

NOTICE: This is the author’s version of a work accepted for publication by Dyna. Changes resulting from

the publishing process, including peer review, editing, corrections, structural formatting and other quality

control mechanisms, may not be reflected in this document. A definitive version was subsequently

published in Dyna, Volume 186, pp. 242-250, August 2014.

 2

Attaining multiple dispatch

in widespread object-oriented languages

Francisco Ortin a, Jose Quiroga b, Jose M. Redondo c, Miguel Garcia d

a Ph.D., Computer Science Department, University of Oviedo, Spain, ortin@uniovi.es
b M.Sc., Computer Science Department, University of Oviedo, Spain, quirogajose@uniovi.es
c Ph.D., Computer Science Department, University of Oviedo, Spain, redondojose@uniovi.es

d Ph.D., Computer Science Department, University of Oviedo, Spain, garciarmiguel@uniovi.es

Received: October 23rd, 2014. Received in revised form: May 10th, 2014. Accepted: June 10th, 2014.

Abstract

Multiple dispatch allows determining the actual method to be executed, depending on the dynamic types

of its arguments. Although some programming languages provide multiple dispatch, most widespread

object-oriented languages lack this feature. Therefore, different implementation techniques are

commonly used to obtain multiple dispatch in these languages. We evaluate the existing approaches,

presenting a new one based on hybrid dynamic and static typing. A qualitative evaluation is presented,

considering factors such as software maintainability and readability, code size, parameter generalization,

and compile-time type checking. We also perform a quantitative assessment of runtime performance and

memory consumption.

Keywords: Multiple dispatch; multi-method; dynamic binding; reflection; method overload; hybrid

typing.

1 Introduction

Object-oriented programming languages provide

dynamic binding as a mechanism to implement maintainable

code. Dynamic binding is a dispatching technique that

postpones until runtime the process of associating a message

to a specific method. Therefore, when the toString

message is passed to a Java object, the actual toString

method called is that implemented by the dynamic type of the

object, discovered by the virtual machine at runtime.

Although dynamic binding is a powerful tool, widespread

languages such as Java, C# and C++ only support it as a

single dispatch mechanism: the actual method to be invoked

depends on the dynamic type of a single object. In these

languages, multiple-dispatch is simulated by the programmer

using specific design patterns, inspecting the dynamic type of

objects, or using reflection.

In languages that support multiple-dispatch, a message

can be dynamically associated to a specific method based on

the runtime type of all its arguments. These multiple-dispatch

methods are also called multi-methods [1]. For example, if

we want to evaluate binary expressions of different types

with different operators, multi-methods allow modularizing

each operand-operator-operand combination in a single

method. In the example C# code in Figure 1, each Visit

method implements a different kind of operation for three

concrete types, returning the appropriate value type. As

shown in Figure 2, the values and operators implement the

Value and Operator interface, respectively. Taking two

Value operands and an Operator, a multi-method is able

to receive these three parameters and dynamically select the

appropriate Visit method to be called. It works like

dynamic binding, but with multiple types. In our example, a

triple dispatch mechanism is required (the appropriate

Visit method to be called is determined by the dynamic

type of its three parameters).

 3

Polymorphism can be used to provide a default behavior

if one combination of two expressions and one operator is not

provided. Since Value and Operator are the base types

of the parameters (Figure 2), the last Visit method in

Figure 1 will be called by the multiple dispatcher when there

is no other suitable Visit method with the concrete

dynamic types of the arguments passed. An example is

evaluating the addition (AddOp) of two Boolean (Bool)

expressions.

In this paper, we analyze the common approaches

programmers use to simulate multiple dispatching in those

widespread object-oriented languages that only provide

single dispatch (e.g., Java, C# and C++). To qualitatively

compare the different alternatives, we consider factors such

as software maintainability and readability, code size,

parameter generalization, and compile-time type checking. A

quantitative assessment of runtime performance and memory

consumption is also presented. We also present a new

approach to obtain multiple dispatch in languages that

provide hybrid dynamic and static typing, such as C#,

Objective-C, Boo and Cobra. This alternative provides high

maintainability and readability, requires reduced code size,

allows parameter generalization, and performs significantly

better than the reflective approach. On contrast, it requires

31% more memory resources than the rest of alternatives.

The rest of this paper is structured as follows. In Section

2, the common approaches to obtain multi-methods in

widespread object-oriented programming languages are

presented and qualitatively evaluated. Section 3 presents a

new approach for hybrid typing languages, and a comparison

with the previously analyzed systems. Section 4 details the

runtime performance and memory consumption evaluation.

Conclusions and future work are presented in Section 5.

2 Common approaches

2.1 The Visitor design pattern

The Visitor design patter is a very common approach to

obtain multiple dispatch in object-oriented languages than do

not implement multi-methods [2]. By using method

overloading, each combination of non-abstract types is

implemented in a specific Visit method (Figure 1). Static

type checking is used to modularize each operation in a

different method. The compiler solves method overloading

by selecting the appropriate implementation depending on

the static types of the parameters. Suppose an n-dispatch

scenario: a method with n polymorphic parameters, where

each parameter should be dynamically dispatched

considering its dynamic type (i.e., multiple dynamic

binding). In this n-dispatch scenario, the n parameters belong

to the H1, H2… Hn hierarchies, respectively. Under these

circumstances, there are potentially ∏ 𝐶𝐶𝑖
𝑛
𝑖=1 Visit

methods, CCi being the number of concrete (non-abstract)

classes in the Hi hierarchy.

