Massive LMS Log Data Analysis for the Early Prediction
of Course-Agnostic Student Performance

Moises Riestra-Gonzalez?, Maria del Puerto Paule-Ruiz, Francisco Ortin®<*
2 Accenture SL, Applied Intelligence Department, ¢/ Jimena Fernandez de la Vega 140, Edificio
Asturias, offices 1 A-E, 33202, Gijon, Spain

b University of Oviedo, Computer Science Department, c/Federico Garcia Lorca 18, 33007, Oviedo,
Spain

¢ Cork Institute of Technology, Computer Science Department, Rossa Avenue, Bishopstown, T12
P928, Cork, Ireland

Notice: This is the authors’ version of a work accepted for publication in Computers &
Education journal. Please, cite this document as:

Moises Riestra-Gonzalez, Maria del Puerto Paule-Ruiz, Francisco Ortin. Massive LMS Log
Data Analysis for the Early Prediction of Course-Agnostic Student Performance.
Computers & Education, volume 163, pp. 104108-104128 (2021), doi:
10.1016/j.compedu.2020.104108




Massive LMS Log Data Analysis for the Early Prediction of
Course-Agnostic Student Performance

Moises Riestra-Gonzalez®, Maria del Puerto Paule-Ruiz®, Francisco Ortin®<*

@ Accenture SL, Applied Intelligence Department, ¢/ Jimena Fernandez de la Vega 140,
Edificio Asturias, offices 1 A-E, 33202, Gijon, Spain

b University of Oviedo, Computer Science Department,
¢/Federico Garcia Lorea 18, 33007, Oviedo, Spain

¢Cork Institute of Technology, Computer Science Department,
Rossa Avenue, Bishopstown, T12 P928, Cork, Ireland

Abstract

The early prediction of students’ performance is a valuable resource to improve their
learning. If we are able to detect at-risk students in the initial stages of the course, we
will have more time to improve their performance. Likewise, excellent students could
be motivated with customized additional activities. This is why there are research
works aimed to early detect students’ performance. Some of them try to achieve it
with the analysis of LMS log files, which store information about student interaction
with the LMS. Many works create predictive models with the log files generated for the
whole course, but those models are not useful for early prediction because the actual
log information used for predicting is different to the one used to train the models.
Other works do create predictive models with the log information retrieved at the early
stages of courses, but they are just focused on a particular type of course.

In this work, we use machine learning to create models for the early prediction
of students’ performance in solving LMS assignments, by just analyzing the LMS log
files generated up to the moment of prediction. Moreover, our models are course ag-
nostic, because the datasets are created with all the University of Oviedo courses for
one academic year. We predict students’ performance at 10%, 25%, 33% and 50% of
the course length. Our objective is not to predict the exact student’s mark in LMS
assignments, but to detect at-risk, fail and excellent students in the early stages of the
course. That is why we create different classification models for each of those three
student groups. Decision tree, naive Bayes, logistic regression, multilayer perceptron
(MLP) neural network, and support vector machine models are created and evaluated.
Accuracies of all the models grow as the moment of prediction increases. Although all
the algorithms but naive Bayes show accuracy differences lower than 5%, MLP obtains
the best performance: from 80.1% accuracy when 10% of the course has been delivered
to 90.1% when half of it has taken place. We also discuss the LMS log entries that



most influence the students’ performance. By using a clustering algorithm, we detect
six different clusters of students regarding their interaction with the LMS. Analyzing
the interaction patterns of each cluster, we find that those patterns are repeated in all
the early stages of the course. Finally, we show how four out of those six student-LMS
interaction patterns have a strong correlation with students’ performance.

Keywords: Learning management systems, early prediction, interaction patterns,
student performance, machine learning

1. Introduction

Higher education institutions have incorporated information and communication
technologies to support the way lecturers teach and students learn. One widespread
example of that support is the utilization of Learning Management Systems (LMS),
whose usage has grown significantly in the last years [1]. An LMS is a software ap-
plication for the delivery, documentation, tracking, reporting and administration of
educational courses and learning, training and development programs [2]. By using
the Internet, LMSs represent a valuable tool to transform the traditional face-to-face
courses into blended and online programs [3]. Moreover, LMSs are also used to support
the majority of face-to-face courses, because of the functionalities they provide such
as course content management, communication, assignment delivery and assessment,
online questionnaires and quizzes, and student grading, among others [4].

