynamic inheritance, our implementation had the highest efficiency.
When dynamic inheritance is a notable part of the code executed, it was at least 145% (up to 2,160
times) faster than the other systems evaluated. Running dynamically typed code, the benefit is
at least 132% (up to a factor of 328). For static typing, the values obtained range from 40% to
1,972%. The average performance penalty introduced was 16.45%. The measurements carried
out suggest that the performance benefits might be increased up to 4.32 times if our proposal were
included in the production CLR implementation.

Future work will be focused on retargeting the existing implementation of the StaDyn program-
ming language to use zRotor as a new back-end [79]. StaDyn is a research programming language
that supports both dynamic and static typing, extending the semantics of C# [80]. The current im-
plementation generates CLR code, making use of the introspective services offered by the .NET

Framework [81]. Future versions including dynamic inheritance and structural intercession will
generate both zRotor and DLR code. We are also planning to use zRotor as a new back-end for
the DSAW aspect platform [82, 83]. Structural reflection can be used to obtain flexible dynamic
aspect-oriented services [13], and zRotor might involve a runtime performance improvement.

The source code of the zRotor virtual machine, a binary executable version for Windows,
and all the examples and benchmarks used in this paper are freely available at http://www.
reflection.uniovi.es/rrotor/download/2012/jss

40

Acknowledgments

This work was partially funded by Microsoft Research to develop the project entitled Extend-
ing Dynamic Features of the SSCLI, awarded in the Phoenix and SSCLI, Compilation and Man-
aged Execution Request for Proposals. This work was also funded by the Department of Science
and Innovation (Spain) under the National Program for Research, Development and Innovation:
project TIN2011-25978, entitled Obtaining Adaptable, Robust and Efficient Software by Including
Structural Reflection in Statically Typed Programming Languages.

References

[1] D. Thomas, C. Fowler, A. Hunt, Programming Ruby, 2nd Edition, Addison-Wesley, 2004.
[2] D. Thomas, D. H. Hansson, A. Schwarz, T. Fuchs, L. Breed, M. Clark, Agile Web Development with Rails. A

Pragmatic Guide, Pragmatic Bookshelf, 2005.
[3] A. Hunt, D. Thomas, The pragmatic programmer: from journeyman to master, Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, Massachusetts, 1999.
[4] ECMA-357, ECMAScript for XML (E4X) Specification, 2nd edition, European Computer Manufacturers As-

sociation, Geneva, Switzerland, 2005.
[5] D. Crane, E. Pascarello, D. James, Ajax in Action, Manning Publications, Greenwich, 2005.
[6] G. van Rossum, L. Fred, J. Drake, The Python Language Reference Manual, Network Theory, United Kingdom,

2003.
[7] A. Latteier, M. Pelletier, C. McDonough, P. Sabaini, The Zope book, http://www.zope.org/Documentation/

Books/ZopeBook/ (2008).
[8] Django Software Foundation, Django, the web framework for perfectionists with deadlines, http://openjdk.

java.net/projects/mlvm (2012).
[9] R. Ierusalimschy, L. H. de Figueiredo, W. C. Filho, Lua – an extensible extension language, Software Practice

& Experience 26 (1996) 635–652.
[10] R. Ierusalimschy, L. H. de Figueiredo, W. Celes, The evolution of Lua, in: Proceedings of the conference on

History of Programming Languages (HOPL), San Diego, California, 2007, pp. 1–26.
[11] J. Hermann, The Pythius Web Site, http://pythius.sourceforge.net (2012).
[12] K. Böllert, On weaving aspects, in: Proceedings of the Workshop on Object-Oriented Technology, 1999, pp.

