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Abstract 

Multiple dispatch allows determining the actual method to be executed, depending on the dynamic types 

of its arguments. Although some programming languages provide multiple dispatch, most widespread 

object-oriented languages lack this feature. Therefore, different implementation techniques are 

commonly used to obtain multiple dispatch in these languages. We evaluate the existing approaches, 

presenting a new one based on hybrid dynamic and static typing. A qualitative evaluation is presented, 

considering factors such as software maintainability and readability, code size, parameter generalization, 

and compile-time type checking. We also perform a quantitative assessment of runtime performance and 

memory consumption. 

 

Keywords: Multiple dispatch; multi-method; dynamic binding; reflection; method overload; hybrid 
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1  Introduction 

 

Object-oriented programming languages provide 

dynamic binding as a mechanism to implement maintainable 

code. Dynamic binding is a dispatching technique that 

postpones until runtime the process of associating a message 

to a specific method. Therefore, when the toString 

message is passed to a Java object, the actual toString 

method called is that implemented by the dynamic type of the 

object, discovered by the virtual machine at runtime.  

Although dynamic binding is a powerful tool, widespread 

languages such as Java, C# and C++ only support it as a 

single dispatch mechanism: the actual method to be invoked 

depends on the dynamic type of a single object. In these 

languages, multiple-dispatch is simulated by the programmer 

using specific design patterns, inspecting the dynamic type of 

objects, or using reflection.  

In languages that support multiple-dispatch, a message 

can be dynamically associated to a specific method based on 

the runtime type of all its arguments. These multiple-dispatch 

methods are also called multi-methods [1]. For example, if 

we want to evaluate binary expressions of different types 

with different operators, multi-methods allow modularizing 

each operand-operator-operand combination in a single 

method. In the example C# code in Figure 1, each Visit 

method implements a different kind of operation for three 

concrete types, returning the appropriate value type. As 

shown in Figure 2, the values and operators implement the 

Value and Operator interface, respectively. Taking two 

Value operands and an Operator, a multi-method is able 

to receive these three parameters and dynamically select the 

appropriate Visit method to be called. It works like 

dynamic binding, but with multiple types. In our example, a 

triple dispatch mechanism is required (the appropriate 

Visit method to be called is determined by the dynamic 

type of its three parameters).  
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Polymorphism can be used to provide a default behavior 

if one combination of two expressions and one operator is not 

provided. Since Value and Operator are the base types 

of the parameters (Figure 2), the last Visit method in 

Figure 1 will be called by the multiple dispatcher when there 

is no other suitable Visit method with the concrete 

dynamic types of the arguments passed. An example is 

evaluating the addition (AddOp) of two Boolean (Bool) 

expressions.  

In this paper, we analyze the common approaches 

programmers use to simulate multiple dispatching in those 

widespread object-oriented languages that only provide 

single dispatch (e.g., Java, C# and C++). To qualitatively 

compare the different alternatives, we consider factors such 

as software maintainability and readability, code size, 

parameter generalization, and compile-time type checking. A 

quantitative assessment of runtime performance and memory 

consumption is also presented. We also present a new 

approach to obtain multiple dispatch in languages that 

provide hybrid dynamic and static typing, such as C#, 

Objective-C, Boo and Cobra. This alternative provides high 

maintainability and readability, requires reduced code size, 

allows parameter generalization, and performs significantly 

better than the reflective approach. On contrast, it requires 

31% more memory resources than the rest of alternatives. 

The rest of this paper is structured as follows. In Section 

2, the common approaches to obtain multi-methods in 

widespread object-oriented programming languages are 

presented and qualitatively evaluated. Section 3 presents a 

new approach for hybrid typing languages, and a comparison 

with the previously analyzed systems. Section 4 details the 

runtime performance and memory consumption evaluation. 

Conclusions and future work are presented in Section 5. 
 

