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Abstract

The massive number of open-source projects in public repositories has notably in-
creased in the last years. Such repositories represent valuable information to be mined
for different purposes, such as documenting recurrent syntactic constructs, analyzing
the particular constructs used by experts and beginners, using them to teach program-
ming and to detect bad programming practices, and building programming tools such
as decompilers, Integrated Development Environments or Intelligent Tutoring Systems.
An inherent problem of source code is that its syntactic information is represented
with tree structures, while traditional machine learning algorithms use n-dimensional
datasets. Therefore, we present a feature engineering process to translate tree struc-
tures into homogeneous and heterogeneous n-dimensional datasets to be mined. Then,
we run different interpretable (supervised and unsupervised) machine learning algo-
rithms to mine the syntactic information of more than 17 million syntactic constructs
in Java code. The results reveal interesting information such as the Java constructs that
are barely (and widely) used (e.g., bitwise operators, union types and static blocks),
different language features and patterns mostly (and barely) used by beginners (and
experts), the discovery of particular types of source code (e.g., helper or utility classes,
data transfer objects and too complex abstractions), and how complexity is an inherent
characteristic in some clusters of syntactic constructs.
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1. Introduction

In the last decade, there has been an important growth in the use of source code
repositories, such as GitHub, SourceForge, BitBucket and CodePlex (Ortin et al., 2016).
Taking GitHub as an example, it reached 1 million repositories in July 2010, 2.4 years
after its foundation in February 2008 (GitHub, 2022b). Today, GitHub hosts more than
200 million repositories and 83 million developers (GitHub, 2022c). The vast amount of
open-source code projects available in such repositories represent important information
to learn from. In fact, different open-source corpora have been utilized to improve
software development scenarios, such as language translation (Aggarwal et al., 2015),
error correction (Bhatia & Singh, 2016), and automatic code documentation (Barone &
Sennrich, 2017), completion (Bhoopchand et al., 2016) and generation (GitHub, 2022a).

In textual programming languages, programs are collections of source code files—
together with additional resources—coded as text. That textual information actually
encloses syntactic and semantic information that compilers and interpreters, after dif-
ferent analysis phases, represent internally as trees and graphs (Rodriguez-Prieto et al.,
2020). Abstract Syntax Trees (ASTs) are tree data structures that most language pro-
cessors use to represent the syntactic information of the input program, once parsing has
taken place (Andrew & Jens, 2002). Each AST node represents a syntactic construct
in an input program, such as method definition, field definition, assignment statement
or arithmetic expression.

ASTs represent syntactic information besides the textual data provided in the source
code. State-of-the-art machine learning techniques, such as Graph Neural Networks
(GNNs), are able to learn not only from node features, but also from the structure
of ASTs (syntactic information) and graphs (semantic information) (Allamanis, 2022).
Such capability has been exploited to implement advanced software development tools,
including the detection of bugs not captured by common program analyzers (Pradel
& Sen, 2018), probabilistic type inference (Allamanis et al., 2020), and semantic code
search (Arakelyan et al., 2022).

Although GNNs represent a powerful mechanism to build predictive models from
graph and tree data structures, the trained models act as black boxes to classify pro-
grams, and hence such models are not straightforwardly interpretable by humans (Al-
lamanis, 2022). On the contrary, interpretable machine learning algorithms could be
used to extract information from syntactic constructs. Such information could be useful
for different scenarios. For example, it could be documented the recurrent constructs
written by beginners, average and expert programmers. Programming lecturers can
identify the recurrent programming patterns used by students, including those that are
error-prone, and explain how they could be improved with better alternatives (e.g.,
programming patterns used by experts) (Iyer & Zilles, 2021). Those patterns would
also be useful in the construction of decompilers, Integrated Development Environments
(IDEs) and Intelligent Tutoring Systems (ITSs) (Losada et al., 2022).

The source code could also be used to cluster programmers regarding the syntactic
constructs that appear in their programs. Such clusters may be utilized later to improve
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the programmer’s skills. For example, an IDE could suggest the programmer syntactic
constructs that barely occur in her cluster, written by more experienced programmers.
Together with the syntactic construct suggested a brief explanation of the benefits
would be provided. The syntactic constructs of those clusters with the highest number
of programmers could also be analyzed to know which potential IDE features may have
a stronger impact.

The analysis of syntactic constructs of source code has been previously tackled (de-
tailed in Section 2). Some of the works retrieve information by analyzing the grammar
rules used to parse a program (Qiu et al., 2017), reducing the information that could
be mined from the AST. Nonparametric Bayesian probabilistic substitution grammars
have shown good results to extract programming idioms (Allamanis & Sutton, 2014).
Even though such idioms are parameterized with metavariables, they represent very
specific code fragments rather than general syntactic constructs (Section 2). Associa-
tion rules have also been used to mine syntactic information of source code, producing
too many rules with very low support, being hard to understand, and representing too
specific information (Losada et al., 2022). Other works use AST similarity measures
to numerically compare two ASTs, but they have only shown benefits when applied to
small pieces of code rather than to whole programs (Choudhury et al., 2016; Yin et al.,
2015). Various approaches build classifiers of syntactic constructs, but the resulting
models lack interpretability (Ortin et al., 2020; Allamanis, 2022; Baxter et al., 1998).

Given the limitations of the existing works to analyze the syntactic constructs in
source code, we present a system with the following contributions:

– A feature engineering process to translate heterogeneous tree structures into n-
dimensional datasets (Section 3.1). We apply that feature engineering process
to the particular case scenario of ASTs. ASTs are translated into a collection of
homogeneous and heterogeneous datasets, so that interpretable machine learning
algorithms could be run.

– An open-source implementation of a Java compiler plugin that implements the
proposed feature engineering process (Section 3). It takes any compilable Java
project and stores its ASTs into seven homogeneous and five heterogeneous datasets.

– An analysis of the syntactic constructs used by Java programmers (Section 5).
We document those syntactic constructs mostly (and barely) used, the constructs
that categorize programmers’ expertise, and the most influential variables in that
categorization.

– An analysis and visualization of the similar recurrent syntactic patterns found in
Java code (Sections 5.3 and 5.6). For example, the k-means clustering algorithm
was able to identify a cluster that represents the helper and utility classes used
in Java projects.

The rest of this article is structured as follows. The next section describes the
related work, and Section 3 presents the architecture of our system. Section 4 details the
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methodology used, and the results and discussions are depicted in Section 5. Section 6
presents a discussion about language dependency. Conclusions and future work are
presented in Sections 7 and 8.

2. Related work

Allamanis and Sutton define a method to automatically extract programming id-
ioms from the source code, finding similarities recurring across Java projects (Allamanis
& Sutton, 2014). Their system, called Haggis, retrieves frequent idioms from source
code by using nonparametric Bayesian probabilistic tree substitution grammars. They
trained their model with multiple open-source projects and found common idioms for
object creation, exception handling, and resource management. The main difference be-
tween Haggis and our system is that they retrieve idioms rather than abstract syntactic
constructs. Idioms represent code fragments that may hold metavariables. For example,
the most common idiom they found was “channel=connection.createChannel();”,
whereas its corresponding syntactic construct would be an assignment statement that
stores in a variable the result of a method invocation with no parameters. Allamanis and
Sutton do not perform other analyses such as anomalous detection, idiom association
to programming expertise and clustering.

Iyer and Zilles studied 12 first-year programming courses in Computer Science de-
grees, from 9 distinct universities. They manually analyzed the syntactic patterns that
students must handle to pass all the exams and assignments (Iyer & Zilles, 2021).
According to their work, 15 different patterns are needed to solve all the proposed ac-
tivities. Nine of those patterns were taught in 9 of the 12 courses, and 5 of them were
only addressed in 3 courses. That shows that students must be able to use certain syn-
tactic patterns not taught by lecturers. Unlike Iyer and Zilles, our system automatically
retrieves the syntactic constructs from Java code, making it easier to analyze massive
code bases and perform more analyses.

Baxter et al. used ASTs to create a tool capable of detecting duplicate code frag-
ments (Baxter et al., 1998). They analyzed the ASTs of program fragments with more
than 400,000 lines of code, finding that around 12.7% of that code was duplicated.
Additionally, their system uses the duplicated code patterns to suggest modifications
to the programmer, assisting them in the refactoring actions needed to avoid code du-
plication. Baxter et al. defined a three-step tree similarity algorithm to compare ASTs.
That algorithm is used as a kernel function for Support Vector Machine (SVM) clas-
sifiers. Although the trained models could be used to classify programmers by their
expertise, SVM models are hard to interpret.