Using polymorphism, parameters can be generalized in

groups of shared behavior (base classes or interfaces). An

example of this generalization is the two last addition

methods in Figure 1. They generalize the way strings are

concatenated with any other Value. This feature that allows

grouping implementations by means of polymorphism is the

parameter generalization criterion mentioned in the previous

section.

 public class EvaluateExpression {

 // Addition
 Integer Visit(Integer op1, AddOp op, Integer op2) { return new Integer(op1.Value + op2.Value); }
 Double Visit(Double op1, AddOp op, Integer op2) { return new Double(op1.Value + op2.Value); }
 Double Visit(Integer op1, AddOp op, Double op2) { return new Double(op1.Value + op2.Value); }
 Double Visit(Double op1, AddOp op, Double op2) { return new Double(op1.Value + op2.Value); }
 String Visit(String op1, AddOp op, String op2) { return new String(op1.Value + op2.Value); }
 String Visit(String op1, AddOp op, Value op2) { return new String(op1.Value + op2.ToString()); }
 String Visit(Value op1, AddOp op, String op2) { return new String(op1.ToString() + op2.Value); }

 // EqualsTo
 Bool Visit(Integer op1, EqualToOp op, Integer op2) { return new Bool(op1.Value == op2.Value); }
 Bool Visit(Double op1, EqualToOp op, Integer op2) { return new Bool((int)(op1.Value) == op2.Value); }
 Bool Visit(Integer op1, EqualToOp op, Double op2) { return new Bool(op1.Value == ((int)op2.Value)); }
 Bool Visit(Double op1, EqualToOp op, Double op2) { return new Bool(op1.Value == op2.Value); }
 Bool Visit(Bool op1, EqualToOp op, Bool op2) { return new Bool(op1.Value == op2.Value); }
 Bool Visit(String op1, EqualToOp op, String op2) { return new Bool(op1.Value.Equals(op2.Value)); }

 // And
 Bool Visit(Bool op1, AndOp op, Bool op2) { return new Bool (op1.Value && op2.Value); }

 // The rest of combinations
 Expression Visit(Value op1, Operator op, Value op2) { return null; }

 }

Figure 1. Modularizing each operand and operator type combination.

 4

As shown in Figure 2, the Visitor pattern places the

Visit methods in another class (or hierarchy) to avoid

mixing the tree structures to be visited (Value and

Operator) with the traversal algorithms (Visitor) [3].

The (single) dispatching mechanism used to select the correct

Visit method is dynamic binding [2]. A polymorphic

(virtual) method must be declared in the tree hierarchy,

because that is the hierarchy the specific parameter types of

the Visit methods belong to. In Figure 2, the Accept

method in Value provides the multiple dispatch. When

overriding this method in a concrete Value class, the type

of this will be non-abstract, and hence the specific dynamic

type of the first parameter of Visit will be known.

Therefore, by using dynamic binding, the type of the first

parameter is discovered. This process has to be repeated for

every parameter of the Visit method. In our example

(Figure 2), the type of the second operand is discovered with

the Accept2 method in Operator, and Accept3 in

Value discovers the type of the third parameter before

calling the appropriate Visit method.

In this approach, the number of AcceptX method

implementations grows geometrically relative to the dispatch

dimensions (i.e., the n in n-dispatch, or the number of the

Visit parameters). Namely, for H1, H2… Hn hierarchies of

the corresponding n parameters in Visit, the number of

Accept methods are 1+∑ ∏ 𝐶𝐶𝑗
𝑖
𝑗=1

𝑛−1
𝑖=1 . Therefore, the code

size grows geometrically with the number of parameters in

the multi-method. Additionally, declaring the signature of

each single AcceptX method is error-prone and reduces its

readability.

Adding a new concrete class to the tree hierarchy requires

adding more AcceptX methods to the implementation (see

the formula in the previous paragraph). This feature reduces

the maintainability of this approach, causing the so-called

expression problem [4]. This problem is produced when the

addition of a new type to a type hierarchy involves changes

in other classes.

The Visitor approach provides different advantages. First,

the static type error detection provided by the compiler.

Second, this approach provides the best runtime performance

(see Section 4). Finally, parameter generalization, as

mentioned, is also supported. A summary of the pros and

cons of all the approaches is presented in Table 1, after

analyzing all the alternatives.

2.2 Runtime type inspection

In the previous approach, the dispatcher is implemented

by reducing multiple-dispatch to multiple cases of single

dispatch. Its high dependence on the number of concrete

classes makes it error-prone and reduces its maintainability.

This second approach implements a dispatcher by consulting

the dynamic type of each parameter in order to solve the

specific Visit method to be called. This type inspection

could be performed by either using an is type of operator (e.g.,

is in C# or instanceof in Java) or asking the type of an

object at runtime (e.g., GetType in C# or getClass in

Java). Figure 3 shows an example implementation in C#

using the is operator. Notice that this single Accept

method is part of the EvaluateExpression class in

Figure 1 (it does not need to be added to the tree hierarchy).