LMSs generate log files that contain data about user interaction (e.g., course and
resource view, assignment submission and evaluation, and quiz and forum interaction).
Such information has been used to create predictive models for different purposes such
as foreseeing student performance [3], detecting procrastination [5] and clustering stu-
dents [6]. Data in log files describe patterns of how students interact with LMSs, and
such patterns may involve some correlation with their performance. However, the pat-
terns found are commonly discovered for one single course [6, 7] or a set of courses
sharing similar methodologies and/or structures [8]. An open question is if LMSs in-
teraction patterns could be found from massive log data taken from multiple hetero-
geneous courses with different methodologies, knowledge areas, learning formats (i.e.,
online, blended and face-to-face), duration and evaluation systems.

Another important feature of the predictive models built from LMS log files is their
early prediction capability. If one model is able to identify at-risk students in the
initial stages of the course, lecturers could devise ways of supporting their learning [9].

*Corresponding author
Email addresses: moises.riestra@accenture.com (Moises Riestra-Gonzalez),
paule@uniovi.es (Maria del Puerto Paule-Ruiz), ortin@uniovi.es (Francisco Ortin)
URL: http://www.reflection.uniovi.es/ortin (Francisco Ortin)

Preprint submitted to Computers and Education December 26, 2020



Likewise, students identified as excellent could be motivated with additional activities
throughout the course. However, most works commonly build their predictive models
from data gathered from whole the course, neglecting the practical value of an early
prediction, while the course is in progress [10]. To build reliable models that predict
student performance at early stages of the course, such models should be trained and
validated only with log information gathered before the moment of prediction [10]. In
this way, those models could be eventually used in real scenarios, when the course is in
progress and log information available is only that generated so far.

The main contribution of this work is the use of massive LMS log data (15,994
students and 8.5 million log entries) for multiple (669) heterogeneous (face-to-face,
online and blended) courses in order to predict student performance in solving LMS
assignments at the early stages of the course, regardless the particular characteristics
of each course. In this way, lecturers can develop early intervention strategies for both
at-risk and excellent students when it is still viable to improve their performance.

The dataset created from the LMS log files is also used to create course-agnostic stu-
dent clusters, and calculate their correlation with students’ performance. We study the
clusters to analyze how students are classified depending on behaviors such as course
and resource view, procrastination, quiz and assignment evaluation, and forum partici-
pation. Cluster information can be used to create adaptive educational systems [11, 12]
and intelligent tutoring systems that, depending on the student cluster, could refine the
scaffolding provided to students, particularly important in online courses [13]. More-
over, students’ clusters and their LMS log information could be used by instructors to
provide adaptive feedback, customized assessment, and more personalized attention as
needed [14].

1.1. Research questions

To see to what extent we achieve the expected contribution, we address the following
four research questions:

1. Isit possible to predict the students’ performance in solving the LMS assignments,
by just analyzing their LMS logs when only 10%, 25%, 33% and 50% of the course
has been completed?

2. Which are independent variables derived from the LMS logs that most influence
the students’ performance?

3. Are there student clusters that group students regarding their usage of the LMS,
regardless the course features?

4. Is there any correlation between those student clusters and their performance?

For the early prediction of student performance in solving the LMS assignments, we
use different supervised learning algorithms from a dataset built from the LMS logs.



Then, we study an interpretable white-box model to analyze the influence of the inde-
pendent LMS variables on the dependent one (students’ performance). Student clusters
are built with the same dataset, merging similar features with feature agglomeration,
and then running the k-means unsupervised learning algorithm. We finally study each
cluster and their correlation with students’ performance.