 

2  Common approaches 

 

2.1  The Visitor design pattern 

 

The Visitor design patter is a very common approach to 

obtain multiple dispatch in object-oriented languages than do 

not implement multi-methods [2]. By using method 

overloading, each combination of non-abstract types is 

implemented in a specific Visit method (Figure 1). Static 

type checking is used to modularize each operation in a 

different method. The compiler solves method overloading 

by selecting the appropriate implementation depending on 

the static types of the parameters. Suppose an n-dispatch 

scenario: a method with n polymorphic parameters, where 

each parameter should be dynamically dispatched 

considering its dynamic type (i.e., multiple dynamic 

binding). In this n-dispatch scenario, the n parameters belong 

to the H1, H2… Hn hierarchies, respectively. Under these 

circumstances, there are potentially ∏ 𝐶𝐶𝑖
𝑛
𝑖=1  Visit 

methods, CCi being the number of concrete (non-abstract) 

classes in the Hi hierarchy.  

Using polymorphism, parameters can be generalized in 

groups of shared behavior (base classes or interfaces). An 

example of this generalization is the two last addition 

methods in Figure 1. They generalize the way strings are 

concatenated with any other Value. This feature that allows 

grouping implementations by means of polymorphism is the 

parameter generalization criterion mentioned in the previous 

section.  

  public class EvaluateExpression { 
 
    // Addition  
    Integer Visit(Integer op1, AddOp op, Integer op2) { return new Integer(op1.Value + op2.Value); } 
    Double  Visit(Double op1,  AddOp op, Integer op2) { return new Double(op1.Value + op2.Value); } 
    Double  Visit(Integer op1, AddOp op, Double op2)  { return new Double(op1.Value + op2.Value); } 
    Double  Visit(Double op1,  AddOp op, Double op2)  { return new Double(op1.Value + op2.Value); } 
    String  Visit(String op1,  AddOp op, String op2)  { return new String(op1.Value + op2.Value); } 
    String  Visit(String op1,  AddOp op, Value op2)   { return new String(op1.Value + op2.ToString()); } 
    String  Visit(Value op1,   AddOp op, String op2)  { return new String(op1.ToString() + op2.Value); } 
 
    // EqualsTo  
    Bool Visit(Integer op1, EqualToOp op, Integer op2) { return new Bool(op1.Value == op2.Value); } 
    Bool Visit(Double op1,  EqualToOp op, Integer op2) { return new Bool((int)(op1.Value) == op2.Value); } 
    Bool Visit(Integer op1, EqualToOp op, Double op2)  { return new Bool(op1.Value == ((int)op2.Value)); } 
    Bool Visit(Double op1,  EqualToOp op, Double op2)  { return new Bool(op1.Value == op2.Value); } 
    Bool Visit(Bool op1,    EqualToOp op, Bool op2)    { return new Bool(op1.Value == op2.Value); } 
    Bool Visit(String op1,  EqualToOp op, String op2)  { return new Bool(op1.Value.Equals(op2.Value)); } 
 
    // And 
    Bool Visit(Bool op1, AndOp op, Bool op2) { return new Bool (op1.Value && op2.Value); } 
 
   // The rest of combinations 
    Expression Visit(Value op1, Operator op, Value op2) { return null; } 

  } 
 

Figure 1. Modularizing each operand and operator type combination. 
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As shown in Figure 2, the Visitor pattern places the 

Visit methods in another class (or hierarchy) to avoid 

mixing the tree structures to be visited (Value and 

Operator) with the traversal algorithms (Visitor) [3]. 

The (single) dispatching mechanism used to select the correct 

Visit method is dynamic binding [2]. A polymorphic 

(virtual) method must be declared in the tree hierarchy, 

because that is the hierarchy the specific parameter types of 

the Visit methods belong to. In Figure 2, the Accept 

method in Value provides the multiple dispatch. When 

overriding this method in a concrete Value class, the type 

of this will be non-abstract, and hence the specific dynamic 

type of the first parameter of Visit will be known. 