Figure 2. Multiple dispatch implementation with the statically typed approach (ellipsis obviates repeated members).

Integer

+ Value: int

+ Accept(op:Operator, op2:Value, v:Visitor) : Value

+ Accept3(op1:Integer, op:AddOp, v:Visitor):Value

«interface»

Value

+ Accept(Operator, Value, Visitor) : Value

+ Accept3(Integer, AddOp, Visitor) : Value

+ Accept3(Double, AddOp, Visitor) : Value

+ Accept3(String, AddOp, Visitor) : Value

+ Accept3(Bool, AddOp, Visitor) : Value

+ Accept3(Integer, EqualToOp, Visitor) : Value

+ Accept3(Double, EqualToOp, Visitor) : Value

+ Accept3(String, EqualToOp, Visitor) : Value

+ Accept3(Bool, EqualToOp, Visitor) : Value

+ Accept3(Integer, AndOp, Visitor) : Value

+ Accept3(Double, AndOp, Visitor) : Value

+ Accept3(String, AndOp, Visitor) : Value

+ Accept3(Bool, AndOp, Visitor) : Value

«interface»

Operator

+ Accept2(Integer, Value, Visitor) : Value

+ Accept2(Double, Value, Visitor) : Value

+ Accept2(String, Value, Visitor) : Value

+ Accept2(Bool, Value, Visitor) : Value

«interface»

Visitor

+ Visit(Integer, AddOp, Integer) : Integer

+ Visit(Integer, AddOp, Double) : Double

+ Visit(Double, AddOp, Integer) : Double

AddOpEqualToOp

AndOp

+ Accept2(op1:Integer,op2:Value,v:Visitor):Value

return op.Accept2(this, op2, v);

return v.visit(op1, op, op2);

return op2.Accept3(op1, this, v);

EvaluateVisitor

+ Visit(Integer, AddOp, Integer) : Integer

+ Visit(Integer, AddOp, Double) : Double

+ Visit(Double, AddOp, Integer) : Double

…

…

…

… …

Double

+ Value: double

…

String

+ Value: string

…

Bool

+ Value: bool

…

Tree Hierarchy

Visitor Hierarchy

 5

Figure 3 shows the low readability of this approach for

our triple dispatch example with seven concrete classes. The

maintainability of the code is also low, because the dispatcher

implementation is highly coupled with the number of both

the parameters of the Visit method and the concrete classes

in the tree hierarchy. At the same time, the code size of the

dispatcher grows with the number of parameters and concrete

classes.

The is operator approach makes extensive use of type

casts. Since cast expressions perform type checks at runtime,

this approximation loses the robustness of full compile-time

type checking. The GetType approach also has this

limitation together with the use of strings for class names,

which may cause runtime errors when the class name is not

written correctly. Parameter generalization is provided by

means of polymorphism. As discussed in Section 4, the

runtime performance of these two approaches is not as good

as that of the previous alternative.

2.3 Reflection

The objective of the reflection approach is to implement

a dispatcher that does not depend on the number of concrete

classes in the tree hierarchy. For this purpose, not only the

types of the parameters but also the methods to be invoked

are discovered at runtime. The mechanism used to obtain this

objective is reflection, one of the main techniques used in

meta-programming [5]. Reflection is the capability of a

computational system to reason about and act upon itself,

adjusting itself to changing conditions [6]. Using reflection,

the self-representation of programs can be dynamically

consulted and, sometimes, modified [7]. As shown in Figure

5, the dynamic type of an object can be obtained using

reflection (GetType). It is also possible to retrieve the

specific Visit method implemented by its dynamic type

(GetMethod), passing the dynamic types of the parameters.

It also provides the runtime invocation of dynamically

discovered methods (Invoke).

The code size of this approach does not grow with the

number of concrete classes. Moreover, the addition of

another parameter does involve important changes in the

code. Consequently, as shown in Table 1, this approach is

more maintainable than the previous ones. Although the

reflective Accept method in Figure 4 may be somewhat

atypical at first, we think its readability is certainly higher

than the one in Figure 3.

The first drawback of this approach is that no static type

checking is performed. If Accept invokes a nonexistent

Visit method, an exception is thrown at runtime, but no

compilation error is produced. Another limitation is that

parameter generalization is not provided because reflection

only looks for one specific Visit method. If an

implementation with the exact signature specified does not

exist, no other polymorphic implementation is searched (e.g.,

the last Visit method in Figure 1 is never called). Finally,

this approach has showed the worst runtime performance in

our evaluation (Section 4).