The rest of this paper is structured as follows. Next section details related work
and Section 3 describes how the dataset is built. The methodology, evaluation and
discussion of the predictive models is presented in Section 4. Section 5 applies the same
structure to describe student clustering. Section 6 presents the conclusions and future
work.

2. Related work

Predicting students’ academic performance is a challenge already faced by the educa-
tional scientific community. We first describe the existing works closer to our approach.
Such works are those that a) perform student’s performance prediction by using LMS
information; b) are not course-specific, considering multiple heterogeneous courses; and
c¢) undertake the predictions with LMS information gathered before the moment of
prediction.

Conijn et al. analyze 17 blended courses with 4,989 students using Moodle LMS [3].
Their objective is to predict students’ final grades from LMS predictor variables and
from in-between assessment grades, using logistic (pass/fail) and standard regression
(final grade) models. They predict students’ performance for the first 10 weeks. Accu-
racies slightly improve as the week of prediction increases, with a notable improvement
after week 5, when in-between assessment grades become available. At week 5, the
regression model showed 0.43 adjusted R?, and the pass/fail binary classifier obtained
67% accuracy in week 3. Unlike our system, Conijn et al. do not create specific models
to detect excellent and severe at-risk students. Their target variable is the final exam,
whereas ours is LMS assignments.

Costa et al. compare the effectiveness of existing Educational Data Mining (EDM)
techniques for the early identification of students likely to fail two introductory pro-
gramming courses [15]: a distance course with 262 students and 10-week duration, and
an on-campus course with 161 students. Unlike the system described in this article,
datasets include not only LMS interaction information, but also other data such as age,
gender, civil status, city, income, enrollment year, discipline and student performance
in the weekly activities and exams. The highest F;-measures for week 1 were 0.77 and
0.8 for the two courses. These values grow as the moment of prediction increases. Al-
though the work is not specific for one course, two courses might not be sufficient to
create course-agnostic models.

Tomasevic et al. build classification and regression models for the task of predicting
student exam marks [16]. They use the Open University Learning Analytics Dataset

4



(OULAD), which stores student demographics, student’s performance in course assess-
ments, and student engagement (not just LMS log data). Models are built with only
two courses from the OULAD dataset. Unlike our proposal, their classification model
just distinguishes between fail and pass students. Prediction takes place at the moment
immediately before the final exam, but also after different intermediate assessments.
Fi-measures grow as the moment of prediction increases: from 78% (first assessment)
up to 94.9% (the sixth one). For the moment before the final exam, Fi-measure is
96.6%. The regression models to predict the finals show a similar pattern. Neural
network models provide the best results for both regression and classification.

As in our study, the research work of Cobo et al. clusters students from different
courses, considering their interaction with LMSs [17]. They use an agglomerative hi-
erarchical clustering algorithm to identify the different participation profiles adopted
by learners in online discussion forums. The experiments conducted analyze the ac-
tivity carried out by learners within the forums of three different courses in an online
Telecommunications degree. Information is taken from an asynchronous web-based
teaching environment, and the participation of learners in the discussion forums is not
mandatory. The whole dataset involves 672 students in 18 different classrooms and
2,842 posts. Five different clusters are found. Inactive learners (shirkers), who neither
read nor write messages, have very low performance. For only readers (lurkers), active
students correlate with pass, and non-active with fail. Finally, most active read and
write learners (workers), correlate with pass. Apart from the number of courses, the

main difference with our approach is that they do not use all the log information in the
LMS.

2.1. Other research works aimed at predicting students’ performance

There are other research works that use information retrieved from LMSs to predict
students’ performance. The following ones use multiple courses, but do not provide early
prediction, while the course is in progress. Instead, they use all LMS data generated
through the whole course, reducing their early prediction capability.

Gerritsen uses Moodle log files of 17 courses to forecast whether a student will pass
or fail a course (binary classification) [18]. Out of seven models, multilayer percep-
tron outperformed the other classifiers, managing to detect at-risk students with 66.1%
accuracy.