301–302.
[13] F. Ortin, J. M. Cueva, Dynamic adaptation of application aspects, Journal of Systems and Software (2004)

229–243.
[14] J. Hugunin, Just glue it! Ruby and the DLR in Silverlight, in: MIX’2007, 2007.
[15] Oracle, JSR 292, supporting dynamically typed languages on the Java platform, http://www.jcp.org/en/

jsr/detail?id=292 (2011).
[16] Oracle, The Da Vinci Machine, a multi-language renaissance for the Java virtual machine architecture, http:

//openjdk.java.net/projects/mlvm (2012).
[17] B. C. Pierce, Types and Programming Languages, The MIT Press, Cambridge, Massachusetts, 2002.
[18] F. Ortin, J. M. Redondo, J. B. G. Perez-Schofield, Efficient virtual machine support of runtime structural reflec-

tion, Science of Computer Programming 74 (2009) 836–860.
[19] C. Lucas, K. Mens, P. Steyaert, Typing dynamic inheritance: A trade-off between substitutability and extensi-

bility, Tech. Rep. vub-prog-tr-95-03, Vrije Universiteit Brussel (1995).
[20] M. Abadi, L. Cardelli, A Theory of Objects, Springer, New York, 1998.
[21] A. Taivalsaari, On the notion of inheritance, ACM Computing Surveys 28 (1996) 438–479.
[22] L. G. DeMichiel, R. P. Gabriel, The Common Lisp object system: An overview, in: Proceedings of the European

Conference on Object-Oriented Programming (ECOOP), 1987, pp. 151–170.
[23] F. Rivard, Smalltalk: a reflective language, in: Proceedings of Reflection 96, 1996, pp. 21–38.

41

[24] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, P. Gianini, Fickle: Dynamic object re-classification, in:
Proceedings of the European Conference on Object-Oriented Programming (ECOOP), 2001, pp. 120–149.

[25] D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca, A type preserving translation of
Flickle into Java, in: Electronic Notes in Theoretical Computer Science, Vol. 62, 2002, pp. 69–82.

[26] J. Banerjee, W. Kim, H.-J. Kim, H. F. Korth, Semantics and implementation of schema evolution in object-
oriented databases, in: ACM SIGMOD International Conference on Management of Data, SIGMOD ’87, ACM,
New York, NY, USA, 1987, pp. 311–322.

[27] A. Goldberg, D. Robson, Smalltalk-80: the language and its implementation, Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1983.

[28] M. Serrano, Wide classes, European Conference on Object-Oriented Programming, Lecture Notes in Computer
Science 1628.

[29] A. H. Borning, Classes versus prototypes in object-oriented languages, in: Proceedings of the ACM/IEEE Fall
Joint Computer Conference, 1986, pp. 36–40.

[30] D. Ungar, G. Chambers, B. W. Chang, U. Holzl, Organizing programs without classes, in: Lisp and Symbolic
Computation, Kluwer Academic Publishers, 1991, pp. 223–242.

[31] M. Wolczko, O. Agesen, D. Ungar, Towards a universal implementation substrate for object-oriented languages,
Oracle Laboratories (http://labs.oracle.com/people/mario/pubs/substrate.pdf) (1996).

[32] H. Lieberman, Using prototypical objects to implement shared behavior in object-oriented systems, in: Con-
ference proceedings on Object-Oriented Programming Systems, Languages and Applications (OOPSLA),
OOPLSA, ACM, New York, NY, USA, 1986, pp. 214–223.

[33] D. Ungar, R. B. Smith, Self: The power of simplicity, in: Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), 1987, pp. 227–242.

[34] C. Chambers, Object-oriented multi-methods in Cecil, in: European Conference on Object-Oriented Program-
ming (ECOOP), Springer-Verlag, 1992, pp. 33–56.