public class EvaluateExpression {
 … // * Selects the appropriate Visit method in Figure 1
 public Value Accept(Value op1, Operator op, Value op2) {
 if (op is AndOp) {
 if (op1 is Bool) {
 if (op2 is Bool) return Visit((Bool)op1, (AndOp)op, (Bool)op2);
 else if (op2 is String) return Visit((Bool)op1, (AndOp)op, (String)op2);
 else if (op2 is Double) return Visit((Bool)op1, (AndOp)op, (Double)op2);
 else if (op2 is Integer) return Visit((Bool)op1, (AndOp)op, (Integer)op2);
 }
 else if (op1 is String) { … }
 else if (op1 is Double) { … }
 else if (op1 is Integer) { … }
 else if (op is EqualToOp) { … }
 else if (op is AddOp) { … }
 Debug.Assert(false, String.Format("No implementation for op1={0}, op={1} and op2={2}",op1, op, op2));
 return null;
} }

Figure 3. Multiple dispatch implementation using runtime type inspection with the is operator (ellipsis is used to obviate repeating code).

public class EvaluateExpression {
 … // * Selects the appropriate Visit method in Figure 1
 public Value Accept(Value op1, Operator op, Value op2) {
 MethodInfo method = this.GetType().GetMethod("Visit", BindingFlags.NonPublic | BindingFlags.Instance,
 null, new Type[] { op1.GetType(), op.GetType(), op2.GetType() }, null);
 if (method == null) {
 Debug.Assert(false,String.Format("No implementation for op1={0}, op={1} and op2={2}",op1,op,op2));
 return null;
 }
 return (Value)method.Invoke(this, new object[] { op1, op, op2 });
} }

Figure 4. Multiple dispatch implementation using reflection.

 6

3 A hybrid typing approach

Hybrid static and dynamic typing (henceforth referred to

simply as hybrid typing) languages provide both typing

approaches in the very same programming language.

Programmers may use one alternative or the other depending

on their interests, following the static typing where possible,

dynamic typing when needed principle [8]. In the case of

multiple dispatch, we have used static typing to modularize

the implementation of each operand and operator type

combination (Visit methods in Figure 1). We propose the

use of dynamic typing to implement multiple dispatchers that

dynamically discover the suitable Visit method to be

invoked.

In a hybrid typing language, its static typing rules are also

applied at runtime when dynamic typing is selected. This

means that, for instance, method overload is postponed until

runtime, but the resolution algorithm stays the same [9]. We

have used this feature to implement a multiple dispatcher that

discovers the correct Visit method to be invoked at

runtime, using the overload resolution mechanism provided

by the language. At the same time, parameter generalization

by means of polymorphism is also achieved.

Figure 5 shows an example of multiple dispatch

implementation (Accept method) in C#. With dynamic,

the programmer indicates that dynamic typing is preferred,

postponing the overload resolution until runtime. The first

maintainability benefit is that the dispatcher does not depend

on the number of concrete classes in the tree hierarchy (the

expression problem [4]). Besides, another dispatching

dimension can be provided by simply declaring one more

parameter, and passing it as a new argument to Visit. The

dispatcher consists in a single invocation to the overloaded

Visit method, indicating which parameters require

dynamic binding (multiple dispatching) with a cast to

dynamic. If the programmer wants to avoid dynamic

binding for a specific parameter, this cast to dynamic will

not be used. This simplicity makes the code highly readable

and reduces its size considerably (Table 1). At the same time,

since the overload resolution mechanism is preserved,

parameter generalization by means of polymorphism is also

provided (i.e., polymorphic methods like the two last addition

implementations for strings in Figure 1).

In C#, static type checking is disabled when the

dynamic type is used, lacking the compile-time detection

of type errors. However, there are research works on hybrid

typing languages, such as the StaDyn programming language

[10], which provide static type checking when the dynamic

type is used. When this feature is not supported, the best

approach is to use static types to declare the Accept

parameters using polymorphism (restricting their types to

Value and Operator, as shown in Figure 5). At the same

time, exception handling is another mechanism that can be

used to make the code more robust –notice that parameter

generalization reduces the number of possible exceptions to

be thrown, compared to the reflection approach.

Finally, this approach shows a runtime performance

between the statically typed implementation and the

reflective one (see Section 4). Hybrid typing languages,

including C#, commonly implement a dynamic cache to

improve runtime performance of dynamically typed code

[11]. This technique provides a significant runtime

performance improvement compared to reflection [12].

Table 1.
Qualitative evaluation of the approaches.

M

ai
n
ta

in
ab

il
it

y

R
ea

d
ab

il
it

y

C
o
d

e
S

iz
e

P
ar

am
et

er

G
en

er
al

iz
at

io
n

C
o

m
p

il
e-

ti
m

e
ty

p
e

ch
ec

k
in

g

R
u
n

ti
m

e

P
er

fo
rm

an
ce

M
em

o
ry

C

o
n

su
m

p
ti

o
n

Visitor Pattern ✓ ✓ ✓ ✓

is Operator ✓ ½ ✓

GetType Method ✓ ½ ✓

Reflection ✓ ✓ ✓ ✓

Hybrid Typing ✓ ✓ ✓ ✓ ½

4 Evaluation

In this section, we measure execution time and memory

consumption of the five different approaches analyzed.

Detailed information is presented to justify the performance

and memory assessment in the two last columns of Table 1.

4.1 Methodology

In order to compare the performance of the proposed

approaches, we have developed a set of synthetic micro-

benchmarks. These benchmarks measure the influence of the

following variables on runtime performance and memory

consumption:

 Dispatch dimensions. We have measured programs

executing single, double and triple dispatch methods.