Gasevi¢ et al. build different logistic regression models for nine undergraduate
courses to predict students’ performance (pass or fail) [19]. They use LMS logs and
student information from the institutional student information system. They build one
model including all the courses, and one model per course. They compute the area
under the ROC (Receiving Operating Characteristic) curve (AUC) values. The model
for all the courses have an acceptable accuracy (0.5 < AUC < 0.7). However, those
models specifically built for a particular course achieve excellent (0.8 < AUC < 0.9) or
outstanding (AUC > 0.9) performance.



Romero et al. try to predict students’ final marks with LMS data, such as the
quizzes and assignments passed and failed, and the time spent on quizzes, forums
and assignments [20]. They compare the performance of the following data mining
techniques for classifying students: statistical methods, decision trees, rule induction
and neural networks. They use several classification methods in seven different Moodle
courses, obtaining the best performance with CART decision trees (65%).

The motivation in [21] is to study the portability of students’ performance predictive
models among courses with the same degree and similar level of LMS usage. They create
J48 decision trees models from 24 courses to classify pass/fail students. When porting
models between courses in the same degree, AUC values fall between 0.09 and 0.28.
These loses range from 0.22 to 0.25 when porting models between courses with similar
level of Moodle usage.

Some works are aimed at early predicting students’ performance, but they create
course-specific models. In [10] the authors build three datasets from LMS data to
determine how early the warning system can accurately predict students’ performance.
Those datasets collect statistics for the first four, eight, and thirteen weeks of an online
course with 330 students. CART decision tree classifiers provide 95% accuracy in
week 4, with no significant difference for weeks 8 and 13.

The work in [22] proposes different data mining approaches to predict if students
pass or fail the course, using forum participation indicators. They use 114 university
students in a first-year course in computer science. They build one set of classification
and clustering models at the end of the course, and another one in the middle of it.
Average accuracies in the middle of the course were between 70% and 80%, and 80%-
90% for the model built with the entire course data.

Marbouti et al. create three logistic regression models to identify at-risk students
in a first-year engineering course at weeks 2, 4 and 9 [23]. For the week-2 and week-4
models, they use as predictors attendance records, homework, and quiz grades. For
the week-9 model, they include mid-term exam grades. The models identify at-risk
students with overall accuracy of 79% at week 2, 90% at week 4, and 98% at week 9.

The Early Warning System (EWS) plug-in for Moodle predicts students’ perfor-
mance in a first-year Communication and Information Literacy course in week 4 of the
semester [24]. A linear regression model is used to foresee the numeric final mark, which
is simply computed as the sum of all coursework marks at the end of week 14. The
linear regression model showed an adjusted R? of 0.608.

Some other works create predictive models for a single course, using LMS informa-
tion stored throughout the whole course. Macfadyen and Dawson collect LMS data
including ‘whole term’ counts for frequency of usage of course materials and tools
supporting content delivery, engagement and discussion, assessment, and administra-
tion/management [9]. They build a regression model to predict students’ grades, and
a logistic regression classifier to detect students at risk of failure, in an online course.



The regression model explains more than 30% of the variation in students’ final grades;
while the classifier identifies at-risk students with 70.3% accuracy.

Ljubobratovi¢ et al. create random forest models to predict student success on the
base of input predictors (lectures, quizzes, labs and videos) extracted from Moodle logs,
with 96.3% accuracy [25]. They study the dependence of predictors on the target value,
finding that scores in labs and quizzes have the strongest influence on the final mark.

2.2. Other research works aimed at student clustering

The following research works are aimed at clustering students regarding their inter-
action with LMSs. They cluster students of one particular course rather than creating
course-agnostic groups. Talavera and Gaudioso cluster students to discover student-
LMS interaction patterns from an Internet course [26]. Their dataset includes LMS
log data, background knowledge, demographic data and student interests taken from
surveys filled in by the students. The Expectation Maximization (EM) algorithm found
six clusters showing a non-perfect but still adequate correlation with students’ perfor-
mance [26].