Dong Qiu et al. presented an empirical analysis of the use of language constructs in
Java (Qiu et al., 2017). They focus their study on three different approaches relative to
grammar rules: popularity, usage over time and dependency among constructs. After
analyzing more than 140 million lines of code from open-source repositories, they found
that 20% of the most-used rules account for 85% of all rule usage. They also discovered
that most of the syntactic constructs remain stable over time and are not influenced by
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new language features. They also concluded that 6% of the syntactic constructs strongly
depend on other constructs (e.g., 1/5 of if statements contain another if statement
in their body). Qiu et al. count the number of times each grammar rule is applied
upon parsing. This limits the kind of information to be mined, compared to our AST
analyses. For example, one conclusion is that method declarations appear in almost
every project. However, their approach is not able to identify which method features are
used the most—such features include method modifiers (e.g., static, final, abstract,
synchronized, strictfp and native), visibility, annotations, generics, return types
and parameters.

Several works have used machine learning to classify syntactic patterns. In the
work carried out by Ortin et al., models are created to classify programmers by their
experience level (Ortin et al., 2020). They start from a set of ASTs with the same
structure, and manually translate them into tables that represent the characteristics of
the tree nodes. The tables are used to build decision trees. Classification rules are then
extracted from the decision trees and used as new features to enrich the existing classi-
fiers. The resulting decision trees are formed with a combination of the antecedents of
classification rules extracted from other decision trees. The resulting models are very
hard to interpret, because they use classification rules with a huge number of condi-
tions in the antecedent (features of the trees are, in turn, rule antecedents). Although
they lack interpretability, those models provide very high accuracy, telling novices from
experts with up to 99.6% accuracy when the source code of the whole project is passed
to the classifier.

Choudhury et al. created AutoStyle, a system to automatically provide students
with instructor-authored guidance for their programming assignments (Choudhury et al.,
2016). First, AutoStyle uses the normalized tree edit distance (n-TED) of the ASTs
as the similarity metric to translate ASTs into numeric values. n-TED is a common
measure of similarity between two code fragments (Yin et al., 2015). Then, they run
the k-means, DBSCAN and OPTICS clustering algorithms to detect groups of similar
constructs. Once the clusters are analyzed, the instructor writes feedback and guidance
reports about each cluster, and hence avoids the analysis of all the programs submit-
ted by the students. When a student submits a new program, its cluster is found and
automatic feedback is given. This process has to be repeated for each programming as-
signment. In their evaluation, they observed that 70% of the students using AutoStyle
were able to finally reach the optimal solution, compared to the 13% of the students in
the control group. The system was only used to evaluate different implementations of
the same function. n-TED measures the number of modifications necessary to transform
an AST into another one, weighting nodes with values inverse to their distance to the
root. This makes n-TED not to be able to group significantly different programs with
many similar subASTs—a common way to identify expert and novice programmers.

This paper extends the work in (Losada et al., 2022), which used association rules to
extract information from Java source code. Such rules express the relationships among
syntactic constructs, but show the common drawbacks of association rules (Kaur, 2014):
a huge number of rules are generated, most of them hold obvious information, and all
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Figure 1: Architecture of the syntactic constructs reports system.

the features in the dataset must be binary. The rules found showed low support and
hence represent too specific information. The discretization of numeric features also
caused rules harder to understand and with too many conditions in the antecedents.
In the present article, we show how the classification rules obtained with decision tree
learning and rule induction provide rules with fewer conditions and higher support,
being able to retrieve more valuable information from data. Logistic regression mod-
els provide us with information about the syntactic constructs used by experts and
beginners. The most common syntactic constructs are analyzed. We also discuss the
Java patterns found by a clustering algorithm and analyze if programming expertise is
inherent in some clusters. Syntactic constructs are also visualized as two-dimensional
data to analyze patterns in different language constructs.

3. Architecture

As shown in Figure 1, we take Java files from GitHub and Java students enrolled in
two year-1 programming courses of a Software Engineering degree (Section 4.1). The
output of our system is a collection of reports describing the syntactic information
extracted from the programs.

The first module of our system is a modification of the Open JDK compiler. We
developed a new plugin that modifies the ASTs created by the Java compiler (Oracle,
2022b). This is done by implementing the Visitor design pattern (Gamma et al., 1994)
that, traversing the original AST, creates a new AST with more specific information.
We defined new and more specific AST classes. For example, the general BinaryTree
node for expressions is replaced with Arithmetic, Logical, Comparison and Bitwise,
among others (Losada et al., 2022). The original 56 AST classes were extended to 111.

A feature engineering process (detailed in Section 3.1) translates tree structures
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Name Type Description

Category Nominal Syntactic category of the current node (e.g., Arithmetic,
Comparison and Logical).

1st, 2nd and 3rd child Nominal Syntactic category of the corresponding child node.
Parent node Nominal Syntactic category of the parent node.
Role Nominal Role played by the current node in the structure of its

parent node.
Height Integer Distance (number of edges) from the current node to

the root node in the enclosing type (class, interface or
enumeration).

Depth Integer Maximum distance (number of edges) of the longest path
from the current node to a leaf node.

Expertise Nominal Beginner or Expert.

Table 1: Features defined for the expressions dataset.

(ASTs) into n-dimensional datasets, so that interpretable machine learning algorithms
can be executed. For Java, we identified seven types of homogeneous syntactic con-
structs: programs (a collection of Java files), type definitions (classes, interfaces, enu-
merations and records), field definitions, method definitions, statements, expressions
and types. The Visitor design pattern is used to traverse the ASTs and store their
information in the seven homogeneous datasets (each type of syntactic construct is
stored in a different dataset). Then, five heterogeneous datasets are generated from the
homogeneous ones (detailed in Section 3.1).

Figure 1 also shows how the n-dimensional datasets are processed through different
steps to generate the final reports of distinct analyses. First, the datasets are processed
to convert data (e.g., normalization and discretization) before running each machine
learning algorithm. Then, univariate and multivariate anomalies are detected. Some
outliers are removed from the dataset because they do not represent valid programs (e.g.,
incomplete assignments of students). Afterwards, we train the interpretable models
with the datasets. The parameters of each model are finally analyzed to emit the final
reports about the different syntactic constructs used by Java programmers.

3.1. Homogeneous and heterogeneous datasets
As mentioned, our system generates seven homogeneous and five heterogeneous

datasets from ASTs. Each type of syntactic construct is stored in a homogeneous
dataset: programs, type definitions, field definitions, method definitions, statements,
expressions and types. Models created with homogeneous datasets provide us with
information about each particular type of syntactic construct.

Table 1 shows the structure of the dataset defined for expressions—for the sake of
clarity, the rest of the datasets are shown in Appendix A. The node category feature
is a nominal variable that identifies the AST node type, which is also used to provide
information about the parent and child nodes. Besides the (integer) height and depth
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of the node in the tree, the role (nominal) feature indicates the role played in the parent
node (e.g., an assignment node could be part of either the condition or the body of a
while parent statement). The last feature indicates whether the programmer is either
a beginner (year-1 student) or an expert programmer.

The homogeneous datasets store information about the same type of syntactic con-
structs. However, syntactic patterns comprise different kinds of syntactic constructs.
For example, an assignment statement consists of its left- and right-hand side expres-
sions; a method definition is made up of the statements inside its body; and a Java
program is a collection of type definitions. Thus, we also create heterogeneous datasets
that combine the information of different homogeneous syntactic constructs. The pa-
rameters of the models created with the heterogeneous datasets allow us to analyze the
combination of different kinds of syntactic constructs.

The heterogeneous datasets are built by applying drill-down operations to the ho-
mogeneous tables, producing the following datasets:

1. One entry per type definition, including the features of the corresponding pro-
gram.

2. One entry per field definition, including the features of the program and the type
used to define the field.

3. One entry per method definition, adding the features of the program and the
return and parameter types.

4. One entry per statement, including the program and method features it was de-
fined in, together with the first three child expressions (when applicable).

5. One entry per expression, including the features of its program, method and
statement.

4. Methodology

This section describes how the different datasets were created. Afterwards, we detail
the machine learning and data processing algorithms used.

4.1. Datasets
To build the datasets, we took Java code from different sources and labeled it as

either beginner or expert. In the case of beginners, the code was gathered from first-
year undergraduate students in the Software Engineering degree at the University of
Oviedo. We took the code they wrote for the assignments in two programming courses.
Overall, we collected 35,309 Java files from 4,515 programs (Table 2).