These dispatch dimensions represent the number of

public class EvaluateExpression {
 … // * Selects the appropriate Visit method in Figure 1
 public Value Accept(Value op1, Operator op, Value op2) {
 try {
 return this.Visit((dynamic)op1, (dynamic)op, (dynamic)op2);
 } catch (RuntimeBinderException) {
 Debug.Assert(false, String.Format("No implementation for op1={0}, op={1} and op2={2}",op1,op,op2));
 }
 return null;
} }

Figure 5. Multiple dispatch implementation with the hybrid typing approach.

 7

parameters passed to the Accept method shown in

Figures 3, 4 and 5.

 Number of concrete classes. This variable is the

number of concrete classes of each parameter of the

Accept method. For each one, we define from 1 to 5

possible derived concrete classes. Therefore, the

implemented dispatchers will have to select the

correct Visit method out of up to 125 different

implementations (53).

 Invocations. Each program is called an increasing

number of times to analyze their performance in long-

running scenarios (e.g., server applications).

 Approach. The same application is implemented

using the static typing, runtime type inspection (is

and GetType alternatives), reflection, and hybrid

typing approaches.

Each program implements a collection of Visit

methods that simply increment a counter field. The idea is to

measure the execution time of each dispatch technique,

avoiding additional significant computation we have

previously evaluated a more realistic application in [13].

Regarding the data analysis, we have followed the

methodology proposed in [14] to evaluate the runtime

performance of applications, including those executed on

virtual machines that provide JIT compilation. We have

followed a two-step methodology:

1. We measure the elapsed execution time of running

multiple times the same program. This results in p (we

have taken p = 30) measurements xi with 1≤ i ≤ p.

2. The confidence interval for a given confidence level

(95%) is computed to eliminate measurement errors that

may introduce a bias in the evaluation. The confidence

interval is computed using the Student's t-distribution

because we took p = 30 [15]. Therefore, we compute the

confidence interval [c1,c2] as:

𝑐1 = 𝑥̅ − 𝑡1−𝛼/2;𝑝−1
𝑠

√𝑝
 𝑐2 = 𝑥̅ + 𝑡1−𝛼/2;𝑝−1

𝑠

√𝑝
 (1)

where 𝑥̅ is the arithmetic mean of the xi measurements,

α = 0.05(95%), s is the standard deviation of the xi

measurements, and 𝑡1−𝛼/2;𝑝−1 is defined such that a

random variable T, that follows the Student's t-

distribution with 𝑝 − 1 degrees of freedom, obeys

 Pr[𝑇 ≤ 𝑡1−𝛼/2;𝑝−1] = 1 − 𝛼/2. (2)

The memory consumption has been measured following

the same methodology to determine the memory used by the

whole process. All the tests were carried out on a lightly

loaded 3.4 GHz Intel Core I7 2600 system with 16 GB of

RAM running an updated 64-bit version of Windows 8

Professional.

4.2 Runtime performance

Figure 6 shows the execution time of single, double and

triple dispatch, when each parameter of the multi-method has

five concrete derived types. Each Visit method is executed

at least once. To analyze the influence of the number of

invocations on the execution time, we invoke multi-methods

in loops from 1 to 100,000 iterations. Figure 6 shows the

average execution time for a 95% confidence level, with an

error interval lower than 2%.

As can be seen in Figure 6, all the approaches have a

linear influence of the number of iterations on execution

time. However, the dispatch dimension (i.e., the number of

multi-method parameters) of the analyzed approaches shows

a different influence. For single dispatch, the hybrid typing

approach is 19% and 2,787% faster than GetType and

reflection, respectively, but requires 157% and 876% more

execution time that is and static typing. For double dispatch,

the runtime performance of the hybrid approach improves in

comparison with the rest of alternatives (Figure 6). For triple

dispatch, the hybrid static and dynamic typing alternative is

the second fastest one, performing 1.4, 2.5 and 265 times

better than is, GetType and reflection, respectively (static

typing is 2.7 times faster than hybrid typing in this scenario).

Figure 7 shows execution time, when the number of

concrete classes that implement each multi-method

parameter increases (for 100,000 fixed iterations). For each

parameter, we increment (from 1 to 5) the number of its

derived concrete classes. In the case of triple dispatch and

five different concrete classes, the multiple dispatcher has to

select the correct Visit method out of 125 (53) different

implementations.

As show in Figure 7, the relative performance of the

hybrid approach improves as the number of concrete classes

increases. For single dispatch, hybrid typing requires 213%

more execution time than GetType for one concrete type of

the single parameter; however, the hybrid approach is 19%

faster than GetType for five different concrete types. For

double dispatch, the hybrid approach improves its relative

performance, being faster than GetType for any number of

classes. When the dimension of the dispatch is triple, the

relative runtime performance of the hybrid approach also

improves as the number of concrete classes increases. With

five different types for each of the three parameters, the

hybrid approach is the second fastest one, being 40% faster

than is and 265 times faster than reflection (static typing is

2.7 times faster than hybrid typing).