Therefore, by using dynamic binding, the type of the first 

parameter is discovered. This process has to be repeated for 

every parameter of the Visit method. In our example 

(Figure 2), the type of the second operand is discovered with 

the Accept2 method in Operator, and Accept3 in 

Value discovers the type of the third parameter before 

calling the appropriate Visit method.  

In this approach, the number of AcceptX method 

implementations grows geometrically relative to the dispatch 

dimensions (i.e., the n in n-dispatch, or the number of the 

Visit parameters). Namely, for H1, H2… Hn hierarchies of 

the corresponding n parameters in Visit, the number of 

Accept methods are 1+∑ ∏ 𝐶𝐶𝑗
𝑖
𝑗=1

𝑛−1
𝑖=1 . Therefore, the code 

size grows geometrically with the number of parameters in 

the multi-method. Additionally, declaring the signature of 

each single AcceptX method is error-prone and reduces its 

readability.  

Adding a new concrete class to the tree hierarchy requires 

adding more AcceptX methods to the implementation (see 

the formula in the previous paragraph). This feature reduces 

the maintainability of this approach, causing the so-called 

expression problem [4]. This problem is produced when the 

addition of a new type to a type hierarchy involves changes 

in other classes.  

The Visitor approach provides different advantages. First, 

the static type error detection provided by the compiler. 

Second, this approach provides the best runtime performance 

(see Section 4). Finally, parameter generalization, as 

mentioned, is also supported. A summary of the pros and 

cons of all the approaches is presented in Table 1, after 

analyzing all the alternatives. 
 

2.2  Runtime type inspection 

 

In the previous approach, the dispatcher is implemented 

by reducing multiple-dispatch to multiple cases of single 

dispatch. Its high dependence on the number of concrete 

classes makes it error-prone and reduces its maintainability. 

This second approach implements a dispatcher by consulting 

the dynamic type of each parameter in order to solve the 

specific Visit method to be called. This type inspection 

could be performed by either using an is type of operator (e.g., 

is in C# or instanceof in Java) or asking the type of an 

object at runtime (e.g., GetType in C# or getClass in 

Java). Figure 3 shows an example implementation in C# 

using the is operator. Notice that this single Accept 

method is part of the EvaluateExpression class in 

Figure 1 (it does not need to be added to the tree hierarchy).  

 
Figure 2. Multiple dispatch implementation with the statically typed approach (ellipsis obviates repeated members). 

Integer

+ Value:  int

+ Accept(op:Operator, op2:Value, v:Visitor) : Value

+ Accept3(op1:Integer, op:AddOp, v:Visitor):Value

«interface»

Value

+ Accept(Operator, Value, Visitor) : Value

+ Accept3(Integer, AddOp, Visitor) : Value

+ Accept3(Double, AddOp, Visitor) : Value

+ Accept3(String, AddOp, Visitor) : Value

+ Accept3(Bool, AddOp, Visitor) : Value

+ Accept3(Integer, EqualToOp, Visitor) : Value

+ Accept3(Double, EqualToOp, Visitor) : Value

+ Accept3(String, EqualToOp, Visitor) : Value

+ Accept3(Bool, EqualToOp, Visitor) : Value

+ Accept3(Integer, AndOp, Visitor) : Value

+ Accept3(Double, AndOp, Visitor) : Value

+ Accept3(String, AndOp, Visitor) : Value

+ Accept3(Bool, AndOp, Visitor) : Value

«interface»

Operator

+ Accept2(Integer, Value, Visitor) : Value

+ Accept2(Double, Value, Visitor) : Value

+ Accept2(String, Value, Visitor) : Value

+ Accept2(Bool, Value, Visitor) : Value

«interface»