[35] Python, The official Python website, www.python.org (2012).
[36] J. M. Redondo, F. Ortin, J. M. Cueva, Optimizing reflective primitives of dynamic languages, in: International

Journal of Software Engineering and Knowledge Engineering, Vol. 18, World Scientific, 2008, pp. 759–783.
[37] D. Stutz, T. Neward, G. Shilling, Shared Source CLI Essentials, O’Reilly, 2003.
[38] ECMA, ECMA-335 standard: Common Language Infrastructure, http://www.ecma-international.org/

publications/standards/Ecma-335.htm (2009).
[39] ECMA, ECMA-334 standard: C# language specification 4th edition, http://www.ecma-international.

org/publications/standards/Ecma-334.htm (2009).
[40] A. Taivalsaari, Delegation versus concatenation or cloning is inheritance too, ACM SIGPLAN OOPS Messenger

6 (1994) 20–49.
[41] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software,

Addison-Wesley Professional Computing Series, 1995.
[42] PythonSF, Jython: Python for the Java platform, http://www.jython.org (2012).
[43] Mono-Project, The Mono project, http://www.mono-project.com (2012).
[44] Prodata, The benchmarks of some Common LISP implementations, http://www.prodata.lt/EN/

Programming/lisp_bmarks.html (2012).
[45] Franz, Allegro Common Lisp 8.1 official website, www.franz.com/products/allegrocl (2009).
[46] SBCL, Steel Bank Common Lisp homepage, http://www.sbcl.org (2012).
[47] Cincom, Visualworks Smalltalk homepage, http://www.cincomsmalltalk.com/main/products/

visualworks/) (2012).
[48] ObjectArts, Dolphin Smalltalk official homepage, http://www.object-arts.com/ (2012).
[49] D. Berger, Ruby code that will swallow your soul!, O’Reilly Ruby.
[50] Y. Matsumoto, Ruby programming language homepage, http://www.ruby-lang.org/en/ (2011).
[51] F. Gross, Evil Ruby project home page, http://rubyforge.org/projects/evil/ (2012).
[52] MicrosoftTechnet, Windows server techcenter: Windows performance monitor, http://technet.microsoft.

com/en-us/library/cc749249.aspx (2012).
[53] A. Georges, D. Buytaert, L. Eeckhout, Statistically rigorous java performance evaluation, in: Object-Oriented

42

Programming Systems and Applications, OOPSLA ’07, ACM, New York, NY, USA, 2007, pp. 57–76.
[54] C. Chambers, The design and implementation of the Self compiler, an optimizing compiler for object-oriented

programming languages, Ph.D. thesis, Stanford University (1992).
[55] O. Agesen, J. Palsberg, M. Schwartzbach, Type inference of Self: Analysis of objects with dynamic and multiple

inheritance, Software-Practice and Experience 25 (1995) 975–995.
[56] P. S. Foundation, Pybench benchmark project trunk page, http://svn.python.org/projects/python/

trunk/Tools/pybench/) (2012).
[57] Shootout, The computer language benchmarks game homepage, http://shootout.alioth.debian.org

(2012).
[58] T. Bruckschlegel, Microbenchmarking C++, C#, and Java, Dr. Dobb’s (http://www.ddj.com/cpp/

184401976) (2005).
[59] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, R. A. Davey, A benchmark suite for high performance

Java, Concurrency: Practice and Experience 12 (2000) 375–388.
[60] C. A. Krintz, A collection of phoenix-compatible C# benchmarks, http://www.cs.ucsb.edu/~ckrintz/

racelab/PhxCSBenchmarks (2012).
[61] B. Zorn, CLI benchmarks, Microsoft Research (http://research.microsoft.com/en-us/um/people/

zorn/benchmarks) (2012).
[62] C. Chambers, D. Ungar, Customization: optimizing compiler technology for Self, a dynamically-typed object-

oriented programming language, in: Conference on Programming language design and implementation (PLDI),
1989, pp. 146–160.

[63] C. Chambers, D. Ungar, B.-W. Chang, U. Hï£¡lzle, Parents are shared parts of objects: Inheritance and encap-
sulation in Self, in: Lisp and Symbolic Computation, 1991, pp. 207–222.