4.3 Memory consumption

We have measured memory consumption, analyzing all

the variables mentioned in the Section 4.1. There is no

influence of the number of iterations, the dimensions of

dispatch, or the number of concrete classes, in the memory

consumed by the benchmark.

The memory required by the approaches but hybrid

typing are similar (the difference is 1%, lower than the 2%

error interval). However, the hybrid approach involves an

average increase of 31% compared with the rest of

approaches. This difference is due to the use of the Dynamic

Language Runtime (DLR) [16]. The DLR is a new layer over

the CLR to provide a set of services to facilitate the

implementation of dynamic languages. The DLR implements

a runtime cache to optimize runtime performance of

 8

dynamically typed operations, performing better than

reflection (as shown in Figures 6 and 7) [13]. However, this

runtime performance improvement also requires additional

memory resources.

5 Related work

In this section, we describe the existing languages and

frameworks that provide multiple dispatch [17]. CLOS [18]

and Clojure [19] are examples of dynamically typed

Figure 6. Execution time (microseconds in logarithmic scale)
increasing the number of iterations.

Figure 7. Execution time (microseconds in logarithmic scale)

increasing the number of concrete types.

1 E+00

1 E+01

1 E+02

1 E+03

1 E+04

1 E+05

1 E+06

1 E+07

1 E+08

1 10 1 0 0 1K 1 0 K 100K

Number of Iterations

Double Dispatch

1 E-01

1 E+00

1 E+01

1 E+02

1 E+03

1 E+04

1 E+05

1 E+06

1 E+07

1 10 1 0 0 1K 1 0 K 100K

Number of Iterations

Single Dispatch

1 E+00

1 E+01

1 E+02

1 E+03

1 E+04

1 E+05

1 E+06

1 E+07

1 E+08

1 E+09

1 E+10

1 1 0 1 0 0 1 K 1 0 K 1 0 0 K

Number of Iterations

Tr ip le Dispatch

StaticTyping Is GetType

Reflection HybridTyping

1 E-01

1 E+00

1 E+01

1 E+02

1 E+03

1 2 3 4 5

Number of Concrete Classes

Single Dispatch

1 E-01

1 E+00

1 E+01

1 E+02

1 E+03

1 E+04

1 2 3 4 5

Number of Concrete Classes

Double Dispatch

1 E-01

1 E+00

1 E+01

1 E+02

1 E+03

1 E+04

1 E+05

1 E+06

1 2 3 4 5

Number of Concrete Classes

Tr ip le Dispatch

StaticTyping Is GetType

Reflection HybridTyping

 9

languages that include multi-methods in their semantics.

Clojure has recently created a port for .NET that makes use of

the DLR [20]. These approaches are fully dynamic, detecting

all the type errors at runtime.

Xtend is a Java extension that provides statically typed

multiple dispatch [21]. Method resolution and binding in

Xtend are done at compile time as in Java. Dylan [22], Cecil

[1] and, recently, Groovy 2 [23] are programming languages

that provide both dynamic and static typing. Although these

three languages support dynamically typed multi-methods,

multiple dispatch can also be achieved with the hybrid typing

approach proposed in this article.

Many different approaches exist to provide multiple

dispatch to the Java platform. One of the first works is

Runabout, a library to support two-argument dispatch (i.e.,

double dispatch) for Java [24]. Runabout is based on

improving a previous reflective implementation of the Visitor

pattern called Walkabout [25]. The appropriate method

implementation is found via reflection, but method

invocation is performed by generating Java bytecode at

runtime performing better than Walkabout.

Dynamic Dispatcher is a double-dispatch framework for

Java [26]. Three different dispatch methods are provided,

combining the use of reflection and dynamic code generation.

It provides the generalization of multi-method parameters by

means of polymorphism.

Sprintabout is another double-dispatch alternative for

Java, provided as a library [27]. Sprintabout uses a naming

convention to identify multi-methods. Multi-methods

implement a runtime type inspection dispatch (the GetType

approach). The dispatch object implements a cache to

efficiently obtain the different method implementations at

runtime, avoiding the use of reflection.

MultiJava is a backward-compatible extension of Java

that supports any dispatch dimension (not just double

dispatch) [28]. Given a set of multi-method implementations,

the MultiJava compiler produces a single Java dispatch

method containing the bodies of the set of multi-method

implementations. The multi-method implements the runtime

type inspection approach, using the instanceof Java

operator (is in C#).

The Java Multi-Method Framework (JMMF) uses

reflection to provide multiple dispatch for Java [29]. Multi-

methods can be defined in any class and with any name.

JMMF is provided as a library; it proposes neither language

extensions nor virtual machine modifications.

PolyD is aimed at providing a flexible multiple dispatch

technique for Java [30]. PolyD generates Java bytecodes

dynamically, and allows the user to define customized

dispatching policies. Three standard dispatching policies are

available: multiple dispatching (cached GetType runtime

type inspection), overloading (static method overload) and a

‘non-subsumptive’ policy (only calls a method if the classes

of the arguments match exactly those of the method

parameters; i.e. no parameter generalization).