For expert programmers, we took the source code of different public open-source
Java repositories from GitHub. We selected the active projects with the highest number
of contributors: Chromium, LibreOffice, MySQL, OpenJDK and Amazon Web Services.
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Beginner Expert Total

Expressions 3,939,626 7,296,366 11,235,992
Statements 1,173,327 1,963,408 3,136,735
Types 628,100 1,131,536 1,759,636
Method definitions 256,562 369,074 625,636
Field definitions 104,579 135,419 239,998
Type definitions 38,452 58,504 96,956
Programs 4,515 136 4,651
Total 6,145,161 10,954,443 17,099,604

Table 2: Number of entries (AST nodes) of the homogeneous datasets.

These projects are implemented with 43,765 Java files in 136 different programs (AWS
comprises 133 distinct projects).

We passed all these files to the Java compiler plugin we developed (Figure 1). Their
ASTs are enriched with more specific information, and traversed to generate the seven
homogeneous datasets in Figure 1. Table 2 summarizes the number of entries in those
datasets, holding more than 17 million AST nodes.

4.2. Anomaly detection
Anomaly or outlier detection aims to identify unusual data records which deviate sig-

nificantly from the majority of the data. In our case study, outliers represent anomalous
syntactic constructs coded by the programmers. Anomalous samples provide important
information to analyze, and sometimes reflect, invalid data (e.g., programs that should
not be included in the dataset).

For univariate outlier detection, we used Tukey’s fences that identify as an outlier
those instances that do not belong to the interval described in Equation 1, where Qn

represents the n quartile.

[Q1 − 3× (Q3 −Q1), Q3 + 3× (Q3 −Q1)] (1)

For multivariate anomaly detection, the isolation forest algorithm was used (Liu
et al., 2008) (IsolationForest class in scikit-learn (SciKit-Learn, 2022d)). Isolation
forest identifies outliers by considering how far a data point (instance) is from the rest
of the data. The contamination hyperparameter specifies the proportion of outliers in
the dataset. We found 1% (0.01) as the contamination value that identified outliers in
our datasets the best.

The previous two approaches for identifying univariate and multivariate anomalies
are applicable to numeric features. For categorical values, we distinguish anomalous
values when the number of occurrences is lower than 0.2% divided by the number of
possible values. For example, the value of a binary feature is considered anomalous
when its value occurs in less than 0.1% of all the instances in the dataset.
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Section 5.1 analyzes and discusses the anomalous syntactic constructs detected in
our dataset. When an outlier represents an invalid program, it is deleted from the
dataset (i.e., it is not included as an input for the machine learning algorithms).

4.3. Most frequent syntactic constructs
After analyzing the anomalous syntactic constructs in Java code, we studied the

most frequent constructs. For that purpose, we performed a frequency analysis of the
different features in the dataset. To compute the frequency of the numeric features,
we undertook an equal-with discretization (each bin has the same width) with three
different bins. Categorical features were not modified.

After converting all the features to categorical values, the following analysis was
performed:

1. Types of AST nodes. For those individuals (syntactic constructs) that hold the
type of its AST node (i.e., the category feature in Tables 1, A.1, A.2 and A.5),
we computed the frequency of each AST node in the dataset. In this way, we can
document the most (and least) frequent expressions, statements, types and type
definitions.

2. Features of syntactic constructs. We undertook the same analysis for every single
feature of all the homogeneous datasets. With such an analysis, it is possible to
know, for example, the most frequent field and method modifiers, visibility levels,
return types and field initializations.

3. Combinations of different features. Iterating through all the combinations of 2,
3 and 4 features, we analyzed the frequency of all the syntactic constructs made
up of those combinations. In this way, it is possible to know the frequency of
public static final (constant) field definitions, what is the most common type
of array, and whether it is more common to overload methods or constructors.

4.4. Data visualization
Dimensionality reduction is the transformation of data from a high-dimensional

space into a low-dimensional one, retaining meaningful properties of the original data.
Table 3 shows the number of features of the 12 datasets used in our study. By applying
dimensionality reduction techniques, the high-dimensional datasets can be embedded
in a low-dimensional space for visualization. In those visualizations, points represent
instances (syntactic constructs in our study) in such a way that similar instances are
modeled by nearby points, and dissimilar instances are represented by distant ones. By
plotting the syntactic constructs coded by experts and beginners with different colors,
it is possible to visually identify different patterns for both groups.

We used four different algorithms: Principal Component Analysis (PCA) (Jolliffe
& Cadima, 2016), NonNegative Matrix Factorization (NMF) (Lee & Seung, 2000), t-
distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten & Hinton, 2008)
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Dataset Features Clusters

H
om

og
en

eo
us

Expressions 8 6
Statements 12 6
Types 7 7
Method definitions 25 5
Field definitions 10 5
Type definitions 24 6
Programs 8 5

H
et

er
og

en
eo

us

Type definitions + programs 29 6
Field definitions + programs + types 39 4
Method definitions + programs + types 81 4
Statements + programs + method definition + 112 6types + expressions
Expressions + programs + method definition + 96 6types + statements

Table 3: Number of features and clusters of the 12 datasets.

and Kernel PCA (Schölkopf et al., 1997) (with radial basis as the kernel function)—
the PCA, NMF, TSNE and KernelPCA classes in scikit-learn were utilized (SciKit-Learn,
2022a). The first two algorithms are linear and the two last ones are nonlinear.

The datasets were reduced to two-dimensional data, and the resulting data were vi-
sualized to graphically analyze the existence of different patterns related to the program-
mer’s expertise. Before running the algorithms, the categorical features were translated
to one-hot encoding. The numeric features were normalized to values between 0 and 1
with Equation 2, where vector x represents all the values of the numeric feature x, and
xi the value of the ith sample or instance.

xnormalized
i =

xi −min(x)

max(x)−min(x)
(2)

4.5. Logistic regression
After applying the data transformation and normalization described in the previous

paragraph, we built 12 logistic regression models (one per dataset) to classify program-
mers regarding their expertise. The aim is not only to obtain classifiers, but also to
interpret the information provided by the classifiers to analyze the syntactic constructs
used by programmers (the objective of this article).

Logistic regression is a statistical model that outputs the probability of one sample
being classified as one of two possible groups (Cabrera, 1994). By choosing a cutoff
value, the probability can be used to obtain a binary classifier. The model applies the
logistic function to a linear combination of all the independent variables (features), as
depicted in Equation 3.
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p(y = 1) = logistic(β0 + β1x1 + . . .+ βnxn) (3)

In Equation 3, βi are the model parameters to be learned from data, xi are the
independent variables and y is the target or dependent variable. The βi coefficients
can be interpreted as the expected change of having the outcome per unit change in
xi (Peng et al., 2002). That is, when βi is greater than zero, larger (or smaller) values of
xi are associated with larger (or smaller) probabilities of y = 1 (positive classification).
Conversely, if βi is lower than zero, larger (or smaller) values of xi are associated with
larger (or smaller) probabilities of y = 0 (Peng et al., 2002). This interpretation of
the βi coefficients provides us with valuable information to interpret which syntactic
constructs positively and negatively influence the expertise of the programmer.

We used L1 (Lasso) and L2 (Ridge) regularization penalties (Elastic Net) (Zou
& Hastie, 2005) provided by the LogisticRegression model implemented by scikit-
learn (SciKit-Learn, 2022f). A stratified split of the datasets was performed, using 80%
for training and 20% for testing. The best hyperparameters are found with exhaus-
tive parallel search across common parameter values (GridSearchCV), using stratified
randomized 10-fold cross-validation (StratifiedShuffleSplit) against the training
set.

4.6. Classification rules
We used two different mechanisms to mine classification rules that provide informa-

tion about the syntactic constructs. Decision tree classifiers and rule induction were the
two machine learning models built for that purpose. Categoric features were encoded
as one-hot vectors.

Decision tree learning is a supervised learning technique to predict values from
previous observations. Decision trees are used to foresee one target value from the
known features of a given sample. When the values to predict are discrete, decision
trees act as classifiers; for continuous values, they become regressors.

A good characteristic of decision trees is that they are easy to understand and
interpret. That is why they are useful for both machine learning and data mining.
For example, the decision tree in Figure 2 classifies type definitions (classes, interfaces,
enums or records). When a type is not defined in the default package, and it has one
or more annotations, then the programmer is classified as expert.