Visitor

+ Visit(Integer, AddOp, Integer) : Integer

+ Visit(Integer, AddOp, Double) : Double

+ Visit(Double, AddOp, Integer) : Double

AddOpEqualToOp

AndOp

+ Accept2(op1:Integer,op2:Value,v:Visitor):Value

return op.Accept2(this, op2, v);

return v.visit(op1, op, op2);

return op2.Accept3(op1, this, v);

EvaluateVisitor

+ Visit(Integer, AddOp, Integer) : Integer

+ Visit(Integer, AddOp, Double) : Double

+ Visit(Double, AddOp, Integer) : Double

…

…

…

… …

Double

+ Value:  double

…

String

+ Value:  string

…

Bool

+ Value:  bool

…

Tree Hierarchy

Visitor Hierarchy
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Figure 3 shows the low readability of this approach for 

our triple dispatch example with seven concrete classes. The 

maintainability of the code is also low, because the dispatcher 

implementation is highly coupled with the number of both 

the parameters of the Visit method and the concrete classes 

in the tree hierarchy. At the same time, the code size of the 

dispatcher grows with the number of parameters and concrete 

classes.  

The is operator approach makes extensive use of type 

casts. Since cast expressions perform type checks at runtime, 

this approximation loses the robustness of full compile-time 

type checking. The GetType approach also has this 

limitation together with the use of strings for class names, 

which may cause runtime errors when the class name is not 

written correctly. Parameter generalization is provided by 

means of polymorphism. As discussed in Section 4, the 

runtime performance of these two approaches is not as good 

as that of the previous alternative.  
 

2.3  Reflection 

 

The objective of the reflection approach is to implement 

a dispatcher that does not depend on the number of concrete 

classes in the tree hierarchy. For this purpose, not only the 

types of the parameters but also the methods to be invoked 

are discovered at runtime. The mechanism used to obtain this 

objective is reflection, one of the main techniques used in 

meta-programming [5]. Reflection is the capability of a 

computational system to reason about and act upon itself, 

adjusting itself to changing conditions [6]. Using reflection, 

the self-representation of programs can be dynamically 

consulted and, sometimes, modified [7]. As shown in Figure 

5, the dynamic type of an object can be obtained using 

reflection (GetType). It is also possible to retrieve the 

specific Visit method implemented by its dynamic type 

(GetMethod), passing the dynamic types of the parameters. 

It also provides the runtime invocation of dynamically 

discovered methods (Invoke).  

The code size of this approach does not grow with the 

number of concrete classes. Moreover, the addition of 

another parameter does involve important changes in the 

code. Consequently, as shown in Table 1, this approach is 

more maintainable than the previous ones. Although the 

reflective Accept method in Figure 4 may be somewhat 

atypical at first, we think its readability is certainly higher 

than the one in Figure 3.  

The first drawback of this approach is that no static type 

checking is performed. If Accept invokes a nonexistent 

Visit method, an exception is thrown at runtime, but no 

compilation error is produced. Another limitation is that 

parameter generalization is not provided because reflection 

only looks for one specific Visit method. If an 

implementation with the exact signature specified does not 

exist, no other polymorphic implementation is searched (e.g., 

the last Visit method in Figure 1 is never called). Finally, 

this approach has showed the worst runtime performance in 

our evaluation (Section 4).  
 

public class EvaluateExpression { 
  … // * Selects the appropriate Visit method in Figure 1 
  public Value Accept(Value op1, Operator op, Value op2) { 
    if (op is AndOp) { 
      if (op1 is Bool) { 
        if (op2 is Bool)         return Visit((Bool)op1, (AndOp)op, (Bool)op2); 
        else if (op2 is String)  return Visit((Bool)op1, (AndOp)op, (String)op2); 
        else if (op2 is Double)  return Visit((Bool)op1, (AndOp)op, (Double)op2); 
        else if (op2 is Integer) return Visit((Bool)op1, (AndOp)op, (Integer)op2); 
      } 
      else if (op1 is String)    {  …  } 
      else if (op1 is Double)    {  …  } 
      else if (op1 is Integer)   {  …  } 
    else if (op is EqualToOp) {  …  } 
    else if (op is AddOp)     {  …  } 
    Debug.Assert(false, String.Format("No implementation for op1={0}, op={1} and op2={2}",op1, op, op2)); 
    return null; 
} } 
 