6 Conclusions

Different alternatives are nowadays used to achieve

multiple dispatch in widespread language s that do not

provide multi-methods. A qualitative evaluate has shown the

pros and cons of each approach.

A new alternative has been described for hybrid typing

languages. Their benefits are high readability and

maintainability, loose coupling with the number of concrete

classes and the dispatch dimensions, and parameter

generalization. The main limitation is no compile-time type

error detection. Its runtime performance is analogous to the

runtime type inspection approaches. The average execution

time of all the measured hybrid programs took 3.9 times more

execution time the Visitor design pattern, being 36.6 times

faster than reflection. The proposed approach has consumed

31% more memory resources than the rest of alternatives.

Since the main limitation of the hybrid typing approach is

its lack of compile-time error detection, we are currently

working on defining and implementing a hybrid language

that provides compile-time type checking [10]. That

language, called StaDyn, is an extension of C# that performs

type inference over dynamic references. This C# extension

may eventually detect some type errors of the hybrid typing

approach at compile-time [31]. Another future work will be

analyzing the suitability of implementing multi-methods in

Java using the new invokedynamic opcode [32].

All the programs used in the evaluation of runtime

performance and memory consumption, and the detailed

measurement data are freely available at
http://www.reflection.uniovi.es/stadyn/download/2013/dyna.zip

Acknowledgements

This work has been partially funded by Microsoft

Research and the Department of Science and Innovation

(Spain) under the National Program for Research,

Development and Innovation: project TIN2011-25978.

References

[1] Chambers, G. Object-oriented multi-methods in Cecil. European
Conference on Object-Oriented Programming (ECOOP). The Netherlands,

33-56, 1992.

[2] Erich, G., Richard, H., Ralph, J. and John, V. Design patterns: elements

of reusable object-oriented software. Addison Wesley, 1995.

[3] Ortin, F., Zapico, D. and Cueva, J.M. Design patterns for teaching type

checking in a compiler construction course, IEEE Transactions on

Education, 50, 273-283, 2007.

[4] Torgersen, M. The expression problem revisited. European Conference

on Object-Oriented Programming (ECOOP). Oslo, Norway, 123-146, 2004.

[5] Ortin, F., Lopez, B. and Perez-Schofield, J.B.G. Separating adaptable

persistence attributes through computational reflection, IEEE Software 21,
41-49, 2004.

[6] Maes, P. Computational Reflection. PhD thesis, Laboratory for Artificial

Intelligence, Vrije Universiteit, Amsterdam, the Netherlands, 1987.

http://www.reflection.uniovi.es/stadyn/download/2013/dyna.zip

 10

[7] Redondo, J.M. and Ortin, F. Efficient support of dynamic inheritance for
class- and prototype-based languages, Journal of Systems and Software, 86,

278-301, 2013.

[8] Meijer, E. and Drayton, P. Static typing where possible, dynamic typing

when needed: The end of the cold war between programming languages.

OOPSLA 2004 Workshop on Revival of Dynamic Languages. Vancouver,
Canada, 1-6, 2004.

[9] Bierman, G., Meijer, E. and Torgersen, M. Adding dynamic types to C#.
European Conference on Object-Oriented Programming (ECOOP). Maribor,

Slovenia, 76-100, 2010.

[10] Ortin, F., Zapico, D., Perez-Schofield, J.B.G. and Garcia, M. Including

both static and dynamic typing in the same programming language, IET

Software, 4, 268-282, 2010.

[11] Ortin, F., Redondo, J.M. and Perez-Schofield, J.B.G. Efficient virtual

machine support of runtime structural reflection, Science of computer
Programming, 74, 836-860, 2009.

[12] Redondo, J.M., Ortin, F. and Cueva, J.M. Optimizing reflective
primitives of dynamic languages, International Journal of Software

Engineering and Knowledge Engineering, 18, 759-783, 2008.

[13] Ortin, F., Garcia, M., Redondo, J.M. and Quiroga, J. Achieving multiple

dispatch in hybrid statically and dynamically typed languages. World

Conference on Information Systems and Technologies (WorldCIST),
Advances in Information Systems and Technologies, 206, 703-713, 2013.

[14] Georges, A., Buytaert, D. and Eeckhout, L. Statistically rigorous Java
performance evaluation. Object-Oriented Programming, Systems,

Languages & Applications (OOPSLA). Montreal, 57-76, 2007.

[15] Lilja, D.J. Measuring computer performance: a practitioner’s guide.

Cambridge University Press, 2005.

[16] Chiles, B. and Turner, A. Dynamic Language Runtime [May 2014]

Available at:

http://www.codeplex.com/Download?ProjectName=dlr&DownloadId=127
512.

[17] Gómez-Luna, E., Fernando-Navas, D., Aponte-Mayor, G. and
Betancour-Buitrago, L.A. Literature review methodology for scientific and

information management, through its structuring and systematization,

DYNA, 81, 156-163, 2014.

 [18] DeMichiel, L.G. and Gabriel, R.P. The Common Lisp Object System:

an overview. European Conference on Object-Oriented Programming
(ECOOP). Paris, France, 151-170, 1987.