Each path from the root node to a leaf (i.e., a tree branch) represents a classification
rule. For example, the following rule can be obtained from the decision tree in Figure 2:
default package = False AND number of annotations ≥ 1 ⇒ Expert.

Support and confidence are two widespread metrics to measure the performance
of classification and association rules. Being X ⇒ Y a classification rule with X the
antecedent (a list of conjunctions) and Y one value of the binary target variable to
be classified (e.g., beginner or expert), its support is defined with Equation 4 and
its confidence with Equation 5. Support refers to how often a rule appears in the
dataset, while confidence refers to the number of times the rule is fulfilled. Our previous
classification rule has 25.34% support and 99.21% confidence.
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type defined in the default package

False True

number of annotations
percentage of static methods

< 1 ≥ 1 < 1.11 ≥ 1.11

Beginner

Expert

Expert
N=7880

Support=66.55%
Confidence=72.38%

Expert
N=3324

Support=25.34%
Confidence=99.21%

Beginner
N=1682

Support=12.92%
Confidence=90.9%

Expert
N=128

Support=0.98%
Confidence=85.93%

Figure 2: Example decision tree (max depth 2) for the type definitions dataset.
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Support(X ⇒ Y ) =
number of instances containing X and Y

total number of instances
(4)

Confidence(X ⇒ Y ) =
number of instances containing X and Y

number of instances containing X
(5)

An important hyperparameter in a decision tree is its maximum depth (the tree in
Figure 2 was created with a maximum depth of 2). Too deep trees tend to overfit, since
one branch per sample could be created. Such over-complex models do not generalize
well for the training data, and hence they do not produce useful information. For this
reason, we created decision trees with maximum depths from 1 to 3 and analyzed the
classification trees extracted from them (see Section 5.5). CART was the algorithm
used to build the decision trees (Breiman, 1984), implemented by the DecisionTree-
Classifier class in scikit-learn (SciKit-Learn, 2022c).

The second classification rule mining technique we used was rule induction. Rule
induction is a technique in which formal rules are obtained from a set of observations.
A classification rule is a collection of propositional predicates associated with a given
value of the target feature, similar to the ones obtained from decision trees.

There exist different algorithms for classification rule induction. We used the
RIPPERk (Cohen, 1995) and IREP (Fürnkranz & Widmer, 1994) algorithms. The
former usually obtains error rates lower than the C4.5 algorithm, scales nearly linear to
the number of training instances, and is able to efficiently process noisy datasets (Cohen,
1995). The latter includes an incremental reduced error pruning process that avoids
overfitting with noisy data and provides good generalizations (Fürnkranz & Widmer,
1994).

We ran the decision tree, RIPPERk and IREP machine learning algorithms, ob-
tained the classification rules, and analyzed only those with at least 90% confidence, 5%
support and three or fewer conditions in the antecedent (too specific rules are ignored).
We used the RIPPER and IREP classes of the wittgenstein Python module (Moscovitz,
2022).

4.7. Clustering
We also applied clustering algorithms to detect groups of similar syntactic constructs

(clusters). Clustering algorithms are unsupervised machine learning techniques that
find similar groups of instances from unlabeled datasets. We automatically gathered
the clusters of similar constructs from the different datasets of our study, suppressing
the programming expertise variable. The centroids of each cluster were analyzed to
document the similar syntactic constructs features of each group (intra-cluster analysis),
and what makes each cluster to be different from the rest of the clusters (inter-cluster
analysis). We also analyzed whether each cluster is made up of expert or beginners and
their support.

Although we executed the k-means (Bock, 2007)—Kmeans class in scikit-learn (SciKit-
Learn, 2022e)—, DBSCAN (Density-Based Spatial Clustering of Applications with
Noise) (Ester et al., 1996)—DBSCAN (SciKit-Learn, 2022b)—and OPTICS (Ordering
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Figure 3: Visual elbow method to find the optimal number of clusters in k-means for the types dataset.

Points To Identify the Clustering Structure) (Ankerst et al., 1999)—OPTICS (SciKit-
Learn, 2022g)—algorithms, our server (Section 4.8) ran out of memory with all the
algorithms but k-means. Centroids were initialized with random values and we used
the Euclidean distance.

K-means requires us to pass the number of clusters. Therefore, we ran k-means from
2 to 20 clusters and apply the elbow method (kneedle algorithm) to find the optimal
number of clusters (Satopaa et al., 2011). Figure 3 shows one example for the types
dataset. When the number of clusters grows, the sum of squared distances of samples
to their closest cluster center (called inertia) increases. Since we look for a tradeoff
between the number of clusters and inertia (when the number of clusters is the same
as the number of samples, we have very low inertia but clusters are useless), the elbow
of the graph visually represents such a tradeoff. The number of clusters found for each
dataset is depicted in Table 3.

Once the optimal number of clusters is found, their centroids were computed as
the average values of their instances. For numeric variables, we also computed the 95%
confidence intervals. ANOVA analyses were run for the numeric features of each dataset
to see if there were significant differences among the clusters (inter-cluster analysis).
When those differences exist (p-value<0.05), we used Tukey’s Honest Significant Dif-
ference (HSD) post-hoc tests to see exactly where those differences lie (i.e., to find out
which specific variables are different from one another) (Abdi & Williams, 2010).

4.8. Experimental environment
All the experiments were executed in an AMD Ryzen Threadripper 2990WX (64

cores) with 128GB DDR4 3200MHz RAM, Nvidia Quadro RTX 4000 (8 GB GDDR6),
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running CentOS operating system 7.4-1708 for 64 bits. All the code was implemented
using Python 3.8.2, scikit-learn 1.0.2 and wittgenstein 0.3.2. Datasets were stored in a
PostgreSQL 10.15 database.

5. Results and discussions

We ran the algorithms described in Section 4 to retrieve information about the
syntactic constructs used by Java programmers. In this section, we analyze and discuss
the results. All the data is available for download at (Ortin et al., 2022).

5.1. Anomaly detection
Univariate and multivariate outliers were detected with the statistical methodology

described in Section 4.2. After the analysis of the anomalous syntactic constructs, we
found out that seven program instances (together with their types, methods, fields,
statements and expressions) do not represent valid Java projects:

(a) Five of the beginner projects were made up of just a collection of interfaces,
with no classes. That is because one of the student assignments consisted in
implementing some given interfaces. Some students just delivered the original
collection of interfaces, without any class, enum or record implementation.

(b) The multivariate outlier detection algorithm identified as anomalous two programs
with the combination of two values: number of classes lower than 34% of the
types defined in the program, and number of interfaces greater than 65%. This is
a similar case scenario as in a); students who delivered incomplete Java programs.

The two previous groups of outliers (10,901 AST nodes of 7 programs) were deleted
from the datasets, since they do not represent proper Java projects. Thus, we did not
consider any of the AST nodes belonging to those programs.

The rest of the anomalies denote unusual syntactic constructs used by Java pro-
grammers. What follows is a summary of the information inferred from the results:

– Expressions. The anomalous syntactic constructs are multiple assignments (ex-
pression = expression = expression) as expressions (not as statements), the prefix
and postfix -- operator, bitwise operators (|, &, ˆ and ∼) and Type::member
references.

– Statements. Prefix decrement (--expression;) is the only statement construct
detected as anomalous. Regarding its height and depth inside their method defi-
nitions, outliers are those with values greater than, respectively, 6 and 9.

– Types. The only anomalous type is the union type included in Java 7+ to catch
multiple exception types (catch(Exception1|Exception2 id)).
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– Method definitions: native and synchronized methods are outliers, and so are
those written in capitals. Default implementations of interfaces (Java 8+) are
barely used, and only by experts. A method is anomalous if it has more than
17 statements, 5 parameters or local variables, 4 annotations, or it is overloaded
more than once.

– Field definitions: volatile, transient and field annotations are outliers, and
they are never used by beginners.

– Type definitions: no class was defined as strictfp. Nested classes and static
blocks are barely used, only by experts. Classes are anomalous when they have
more than 25 methods, 12 fields, 4 annotations or implement more than 4 inter-
faces.

– Programs: those Java projects that define more than 17.4% of non-class types
(enums, interfaces and records) were detected as anomalous.

Our translation method of tree structures to n-dimensional datasets has shown an
important benefit in detecting anomaly constructs compared to the rule-based in (Qiu
et al., 2017). The only construct we detect that is also included in their study as
anomalous is union types. They identified labeled statements as highly infrequent,
whereas we did not include labels as a statement feature. They also consider the empty
statement as anomalous, showing a limitation of their dataset because, as we discuss
in Section 5.4 (Table 6), beginners commonly use that syntactic construct.