Figure 3. Multiple dispatch implementation using runtime type inspection with the is operator (ellipsis is used to obviate repeating code). 

public class EvaluateExpression { 
  … // * Selects the appropriate Visit method in Figure 1 
  public Value Accept(Value op1, Operator op, Value op2) { 
    MethodInfo method = this.GetType().GetMethod("Visit", BindingFlags.NonPublic | BindingFlags.Instance,  
                                null, new Type[] { op1.GetType(), op.GetType(), op2.GetType() }, null); 
    if (method == null) { 
      Debug.Assert(false,String.Format("No implementation for op1={0}, op={1} and op2={2}",op1,op,op2)); 
      return null; 
    } 
    return (Value)method.Invoke(this, new object[] { op1, op, op2 }); 
} } 
 

Figure 4. Multiple dispatch implementation using reflection. 
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3  A hybrid typing approach 

 

Hybrid static and dynamic typing (henceforth referred to 

simply as hybrid typing) languages provide both typing 

approaches in the very same programming language. 

Programmers may use one alternative or the other depending 

on their interests, following the static typing where possible, 

dynamic typing when needed principle [8]. In the case of 

multiple dispatch, we have used static typing to modularize 

the implementation of each operand and operator type 

combination (Visit methods in Figure 1). We propose the 

use of dynamic typing to implement multiple dispatchers that 

dynamically discover the suitable Visit method to be 

invoked.  

In a hybrid typing language, its static typing rules are also 

applied at runtime when dynamic typing is selected. This 

means that, for instance, method overload is postponed until 

runtime, but the resolution algorithm stays the same [9]. We 

have used this feature to implement a multiple dispatcher that 

discovers the correct Visit method to be invoked at 

runtime, using the overload resolution mechanism provided 

by the language. At the same time, parameter generalization 

by means of polymorphism is also achieved.  

Figure 5 shows an example of multiple dispatch 

implementation (Accept method) in C#. With dynamic, 

the programmer indicates that dynamic typing is preferred, 

postponing the overload resolution until runtime. The first 

maintainability benefit is that the dispatcher does not depend 

on the number of concrete classes in the tree hierarchy (the 

expression problem [4]). Besides, another dispatching 

dimension can be provided by simply declaring one more 

parameter, and passing it as a new argument to Visit. The 

dispatcher consists in a single invocation to the overloaded 

Visit method, indicating which parameters require 

dynamic binding (multiple dispatching) with a cast to 

dynamic. If the programmer wants to avoid dynamic 

binding for a specific parameter, this cast to dynamic will 

not be used. This simplicity makes the code highly readable 

and reduces its size considerably (Table 1). At the same time, 

since the overload resolution mechanism is preserved, 

parameter generalization by means of polymorphism is also 

provided (i.e., polymorphic methods like the two last addition 

implementations for strings in Figure 1).  

In C#, static type checking is disabled when the 

dynamic type is used, lacking the compile-time detection 

of type errors. However, there are research works on hybrid 

typing languages, such as the StaDyn programming language 

[10], which provide static type checking when the dynamic 

type is used. When this feature is not supported, the best 

approach is to use static types to declare the Accept 

parameters using polymorphism (restricting their types to 

Value and Operator, as shown in Figure 5). At the same 

time, exception handling is another mechanism that can be 

used to make the code more robust –notice that parameter 

generalization reduces the number of possible exceptions to 

be thrown, compared to the reflection approach.  

Finally, this approach shows a runtime performance 

between the statically typed implementation and the 

reflective one (see Section 4). Hybrid typing languages, 

including C#, commonly implement a dynamic cache to 

improve runtime performance of dynamically typed code 

[11]. This technique provides a significant runtime 

performance improvement compared to reflection [12].  
 