[19] Hickey, R. The Clojure programming language. Symposium on

Dynamic Languages (DLS). Paphos, Cyprus, 1-10, 2008.

[20] ClojureCLR. A port of Clojure to the CLR, part of the Clojure project

[May 2014]. Available at: https://github.com/clojure/clojure-clr

[21] Eclipse Project, Xtend, Java 10 today! [May 2014] Available at:

http://www.eclipse.org/xtend.

[22] Shalit, A. The Dylan reference manual: the definitive guide to the new

object-oriented dynamic language. Addison Wesley Longman Publishing,

1996.

[23] Groovy 2.0 release notes. A “static theme” for a dynamic language.

[May 2014] Available at:
http://groovy.codehaus.org/Groovy+2.0+release+notes

[24] Grothoff, C. Walkabout revisited: The Runabout. European Conference
on Object-Oriented Programming (ECOOP). Darmstadt, Germany, 103-125,

2003.

[25] Palsberg, J. and Jay, C.B. The essence of the visitor pattern. Computer

Software and Applications Conference (COMPSAC). Vienna, Austria, 9-15,

1998.

[26] Büttner, F., Radfelder, O., Lindow, A. and Gogolla, M. Digging into the
visitor pattern. International Conference on Software Engineering &

Knowledge Engineering (SEKE). Banff, Alberta, Canada, 135-141, 2004.

[27] Forax, R., Duris, E. and Roussel, G. Reflection-based implementation

of Java extensions: the double-dispatch use-case. Symposium on Applied

Computing (SAC). Santa Fe, New Mexico, 1409-1413, 2005.

[28] Clifton, C., Leavens, G.T., Chambers, G. and Millstein, T. MultiJava:

Modular open classes and symmetric multiple dispatch for Java. Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA).

Minneapolis, Minnesota, 130-145, 2000.

[29] Forax, R., Duris, E. and Roussel, G. A reflective implementation of Java

multi-methods, IEEE Transactions on Software Engineering, 30, 1055-1071,

2004.

[30] Cunei, A. and Vitek, J. An efficient and flexible toolkit for composing

customized method dispatchers, Software: Practice and Experience, 38, 33-
73, 2008.

[31] Ortin, F. Type Inference to Optimize a Hybrid Statically and
Dynamically Typed Language, Computer Journal, 54, 1901-1924, 2011.

[32] Ortin, F., Conde, P., Fernandez-Lanvin, D. and Izquierdo, R. A runtime
performance of invokedynamic: Evaluation with a Java library, IEEE

Software, 31, 1-16, 2014.

Francisco Ortin, 1973, is an Associate Professor of the Computer Science

Department at the University of Oviedo, Spain. He is the head of the

Computational Reflection research group (www.reflection.uniovi.es). He
received his BSc in Computer Science in 1994, and his MSc in Computer

Engineering in 1996. In 2002, he was awarded his PhD entitled A Flexible

Programming Computational System developed over a Non-Restrictive
Reflective Abstract Machine. He has been the principal investigator of

different research projects funded by Microsoft Research and the Spanish

Department of Science and Innovation. His main research interests include
dynamic languages, type systems, aspect-oriented programming,

computational reflection, and runtime adaptable applications.

ORCID: 0000-0003-1199-8649

Jose Quiroga, 1982, is a Research Assistant of the Computer Science

Department at the University of Oviedo. He was awarded his BSc degree in
Computer Science in 2004 and, in 2009, an MSc in Computer Engineering.

He worked in the Research and Development department of the CTIC
Foundation until 2012, when he became a Research Assistant financed by

the Spanish Department of Competitiveness and Productivity. As a PhD

student, he is doing research on the optimization of dynamically typed
programming languages, performing compile-time inference of type

information.

ORCID: 0000-0002-1646-4796

Jose M. Redondo, 1978, is an Assistant Professor of the Computer Science

Department at the University of Oviedo, Spain. He received his BSc in
Computer Science in 2000, and his MSc in Computer Engineering in 2002.

In 2007, he was awarded his PhD entitled Improving the performance of

structural reflection using JIT compilation techniques. He has participated
in different research projects funded by Microsoft Research and the Spanish

Department of Science and Innovation. His main research interests include

virtual machines, JIT compilation, computational reflection, and runtime
adaptable applications.

ORCID: 0000-0002-0939-0186

Miguel Garcia, 1979, is a Postdoctoral Research Assistant of the Computer

Science Department at the University of Oviedo. He received his BSc degree

in Computer Science in 2005. In 2008, he was awarded an MSc in Web
Engineering, and an MSc in Software Engineering Research in 2010. In

2013, he presented his PhD dissertation entitled Improving the Runtime

Performance and Robustness of Hybrid Static and Dynamic Typing
Languages. His research interests include compiler construction,

programming languages design, and aspect-oriented software development.

ORCID: 0000-0002-3150-2826

http://www.codeplex.com/Download?ProjectName=dlr&DownloadId=127512
http://www.codeplex.com/Download?ProjectName=dlr&DownloadId=127512
https://github.com/clojure/clojure-clr
http://www.eclipse.org/xtend
http://groovy.codehaus.org/Groovy+2.0+release+notes
http://www.reflection.uniovi.es/