5.2. Most frequent syntactic constructs
Table 4 shows the most frequent syntactic constructs found with the method de-

scribed in Section 4.3. For each type of AST node (i.e., category feature), we show the
first ten most frequent constructs. For the rest of the constructs, we only show those
with a percentage greater than 10% and that provide remarkable information.

Table 4 is self-explicative, so we only highlight those results that we think are more
remarkable:

– Comparison expressions (<, >, <=, >=, == and !=) are used more than arithmetic
ones (+, -, *, / and %); so is the null expression. Variables (identifiers) represent
the most common expression.

– Method invocation is the most widespread statement, due to the object-oriented
paradigm of the Java programming language. return is the third most used
statement, and the postfix ++ statement (i.e., expression++;) occurs more than
the for and while loops.

– References (objects excluding String) are used much more than the rest of the
types (int and String are the next ones). long is used more than char and
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Dataset Construct Most frequent values Dataset Construct Most frequent values

Statements AST node
type

Method invocation (27.5%),
variable definition (26%), return
(14.7%), if (12.3%), assignment
(9.7%), throw (2.1%), try
(1.7%), catch (1.5%), postfix ++
statement (0.9%), for (0.8%)

Expressions AST node
type

Variable (36.4%), member
selection (19.17%), method
invocation (13.1%), String
literal (5.2%), int literal
(4.8%), comparison expression
(4.5%), null (3%), new (2.7%),
arithmetic expression (2.7%),
boolean literal (2.4%)

Parent AST
node

Method definition (67.2%),
if (17%)

Method
definitions

Visibility public (84.1%), private (8.4%),
package (5.5%), protected (2%)

Type def-
initions

AST node
type

class (94%), interface
(3.4%), enum (2.6%)

Modifiers final (0.97%), static (4.9%),
abstract (5.5%), strictfp (0%),
native (0.61%), synchronized
(0.1%), @Override (20.4%)

Visibility public (84.8%), package (15.2%) Generic
methods

0.21% of the methods are generic

Modifiers final (1.5%), abstract (2.2%),
strictfp (0%), static (3.6%)

throws clause 5.3% of the methods have throws

Extends 24.4% of the types ex-
tend another class

Return type void (37%), reference type
(23.2%), String (10.2%)

Implements 30.5% of the types implement
one or more interfaces

Parameters 48.4% of the methods
have no parameters

Annotations 38.1% of the types have
annotations

Annotations 68.3% of the methods
have no annotations

Default
package

15.5% of the types are defined
in the default package

Constructor 8% of the methods are constructors

Generics 1.3% of the types are generic Method over-
loading

12.6% of the methods
are overloaded

Nested
classes

16.2% of the types are
nested classes

Types AST node
type

Reference type (64.3%), int
(14.1%), String (13.9%), boolean
(4.2%), double (1.4%), long
(0.7%), char (0.6%), byte (0.4%),
float (0.4%), short (0.1%)

static block 0.37% of the types in-
clude a static block

Built-in types 21.2% of the types are built-in
(String is not considered built-in)

Field def-
initions

Visibility private (71.2%), public (23.1%),
package (4.2%), protected (1.5%)

Parent AST
node

Method parameter (24.2%),
local variable definition (22.2%),
method return type (19.6%),
constructor invocation (17.1%),
field definition (12.8%)

Modifiers final (46.7%), static
(45.6%), volatile (0.07%),
transient (0.15%)

Generic types 9.3% of the types used are generic

Initial value No initial value (53%), int literal
(13.7%), constructor invocation
(10.8), method invocation (10.4%)

Array types 1.6% of the types used are arrays

Type Reference type (33.4%), int
(20.2%), String (13.4%), generic
type (13.4%), boolean (6.2%)

Programs Class per-
centage

72.4% of the projects only
contain classes

Annotations 99.1% of the fields have
no annotations

Interface per-
centage

78.2% of the projects do not
define any interfaces

Visibility
+ static
+ final

private (43.7%), public
static final (21%), private
static final (18.8%)

enum per-
centage

86.2% of the projects do not
define any enumerations

Default
package

49% of the projects define types
in the default package

Table 4: Most frequent syntactic constructs found in Java source code.
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float. Types appear more as method parameters than as local variable defini-
tions. 9.3% of the types used are generic, but only 1.6% are arrays—programmers
use the generic Java collections more than arrays.

– For method definitions, the native modifier is used more than synchronized.
Only 0.21% of the methods are generic and the most common return type is
void, reducing the benefits of functional programming. 84.1% of the methods are
public, which seems to go against the “minimize the accessibility of classes and
members” recommendation (Bloch, 2008).

– Fields are mostly defined as private to obtain the benefits of information hiding.
final and static modifiers are widely used—46.7% and 24.6%, respectively. The
majority of fields are not initialized, and generic types are used 13.4% of the time
(more than boolean). The common public static final constant definition
pattern represents 21% of all the field definitions.

– Only 3.4% of the types defined are interfaces and 2.6% are enumerations. The
“minimize the accessibility of classes and members” good practice to reduce cou-
pling does not appear to be followed in type definitions (84.8% are public). Other
remarkable results are that 38.1% of the types have any annotation, 16.2% of
them are defined within another class, and 15.5% are implemented in the default
package—those types cannot be imported from another project.

– Most of the projects do not define any interface or enum, and almost half of
them define one or more types in the default package.

The method described in Section 4.3 generates more data than the results summa-
rized in Table 4. It also analyzes multiple combinations of different features. Some of
those combinations produced interesting results, although their frequencies tend to be
low. What follows are some of those results:

– In statements, the combination of the type of statement and its first child shows
that return boolean_literal (e.g., return true;) is quite common (4.4%). In
fact, the frequency of return boolean_literal is very close to the most common
return statement: return variable (5%). return true and return false con-
structs represent 29.6% of all the return statements—used by both experts and
beginners.

– Arrays are barely used (1.6%). Arrays of references are the most common ones,
and then comes the arrays of strings, 85.9% more common than the array of
integers.

– For field definitions, almost every public static final field is defined with
identifiers written in capital letters. Only 5,696 instances (out of 240K) do not
follow that naming convention. Surprisingly, just 11.7% of those instances were
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code written by students, who showed better fulfillment of the all-uppercase Java
naming convention of constants (Oracle, 2022a).

– 10.5% of the constructors are private. Most of the occurrences appear when
implementing the Singleton design pattern (Gamma et al., 1994).

– Methods are overloaded 13.7% of the time, while 44.2% is the percentage of over-
loaded constructors. Thus, method overloading seems to be more appropriate to
provide different ways to initialize objects’ states.

Our AST-based system shows distinct benefits compared to the analysis of Qiu et
al., based on grammar rules (Qiu et al., 2017). First, they cannot analyze the syntactic
constructs that involve more than one feature of AST nodes, such as the examples in
the previous enumeration. Second, they do not manage to analyze those constructs
that are not represented in a single rule, such as literal and null expressions, and
method invocation, assignment and catch statements. Moreover, they are not able to
analyze aggregated values such as the percentage of interfaces defined in a project or
the number of types in the default package.

The most frequent idioms retrieved by Allamanis and Sutton also show differences
from our analysis. First, they do not indicate any measure of frequency—they just
show the 19 top idioms. Second, the idioms they infer have too specific values, such
as particular names of classes, methods and even variables. Such idioms show common
source code fragments instead of syntactic constructs. Moreover, they include neither
aggregated values nor features of AST nodes. Some idioms manage to combine different
types of statements such as if and try/catch because they do not generalize all the
syntactic constructs involved in that idiom (i.e., they use specific values of the source
code).

5.3. Data visualization
We reduced to two dimensions the 12 datasets with the 4 algorithms described in

Section 4.4. To have an estimate of how much information is lost in the dimensionality
reduction, we computed the explained variances for the PCA algorithm. The explained
variance is defined as the ratio of the two principal component eigenvalues to the total
eigenvalues. It represents the information explained by the two features obtained after
applying PCA.