Table 1. 
Qualitative evaluation of the approaches. 
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Visitor Pattern    ✓ ✓ ✓ ✓ 

is Operator    ✓  ½ ✓ 

GetType Method    ✓  ½ ✓ 

Reflection ✓ ✓ ✓    ✓ 

Hybrid Typing ✓ ✓ ✓ ✓  ½  

 

4  Evaluation 

 

In this section, we measure execution time and memory 

consumption of the five different approaches analyzed. 

Detailed information is presented to justify the performance 

and memory assessment in the two last columns of Table 1.  
 

4.1  Methodology 

 

In order to compare the performance of the proposed 

approaches, we have developed a set of synthetic micro-

benchmarks. These benchmarks measure the influence of the 

following variables on runtime performance and memory 

consumption:  

 Dispatch dimensions. We have measured programs 

executing single, double and triple dispatch methods. 

These dispatch dimensions represent the number of 

public class EvaluateExpression { 
  … // * Selects the appropriate Visit method in Figure 1 
  public Value Accept(Value op1, Operator op, Value op2) { 
    try { 
      return this.Visit((dynamic)op1, (dynamic)op, (dynamic)op2); 
    } catch (RuntimeBinderException) { 
      Debug.Assert(false, String.Format("No implementation for op1={0}, op={1} and op2={2}",op1,op,op2)); 
    } 
    return null; 
} } 
 

Figure 5. Multiple dispatch implementation with the hybrid typing approach. 
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parameters passed to the Accept method shown in 

Figures 3, 4 and 5. 

 Number of concrete classes. This variable is the 

number of concrete classes of each parameter of the 

Accept method. For each one, we define from 1 to 5 

possible derived concrete classes. Therefore, the 

implemented dispatchers will have to select the 

correct Visit method out of up to 125 different 

implementations (53).  

 Invocations. Each program is called an increasing 

number of times to analyze their performance in long-

running scenarios (e.g., server applications).  

 Approach. The same application is implemented 

using the static typing, runtime type inspection (is 

and GetType alternatives), reflection, and hybrid 

typing approaches. 

Each program implements a collection of Visit 

methods that simply increment a counter field. The idea is to 

measure the execution time of each dispatch technique, 

avoiding additional significant computation we have 

previously evaluated a more realistic application in [13].  

Regarding the data analysis, we have followed the 

methodology proposed in [14] to evaluate the runtime 

performance of applications, including those executed on 

virtual machines that provide JIT compilation. We have 

followed a two-step methodology:  

1. We measure the elapsed execution time of running 

multiple times the same program. This results in p (we 

have taken p = 30) measurements xi with 1≤ i ≤ p.  

2. The confidence interval for a given confidence level 

(95%) is computed to eliminate measurement errors that 

may introduce a bias in the evaluation. The confidence 

interval is computed using the Student's t-distribution 

because we took p = 30 [15]. Therefore, we compute the 

confidence interval [c1,c2] as:  

𝑐1 = 𝑥̅ − 𝑡1−𝛼/2;𝑝−1
𝑠

√𝑝
   𝑐2 = 𝑥̅ + 𝑡1−𝛼/2;𝑝−1

𝑠

√𝑝
  (1) 

where 𝑥̅ is the arithmetic mean of the xi measurements, 

α = 0.05(95%), s is the standard deviation of the xi 

measurements, and 𝑡1−𝛼/2;𝑝−1 is defined such that a 

random variable T, that follows the Student's t-

distribution with 𝑝 − 1 degrees of freedom, obeys 

 Pr[𝑇 ≤ 𝑡1−𝛼/2;𝑝−1] = 1 − 𝛼/2. (2) 

The memory consumption has been measured following 

the same methodology to determine the memory used by the 

whole process. All the tests were carried out on a lightly 

loaded 3.4 GHz Intel Core I7 2600 system with 16 GB of 

RAM running an updated 64-bit version of Windows 8 

Professional.  
 