[64] C. Chambers, Predicate classes, in: European Conference on Object-Oriented Programming (ECOOP), 1993,
pp. 268–296.

[65] C. Anderson, S. Drossopoulou, δ: an imperative object based calculus, in: International Workshop on Unantici-
pated Software Evolution (USE), 2002.
URL http://pubs.doc.ic.ac.uk/deltacalc/

[66] F. P. Miller, A. F. Vandome, J. McBrewster, Common Lisp: Lisp (programming language), Programming lan-
guage, American National Standards Institute, Specification (technical standard), Free and open source software,
Programming paradigm, Alpha Press, 2010.

[67] N. Levine, Fundamentals of CLOS, Ravenbrook Limited (http://cl-cookbook.sourceforge.net/
clos-tutorial/index.html) (2003).

[68] M. Serrano, Bigloo. A practical Scheme compiler. User manual for version 3.8a., http://www-sop.inria.fr/
mimosa/fp/Bigloo/doc/bigloo.pdf (2012).

[69] D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca, A provenly cor-
rect translation of Fickle into Java, ACM Transactions on Programming Languages and Systems 29.
doi:http://doi.acm.org/10.1145/1216374.1216381.

[70] T. Würthinger, C. Wimmerb, L. Stadler, Unrestricted and safe dynamic code evolution for Java, Science of
Computer Programming.

[71] T. Würthinger, C. Wimmer, L. Stadler, Dynamic code evolution for Java, in: Proceedings of the 8th International
Conference on the Principles and Practice of Programming in Java, PPPJ ’10, ACM, New York, NY, USA, 2010,
pp. 10–19.

[72] B. Chiles, Common Language Runtime inside out: IronPython and the Dynamic Language Runtime, msdn2.
microsoft.com/en-us/magazine/cc163344.aspx (2008).

[73] G. M. Bierman, E. Meijer, M. Torgersen, Adding dynamic types to C#, in: European Conference on Object-
Oriented Programming (ECOOP), 2010, pp. 76–100.

[74] Parrot, Parrot VM homepage, http://www.parrot.org (2012).
[75] Parrot, Class PMC implementation, http://docs.parrot.org/parrot/devel/html/src/pmc/class.pmc.

html (2012).
[76] J. B. García Perez-Schofield, F. Ortin, E. García Roselló, M. Pérez Cota, Towards an object-oriented program-

ming system for education, Computer Applications in Engineering Education 14 (4) (2006) 243–332.

43

[77] J. B. García Perez-Schofield, E. García Roselló, F. Ortin, M. Pérez Cota, Visual Zero: A persistent and interactive
object-oriented programming environment, Journal of Visual Languages and Computing 19 (3) (2008) 380–398.

[78] F. Ortin, J. M. Redondo, L. Vinuesa, J. M. Cueva, Adding structural reflection to the SSCLI, in: Conference on
.Net Technologies, 2005, pp. 151–162.

[79] F. Ortin, D. Zapico, J. Perez-Schofield, M. García, Including both static and dynamic typing in the same pro-
gramming language, IET Software 4 (4) (2010) 268–282.

[80] F. Ortin, M. García, Union and intersection types to support both dynamic and static typing, Information Pro-
cessing Letters 111 (6) (2011) 278–286.

[81] F. Ortin, Type inference to optimize a hybrid statically and dynamically typed language, The Computer Journal
54 (11) (2011) 1901–1924.

[82] F. Ortin, L. Vinuesa, J. M. Felix, The DSAW aspect-oriented software development platform, International
Journal of Software Engineering and Knowledge Engineering 21 (7) (2011) 891–929.

[83] L. Vinuesa, F. Ortin, J. M. Felix, F. Alvarez, DSAW: A dynamic and static aspect weaving platform, in: Pro-
ceedings of the International Conference on Software and Data Technologies (ICSOFT), INSTICC, 2008, pp.
55–62.

44