Figure 4 presents the two-dimensional visualizations of the programs dataset after
applying the four dimensionality reduction algorithms. The programs dataset is the
one that showed the highest explained variance (99.75%)—i.e., the one with the highest
information kept after reducing the dimensions. This dataset is not balanced (Table 2)
and most samples represent beginner programs. For Linear PCA and NMF, no clusters
with sufficient points can be clearly identified; experts and beginners are not separated
either. Clustering and program separation by expertise is better performed by t-SNE.
Kernel PCA is able to separate many experts, but clusters cannot be clearly identified.
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Figure 4: Visualization of the four dimensionality reduction algorithms used for the programs dataset.
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Performing the analysis described in the previous paragraph with the 12 datasets, we
detected that t-SNE is the visualization that provides the best clustering and program
separation by expertise—all the figures are available at (Ortin et al., 2022). Figure 5
shows the t-SNE visualization of all the datasets but programs. Field definitions, types
and type definitions are the datasets with the clearest identification of clusters with
close syntactic constructs (Euclidean distance). They also appear to be the best ones at
separating experts from beginners. Heterogeneous datasets do not identify any cluster,
but there are regions with many points belonging to the same level of expertise.

The visualization of homogeneous and heterogeneous syntactic constructs provides
us with more information than the n-TED AST-similarity measure used by (Yin et al.,
2015). n-TED has only shown benefits to detect clusters of small code fragments,
namely different implementations of the same function (Choudhury et al., 2016). On
the contrary, we visualize groups of seven similar types of syntactic constructs and five
different combinations of bigger ASTs.

5.4. Logistic regression
We built as many logistic regression models as datasets. Table 5 shows the classifi-

cation performance of each model. We can see how the types written by a programmer
are the syntactic constructs that hold lesser information about their expertise. The sec-
ond worst classifier is method definition. Notice that the method body is not included
in the dataset; when it is included (heterogeneous 3), the F1-score obtained is 98%.
The rest of the classifiers have a minimum F1-score of 90.1%. Heterogeneous datasets
have the highest performance because they aggregate more features (programs is an
exception, because it is a highly unbalanced dataset).

Table 5 also shows the accuracies of the models built by Ortin et al. to classify
syntactic constructs (discussed in Section 2). For all the homogeneous datasets but
method and type definitions, our logistic regression models provide higher accuracy.
The same occurs for the first three heterogeneous datasets, while we provide lower
accuracy for the two last ones. While there are no important differences in the accuracy
of both approaches, the logistic regression models provide much more interpretability
than the complex classifiers obtained by Ortin et al. (see Section 2).

As mentioned in the methodology, the βi coefficients of the logistic regression models
provide us with information about the influence of the features. Higher βi values are
associated with higher probability of being an expert programmer. Zero βi coefficients
represent no influence on programming expertise. Lower negative βi values represent
higher probability of beginner.

Table 6 shows the highest and lowest βi coefficients for all the datasets (those greater
than 1 and lower than -1). We do not include information that is redundant (e.g.,
complementary values) or has been previously discussed in the outliers analysis (Sec-
tion 5.1). The βi coefficients of the heterogeneous models did not add new information
not previously inferred from the homogeneous ones.

As the depth and height of the ASTs representing an expression grow, it increases the
probability to be written by an expert. float and long literals (e.g., 2.3F and 3L), new
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Figure 5: Visualization of the remaining datasets after t-SNE dimensionality reduction. Values between
parenthesis represent the explained variance after PCA.
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Accuracy
Dataset Accuracy (Ortin et al., 2020) Precision F1-score

Expressions 0.8593 0.9484 0.7812 0.8841 0.9152
Statements 0.8393 0.9565 0.8101 0.8595 0.9054
Types 0.7182 0.8528 — 0.7455 0.7956
Method definitions 0.8184 0.9837 0.8499 0.8223 0.8958
Field definitions 0.8427 0.9242 0.8344 0.8824 0.9028
Type definitions 0.9032 0.9282 0.9620 0.9353 0.9317
Programs 0.9710 0.9710 0.9401 0.9710 0.9710
Heterogeneous 1 0.9504 0.9531 0.8830 0.9678 0.9604
Heterogeneous 2 0.9763 0.9782 0.9136 0.9827 0.9805
Heterogeneous 3 0.9759 0.9769 0.9519 0.9831 0.9800
Heterogeneous 4 0.9823 0.9833 0.9945 0.9877 0.9855
Heterogeneous 5 0.9846 0.9851 0.9958 0.9894 0.9872

Table 5: Performance of the 12 logistic regression models. The column “Accuracy (Ortin et al., 2020)”
shows the performance of similar classifiers in the related work of Ortin et al. discussed in Section 2.

array initializers (new int[]{1,2,3}) and assignments as expressions are much more
probable for experts. The use of instanceof is most common in beginners, sometimes
denoting the wrong use of types and the absence of polymorphism. They also use
boolean literals as child nodes of comparison expressions, where they are actually not
necessary (e.g., boolVariable==true).

As in expressions, higher height and depth of statements ASTs mean higher prob-
ability of expert programmer. The assert, synchronized and continue statements
and statements inside lambda expressions are also more common in code written by
experienced programmers. Empty statements (i.e., just ;) and constructor invocations
as statements (e.g., new MyClass();) are more likely written by beginners. The former
is because they write more ; than necessary. The latter is because they use constructors
as methods, not just as object state initializers.

When defining methods, experts are more likely to write more inner classes, ex-
ceptions in throws clauses, annotations and generic variables. They also use more
synchronized, final and native method qualifiers. On the contrary, a higher num-
ber of local variables are associated with beginners—instead of using bigger expressions,
they write simpler ones and store their values in local variables. Students also declare
methods as public when it is not necessary.

For types, all the significant βi coefficients are associated with experts: the height
and depth of the type structure, generic variables, and the use of short, long and
byte types (they are barely used by students). In field definitions, the number of
annotations and generic variables, long and short types, the final field qualifier, and
field initializations with method invocation (e.g., int field = obj.method();) are
more likely written by experts. Beginners are more likely to write no camel-case field
names, all lowercased.
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Dataset Feature β Dataset Feature β

Expressions Height inside the
whole expression

10.97 Types Height of the type in-
side the whole type

90.58

Depth inside the whole
expression

2.35 Number of generic variables 6.35

float literal 2.30 short type 5.56
long literal 2.22 long type 2.34
new array initializer 1.30 byte type 1.08

Use assignments as expressions 1.17 Fields Number of annotations 2.28
instanceof expression -1.75 long field type 2.22
Use boolean literals as
child nodes of compar-
ison expressions

-2.34 short field type 1.38

Statements Height of the statement
inside the method body

15.05 The field is initialized with
a method invocation

1.14

assert statement 3.50 final field declaration 1.14
synchronized statement 2.86 Field name with lowercase

letters (no camel-case)
-1.09

Statement inside a
lambda expression

2.38 Type defs. Number of annotations 12.47

continue statement 1.67 Number of interfaces im-
plemented by a class

6.48

Constructor invocation
as a statement

-1.04 Number of fields 5.40

Use ; as an empty statement -1.35 Number of static nested types 3.87

Methods Number of inner classes 8.71 Number of methods 3.67
Number of excep-
tions in throws

6.25 final class declaration 3.58

synchronized method 4.07 Type named with all capitals -1.33
Number of annotations 3.85 public types -2.24
final method declaration 3.39 Type name camel-cased,

first char lowercased
-2.46

Number of generic variables 3.34 Number of overloaded
constructors

-3.61

native method declaration 2.70 Programs Percentage of enums 8.74
public method declaration -1.08 Percentage of types defined

in the default package
3.50

Number of local variables -1.13 Percentage of interfaces -9.79

Table 6: Most significative β coefficients of the logistic regression models.

25



When defining a new type (method, class or enum) the number of annotations,
interfaces implemented by a class, fields, static nested types and methods increase
the probability of being an expert. The same occurs when the class is declared final.
On the other hand, beginners are more likely to write public types (they do not hide
types outside the package) and choose type names not starting with a capital letter
or with all letters capitals. If the class has many implementations of constructors,
it is more likely it was written by a beginner (they create unnecessary constructor
implementations).

For programs (Java projects), experts use more enumerations. They are also more
likely to write types in the default package. After speaking to the lecturers of the year-1
programming courses used to create the dataset, they told us that they forbid the use of
the default package. Therefore, the percentage of types in the default package feature
is not actually associated with the programming expertise. The same occurs with the
percentage of interfaces: as we mention, some assignments consist in implementing
various interfaces.

5.5. Classification rules
We ran the three supervised machine learning algorithms described in Section 4.6 to

mine classification rules, obtaining 2,521 rules (164 inferred with decision trees, 1,921
with RIPPERk and 573 with IREP1). To filter too specific rules with lower information,
we only consider those with minimum support of 5% and 3 or fewer conditions in the
antecedent. Likewise, the minimum confidence is 95%. We do not include in the analysis
those rules that only combine the features already extracted from the logistic regression
models (Table 6).