4.2  Runtime performance 

 

Figure 6 shows the execution time of single, double and 

triple dispatch, when each parameter of the multi-method has 

five concrete derived types. Each Visit method is executed 

at least once. To analyze the influence of the number of 

invocations on the execution time, we invoke multi-methods 

in loops from 1 to 100,000 iterations. Figure 6 shows the 

average execution time for a 95% confidence level, with an 

error interval lower than 2%. 

As can be seen in Figure 6, all the approaches have a 

linear influence of the number of iterations on execution 

time. However, the dispatch dimension (i.e., the number of 

multi-method parameters) of the analyzed approaches shows 

a different influence. For single dispatch, the hybrid typing 

approach is 19% and 2,787% faster than GetType and 

reflection, respectively, but requires 157% and 876% more 

execution time that is and static typing. For double dispatch, 

the runtime performance of the hybrid approach improves in 

comparison with the rest of alternatives (Figure 6). For triple 

dispatch, the hybrid static and dynamic typing alternative is 

the second fastest one, performing 1.4, 2.5 and 265 times 

better than is, GetType and reflection, respectively (static 

typing is 2.7 times faster than hybrid typing in this scenario).  

Figure 7 shows execution time, when the number of 

concrete classes that implement each multi-method 

parameter increases (for 100,000 fixed iterations). For each 

parameter, we increment (from 1 to 5) the number of its 

derived concrete classes. In the case of triple dispatch and 

five different concrete classes, the multiple dispatcher has to 

select the correct Visit method out of 125 (53) different 

implementations.  

As show in Figure 7, the relative performance of the 

hybrid approach improves as the number of concrete classes 

increases. For single dispatch, hybrid typing requires 213% 

more execution time than GetType for one concrete type of 

the single parameter; however, the hybrid approach is 19% 

faster than GetType for five different concrete types. For 

double dispatch, the hybrid approach improves its relative 

performance, being faster than GetType for any number of 

classes. When the dimension of the dispatch is triple, the 

relative runtime performance of the hybrid approach also 

improves as the number of concrete classes increases. With 

five different types for each of the three parameters, the 

hybrid approach is the second fastest one, being 40% faster 

than is and 265 times faster than reflection (static typing is 

2.7 times faster than hybrid typing).  
 

4.3  Memory consumption 

 

We have measured memory consumption, analyzing all 

the variables mentioned in the Section 4.1. There is no 

influence of the number of iterations, the dimensions of 

dispatch, or the number of concrete classes, in the memory 

consumed by the benchmark.  

The memory required by the approaches but hybrid 

typing are similar (the difference is 1%, lower than the 2% 

error interval). However, the hybrid approach involves an 

average increase of 31% compared with the rest of 

approaches. This difference is due to the use of the Dynamic 

Language Runtime (DLR) [16]. The DLR is a new layer over 

the CLR to provide a set of services to facilitate the 

implementation of dynamic languages. The DLR implements 

a runtime cache to optimize runtime performance of 



 

 8 

dynamically typed operations, performing better than 

reflection (as shown in Figures 6 and 7) [13]. However, this 

runtime performance improvement also requires additional 

memory resources.  
 

5  Related work 

 

In this section, we describe the existing languages and 

frameworks that provide multiple dispatch [17]. CLOS [18] 

and Clojure [19] are examples of dynamically typed 

 

Figure 6. Execution time (microseconds in logarithmic scale)  
increasing the number of iterations. 

 

Figure 7. Execution time (microseconds in logarithmic scale)  

increasing the number of concrete types. 
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languages that include multi-methods in their semantics. 

Clojure has recently created a port for .NET that makes use of 

the DLR [20]. These approaches are fully dynamic, detecting 

all the type errors at runtime.  

Xtend is a Java extension that provides statically typed 

multiple dispatch [21]. Method resolution and binding in 

Xtend are done at compile time as in Java. Dylan [22], Cecil 

[1] and, recently, Groovy 2 [23] are programming languages 

that provide both dynamic and static typing. Although these 

three languages support dynamically typed multi-methods, 

multiple dispatch can also be achieved with the hybrid typing 

approach proposed in this article.  

Many different approaches exist to provide multiple 

dispatch to the Java platform. One of the first works is 

Runabout, a library to support two-argument dispatch (i.e., 

double dispatch) for Java [24]. Runabout is based on 

improving a previous reflective implementation of the Visitor 

pattern called Walkabout [25]. The appropriate method 

implementation is found via reflection, but method 

invocation is performed by generating Java bytecode at 

runtime performing better than Walkabout.  

Dynamic Dispatcher is a double-dispatch framework for 

Java [26]. Three different dispatch methods are provided, 

combining the use of reflection and dynamic code generation. 

It provides the generalization of multi-method parameters by 

means of polymorphism.  

Sprintabout is another double-dispatch alternative for 

Java, provided as a library [27]. Sprintabout uses a naming 

convention to identify multi-methods. Multi-methods 

implement a runtime type inspection dispatch (the GetType 

approach). The dispatch object implements a cache to 

efficiently obtain the different method implementations at 

runtime, avoiding the use of reflection.  

MultiJava is a backward-compatible extension of Java 

that supports any dispatch dimension (not just double 

dispatch) [28]. Given a set of multi-method implementations, 

the MultiJava compiler produces a single Java dispatch 

method containing the bodies of the set of multi-method 

implementations. The multi-method implements the runtime 

type inspection approach, using the instanceof Java 

operator (is in C#). 

The Java Multi-Method Framework (JMMF) uses 

reflection to provide multiple dispatch for Java [29]. Multi-

methods can be defined in any class and with any name. 

JMMF is provided as a library; it proposes neither language 

extensions nor virtual machine modifications.  

PolyD is aimed at providing a flexible multiple dispatch 

technique for Java [30]. PolyD generates Java bytecodes 

dynamically, and allows the user to define customized 

dispatching policies. Three standard dispatching policies are 

available: multiple dispatching (cached GetType runtime 

type inspection), overloading (static method overload) and a 

‘non-subsumptive’ policy (only calls a method if the classes 

of the arguments match exactly those of the method 

parameters; i.e. no parameter generalization).  
 

 

 

 

6  Conclusions 

 

Different alternatives are nowadays used to achieve 

multiple dispatch in widespread language s that do not 

provide multi-methods. A qualitative evaluate has shown the 

pros and cons of each approach.  

A new alternative has been described for hybrid typing 

languages. Their benefits are high readability and 

maintainability, loose coupling with the number of concrete 

classes and the dispatch dimensions, and parameter 

generalization. The main limitation is no compile-time type 

error detection. Its runtime performance is analogous to the 

runtime type inspection approaches. The average execution 

time of all the measured hybrid programs took 3.9 times more 

execution time the Visitor design pattern, being 36.6 times 

faster than reflection. The proposed approach has consumed 

31% more memory resources than the rest of alternatives. 

Since the main limitation of the hybrid typing approach is 

its lack of compile-time error detection, we are currently 

working on defining and implementing a hybrid language 

that provides compile-time type checking [10]. That 

language, called StaDyn, is an extension of C# that performs 

type inference over dynamic references. This C# extension 

may eventually detect some type errors of the hybrid typing 

approach at compile-time [31]. Another future work will be 

analyzing the suitability of implementing multi-methods in 

Java using the new invokedynamic opcode [32]. 

All the programs used in the evaluation of runtime 

performance and memory consumption, and the detailed 

measurement data are freely available at 
http://www.reflection.uniovi.es/stadyn/download/2013/dyna.zip 
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