A rule r1 is more general than r2 when all the instances fulfilling the antecedent of
r2 are also fulfilled by the antecedent of r1 (e.g., a ⇒ c is more general than a AND
b ⇒ c). When we find two rules, r1 and r2, that fulfill the conditions in the previous
paragraph, and r1 is more general than r2, then we only consider r1 since it provides
more general information (higher support with lower but sufficient confidence).

The previous filtering process is aimed at discussing only the new relevant informa-
tion, not discussed before. All the rules and the source code used to produce them are
available for download at (Ortin et al., 2022).

Table 7 shows the classification rules obtained, which are self-explanatory. All the
rules taken from the homogeneous datasets (1 to 9) represent syntactic constructs writ-
ten by experts. As with the logistic regression models, there are more syntactic patterns
for experts than for novice programmers—most of the constructs used by beginners are
also used by experts.

The classification rules mined from the heterogeneous datasets (10 to 13) combine
information from different syntactic constructs. For example, rule 11 classifies as be-

1The sum of the number of rules extracted with the three methods (2,658) is not the same as the
total number of rules (2,521) because some of the rules are repeated.
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Rule Support Confidence Algorithm

1 Field named with snake-case convention ⇒ Expert 8.63% 92.17% IREP
2 Field is final AND not public AND not static ⇒ Expert 8.63% 92.17% RIPPERk
3 Method named with camel-case convention AND

number of parameters ≥ 3
⇒ Expert 28.75% 93.33% DT

4 First parameter of a method is a reference (arrays
and strings are not considered as references)

⇒ Expert 31.75% 91.11% IREP

5 Return type of a method is a reference ⇒ Expert 8.99% 91.01% IREP
6 Type not defined in the default package AND has

1 or more annotations
⇒ Expert 25.54% 99.22% DT

7 Percentage of static fields in a type ≤ 20% AND
that type is not public

⇒ Expert 12.01% 95.46% IREP

8 Type defined in the default package AND number
of constructors ≤ 1 AND it is final

⇒ Expert 5.90% 99.87% RIPPERk

9 Type defined with one or more annotations AND
has extends

⇒ Expert 9.76% 99.56% RIPPERk

10 Type defined with no annotations AND its pro-
gram has less than 0.18% of enums

⇒ Beginner 24.82% 98.8% DT, IREP

11 Field is not final AND it is defined in a class
with no annotations AND the program does not
define any type in the default package

⇒ Beginner 21.39% 90.45% IREP

12 Type defined with no annotations AND no snake-
case name AND its program has less than 0.18%
of enums

⇒ Beginner 33.79% 99.53% DT

13 Method returning a reference type AND written
in a program with more than 1.94% of enums

⇒ Expert 5.15% 99.20% IREP

Table 7: Classification rules obtained after the filtering process. Support values are computed consid-
ering the number of instances of the dataset the rule was extracted from. DT stands for Decision Tree.
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ginner the code that has no final fields, declared in class with no annotations, and
defined in a program that contains no type in the default package.

There are notable differences between the rules mined with our approach and the
one described in (Losada et al., 2022). The association rule mining approach followed
by Losada et al. retrieves a huge number of rules with obvious information (e.g., if
the percentage of classes in a program is 100%, the percentage of enumerations is
0%) (Losada et al., 2022). Since association rules require all the features to be binary,
the numeric features must be discretized, producing highly multidimensional datasets.
Such a huge number of features involves association rules with too many conditions in
the consequent, hard to understand. Another drawback of the highly sparse data is the
low support of the extracted rules. The result is that the rules mined with our approach
are easier to understand, provide more valuable information and have higher support.
In fact, none of the rules in Table 7 are detected by Losada et al., using the same Java
projects.

5.6. Clustering
We run k-means against the 12 datasets, following the method described in Sec-

tion 4.7. The kneedle algorithm found the number of clusters depicted in Table 3.
ANOVA and Tukey’s HSD tests were computed to see if there were statistical differ-
ences among clusters for the values of each variable. We show an example in Figure 6,
where mean values and 95% confidence intervals of some features are depicted for the
6 clusters found in the type definitions dataset. This is the information inferred from
the analysis of the clusters retrieved from the syntactic constructs of type definitions
(Figure 6):

– Cluster 3 in Figure 6 represents a low number of instances (1.51%) with the highest
number of methods, constructors, nested types and inner types. It represents
classes with high complexity, which would probably be better redesigned.

– Cluster 4, with less than 2% instances, holds simple classes with the lowest number
of annotations, implemented interfaces and fields, but with the highest number
of static methods. Helper and utility classes are included in Cluster 4.

– Cluster 6 represents classes holding configuration data (the lowest number of
methods and the highest number of static fields).

– Cluster 5 may be characterizing classes to instantiate Data Transfer Objects
(DTOs), because they hold the greatest number of fields.

– Types with the highest number of annotations belong to Cluster 2, representing
code written by experts (98.61% of its instances).

– Finally, Cluster 1 is the group with the most instances (62.63%). It defines types
with a low number of static members, and an average number of methods,
constructors, fields, annotations, and nested and inner classes. It groups the
collection of common classes.
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Figure 6: Distribution of feature values per cluster for the type definitions dataset (inter-cluster anal-
ysis). The dashed line represents the average value for the whole dataset. Dots describe the average
value for one cluster, and whiskers the 95% confidence intervals. Cn denotes Cluster n.
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Similar analyses were undertaken for all the clusters obtained (Ortin et al., 2022).
We summarize here those that imply new information, not discussed before:

– Fields initialized with reference values (not including strings or arrays) and with
the highest number of annotations are clustered together. 90% of their instances
are expert syntactic constructs.

– private, final, static fields with uppercased names comprise a cluster of 96%
expert samples.

– Most fields (53.13%) are not final, not initialized and camel-cased, written by
both experts and beginners.

– One cluster of method definitions represents only 0.05% of the methods with too
dense bodies: the highest number of local variables and statements.

– The clustering algorithm groups those expressions with the greatest height and
weight in the same cluster, with 100% of their instances written by experts.

– AST representing types with the greatest height and not representing a primitive
type are grouped together (all of them coded by experts).

– One heterogeneous cluster represents programs with the highest percentage of
classes and fields per class, probably representing data management applications.

– The programs composed of a high number of enumerations and types with mul-
tiple annotations, written by experts (98.61%), are grouped together by the clus-
tering algorithm.

– A cluster is found for programs that require the highest number of enums and
interface types, interfaces implemented by classes, and methods, fields, inner and
nested classes per type definition. This group represents complex programs and
100% of the instances were written by experts. Similar clusters are found in
multiple heterogeneous datasets.

Out of the 66 clusters found by k-means, 21 and 5 of them hold more than 90%
syntactic constructs written by, respectively, experts and beginners. Thus, program-
ming expertise seems to be a characteristic intrinsic in many syntactic constructs, since
39.4% of the clusters created by the unsupervised machine learning algorithm have the
same level of expertise. Likewise, experts write more particular syntactic constructs
than novice programmers. As discussed before, this is because most of the constructs
used by beginners are also used by experts.

An important benefit of our method compared to the clustering approach proposed
by Choudhury et al. is the easier interpretation of the retrieved clusters. Their cluster-
ing system is based on n-TED, a numeric measure of similarity between ASTs (Choud-
hury et al., 2016). After finding the clusters, they have to manually analyze the ASTs
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in each cluster to find their common patterns (and also the differences among clusters).
In our case, that process is automatically done by running ANOVA and Tukey’s HSD
tests. Unlike n-TED, our feature engineering method to translate ASTs into datasets is
highly interpretable, since the features (columns) in the datasets represent character-
istics of the syntactic constructs. Another limitation of the proposal of Choudhury et
al. is that it has only been proven to be beneficial in short pieces of code implementing
the same problem (Section 2).

6. Discussion

We have shown a mechanism to analyze the syntactic constructs of Java code.
An important discussion is to what extent our proposal could be applied to other
programming languages. To that aim, we analyze the five steps of our method and how
they depend on a particular programming language.

We define a feature engineering system to transform tree structures into n-dimensional
datasets. Although it is a manual process, the following two procedures can be followed
to apply our method to any programming language:

1. Identification of the homogeneous syntactic constructs. The different groups of ho-
mogeneous syntactic constructs in a programming language should be pinpointed.
Examples of such constructs for most programming languages are programs, type
definitions, module definitions and expressions—some pure functional languages
do not provide statements. A dataset should be created for each homogeneous
construct.

2. Feature definition. The features of each of the previous homogeneous constructs
(dataset) should be defined (Table 1 and Tables A.1 to A.6 show how we did it for
Java). When there are different types of AST nodes in a homogeneous construct
(e.g., different types of statements), a category feature should be defined: it is
a nominal feature whose values are the names of the different AST nodes (e.g.,
IfStatement and WhileStatement). The parent’s and children’s categories (AST
node names) should also be included as features. Finally, we should add one
feature per each common element in the homogenous construct. For example, the
static and final binary features are included in method (Table A.3) and field
definitions (Table A.4).

Once the homogeneous datasets are generated, the remaining three steps of our
method are language agnostic:

3. The heterogeneous datasets are created by applying drill-down operations to the
homogeneous datasets (Section 3.1).

4. After creating the homogeneous and heterogeneous datasets, the methodology in
Section 4 describes how to use different machine learning algorithms to mine the
datasets.
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5. The results produced by the algorithms of the previous step are interpreted as
described in Section 5.

The previous steps could be applied to any programming language. Step 2 is the one
that has stronger dependencies on the programming language to be analyzed. However,
it is a straightforward process if we have access to the AST structures used to represent
programs (e.g., the Python’s ast module included in its standard library (Python,
2022)).

7. Conclusions

The syntactic tree-structured information of a programming language can be ana-
lyzed with supervised and unsupervised machine learning algorithms to infer valuable
information about how programmers use that language. We define a feature engi-
neering process to translate ASTs into a collection of homogeneous and heterogeneous
n-dimensional datasets. Then, interpretable machine learning algorithms are run to
analyze the syntactic constructs.

By applying this method to the Java programming language, we document the syn-
tactic constructs mostly (and barely) used by programmers. We also rank the most
important syntactic features used by expert and novice programmers. Classification
rules allow combining distinct features of heterogeneous syntactic constructs to docu-
ment the intrinsic expertise of such constructs. We also visualize in two dimensions the
structure of 12 datasets with more than 17 million instances and analyze different clus-
ters of programs with similar syntactic constructs. With such analyses, we realized that
some groups of constructs represent different kinds of applications and, occasionally, an
inherent level of complexity.

This article summarizes the information extracted with the selected machine learn-
ing algorithms. All the results, source code and the datasets created in our research work
are freely available for download at https://www.reflection.uniovi.es/bigcode/
download/2022/java-patterns

8. Future work

In this work, we analyze syntactic constructs of source code. However, programs
also enclose semantic information commonly represented with graphs, such as control
flow graphs and program, call and class dependency graphs (Rodriguez-Prieto et al.,
2020). We plan to enrich our datasets with semantic information to be mined. The
classifiers could also be improved by adding semantic data. To do that, we will extend
our compiler plugin so that it creates semantic representations. The feature engineering
process should also be adapted to deal with cycles in graphs.

Graph neural networks have been used in many scenarios where models are trained
with graph data (Wu et al., 2022). In fact, GNNs have already been used to create
predictive models from source code (Allamanis, 2022). However, such predictive models
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act as black boxes to classify programs, being hard to interpret. In the last few years,
there have been many efforts to explain the prediction mechanisms of these GNNs with
tools such as GNNExplainer, XGNN and PGExplainer (Li et al., 2022). An interest-
ing work would be to create GNN models with syntactic and semantic information,
and analyze those models with the existing explainability tools. The results could be
compared with the ones presented in this paper.

This article proposes a collection of analyses for syntactic constructs and applies
those analyses to the Java programming language. Section 6 discusses how those an-
alyzes could be applied to other programming languages. In the future, we would like
to conduct that study with other languages of different paradigms, and compare them
with Java.
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Appendix A. Structure of the homogeneous datasets

Table 1 defined the structure (features) of the expressions dataset. In this ap-
pendix, we include the same information for statements (Table A.1), types (Table A.2),
method (Table A.3), field (Table A.4) and type definitions (Table A.5), and programs
(Table A.6).

Name Type Description

Category Nominal Syntactic category of the current node (e.g., If, Return and Throw).
1st, 2nd and 3rd child Nominal Syntactic category of the corresponding child node.
Parent node Nominal Syntactic category of the parent node.
Role Nominal Role played by the current node in the structure of its parent node.
Height Integer Distance (number of edges) from the current node to the root node

in the enclosing type (class, interface or enumeration).
Depth Integer Maximum distance (number of edges) of the longest path from the

current node to a leaf node.
Expertise Nominal Beginner or Expert.

Table A.1: Features of the statements dataset.
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Name Type Description

Category Nominal Syntactic category of the current node (e.g., Int, String and Refer-
ence).

Primitive Binary Whether the type is primitive (built-in).
Parent node Nominal Syntactic category of the parent node.
Role Nominal Role played by the current node in the structure of its parent node.
Height Integer Distance (number of edges) from the current node to the root node

in the enclosing type (class, interface or enumeration).
Number of generics Integer The number of type variables in the generic type (0=non-generic).
Number of dimensions Integer The number of dimensions in an array type (0=non-array).
Expertise Nominal Beginner or Expert.

Table A.2: Features of the types dataset.

Name Type Description

Visibility Nominal Public, protected, package or private.
Abstract, static, final, strictfp, native
and synchronized

Binary Whether the method includes the corresponding
modifier.

Default implementation Binary Whether the method in an interface has a default
implementation.

Has override Binary Whether the method has an @Override annotation.
Number of parameters Integer The number of parameters in that method.
Number of generics Integer The number of type variables in the generic method

(0=non-generic).
Number of throws Integer The number of exceptions declared in the throws

clause (0=no-throws).
Number of annotations Integer The number of annotations used in the method.
Number of statements Integer The number of statements in the method body.
Number of local variables Integer The number of local variables defined in the method

body.
Naming convention Nominal The naming convention used for the method identi-

fier (Lower, Upper, CamelLow, CamelUp or Snake-
Case).

Constructor Binary Whether the method in a constructor.
Return type Nominal The type returned by the method (e.g., Int, String

and Reference).
Number of inner classes Integer The number of inner classes defined in the method

body.
Number of overloaded methods Integer The number of overloaded method implementations

for the given method name.
Type of the 1st, 2nd and 3rd parameter Nominal Syntactic category of the corresponding types.
Expertise Nominal Beginner or Expert.

Table A.3: Features of the method definitions dataset.
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Name Type Description

Visibility Nominal Public, protected, package or private.
Static, final, volatile and transient Binary Whether the field defines the corresponding modifier.
Number of annotations Integer The number annotations used in the field.
Naming convention Nominal The naming convention used for the field identifier

(Lower, Upper, CamelLow, CamelUp or SnakeCase).
Initial value Nominal The expression used to initialize the field (syntactic

category of expression; None=no-initialization).
Type Nominal The type of the field (e.g., Int, String and Reference).
Parent node Nominal Syntactic category of the parent node.
Expertise Nominal Beginner or Expert.

Table A.4: Features of the field definitions dataset.

Name Type Description

Category Nominal Syntactic category of the current node (class, inter-
face or enumeration).

Public Binary Whether the type is public.
Abstract, static, final and strictfp Binary Whether the type includes the corresponding modi-

fier.
Has extends Binary Whether the type extends another type.
Number of annotations Integer The number annotations used in the type definition.
Number of implements Integer The number interfaces directly implemented by the

type.
Number of generics Integer The number of type variables in the generic type

(0=non-generic).
Number of methods, constructors,
fields, static blocks, and (static) nested
and inner types

Integer The number methods, constructors, fields, static
blocks, and (static) nested and inner classes defined
in the type.

Naming convention Nominal The naming convention used in the type identifier
(Lower, Upper, CamelLow, CamelUp, SnakeCase or
Anonymous).

Inner class, nested class Binary Whether the type is an inner or nested class.
Percentage of overloaded methods,
static fields and static methods

Real [0-100] Percentage of overloaded method static fields and
static methods defined in the type.

Default package Binary Whether the type is defined in the default package.
Expertise Nominal Beginner or Expert.

Table A.5: Features of the type definitions dataset.
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Name Type Description

Percentage of classes, interfaces
and enums

Real [0-100] Percentage of classes, interfaces and enumerations
defined in the program.

Code in default packages Binary Whether the project has types defined in the default
package.

Code in packages Binary Whether the project has types defined in packages.
Number of types in packages Integer The number of types defined in packages.
Number of types default package Integer The number of types defined in the default package.
Expertise Nominal Beginner or Expert.

Table A.6: Features of the programs dataset.
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