Hung et al. take 17,934 LSM log entries for 98 undergraduate students in a course
to discover students’ online learning behaviors [27]. The k-means clustering algorithm
found three clusters: clusters 1 and 2 group students with performance above the
average and high LMS interaction; whereas cluster 3 relate low interaction patterns to
low performance.

Cerezo et al. use data extracted from Moodle logs to cluster students of an eL.earning
course to study their asynchronous learning process [6]. K-means and EM algorithms
are used, finding that procrastination and socialization variables are the most determi-
nant for cluster membership. Out of the four clusters, three groups show differences in
the final marks of students.

The PPP algorithm predicts students’ performance through procrastination behav-
iors using assignment submission data extracted from Moodle [28]. Students of one
course are grouped into different procrastination behavior categories. Three clusters
are found: procrastinator, procrastinator candidate and non-procrastinator. Then,
students are classified according to their performance, using different classification al-
gorithms and their procrastination class, with 96% accuracy.

Lépez et al. propose a classification via clustering approach to predict students’
final marks in a university course, by just using forum data [29]. They use different
clustering algorithms to predict whether students pass or fail the course, based on
their usage of the Moodle forum. The Expectation Maximization clustering algorithm
obtained similar accuracy to traditional supervised machine learning algorithms.

Another work uses LMS information not to classify students but courses [30]. LMS
information from 612 courses are used, finding four different clusters: 50.5% of the
courses show inactive utilization of the LMS, 24.3% present significantly higher use of

7



Original LMS log files Filtered LMS log files

LMS entries LMS entries
Courses Students (student actions) Courses Students (student actions)
5,112 29,602 47,097,824 ‘ 699 15,944 8,540,418

Table 1: LMS log data.

Q&A and work groups; 18% of the courses make higher utilization of lecture notes,
links and discussion forums; and 7.2% use more resources and assignments.

3. Dataset

To create different predictive models, we build a dataset from LMS log files. In
particular, we took all the log files of the LMS used by all the courses delivered in the
University of Oviedo, during the academic course 2017/2018. For that academic year,
the LMS hosted 5,112 courses in which 29,602 students were enrolled. Those courses
comprise online, on-campus and blended modules, of both undergraduate and graduate
degrees, and multiple disciplines (arts, humanities, science, engineering, health, social
sciences and law). University of Oviedo uses the widespread Moodle LMS to support
most of its courses [31].

The purpose of considering many courses of different disciplines, formats, durations
and methodologies is to make our models sufficiently general for distinct courses. Single-
course predictive models are commonly able to provide better performance, but they
are hard to port to other courses. Previous works have measured from 9% to 28%
accuracy drop when a model is used in another course of the same degree, and from
22% to 25% loss for courses sharing similar usage of the LMS [21]. Likewise, Gasevi¢
et al. show that accuracies of course-specific models to predict students’ performance
are from 60% to 80% higher than course-agnostic models, using the same information
extracted from the LMS [19].

All the student interactions with the Moodle LMS are recorded in log files, which is
the only information we used to build the predictive and clustering models presented
in this article. All the log files were anonymized for the sake of confidentiality.

3.1. Course filtering

As mentioned, we only work with data taken from LMS log files. We do not have
the student grades for the courses they are enrolled in, because of data protection
reasons. Therefore, we measure students’ performance by using their marks in the
LMS assignments, as detailed in Section 3.5. This make us filter those courses with no
assignments in the LMS, as shown in Table 1. After that filtering, we have 699 courses
with almost 16,000 students and more than 8.5 million log entries.



3.2. Estimate of course duration

The early prediction of student performance strongly depends on the duration of
each course, because different time-dependent variables (features) are used [10]. How-
ever, the courses delivered by a university in an academic year have many different
durations. They could be annual, semi-annual and even one- or two-weeks long, par-
ticularly in graduate degrees. Unfortunately, the anonymization process deleted all
the information about the course, including its length. Therefore, we must define a
mechanism to estimate course duration from the LMS log files.

Log data from the Moodle LMS indicates when a course starts, but not when it
ends. To estimate that value, we took 31 different courses that we know their exact
duration, and tried to estimate their end date by analyzing the student log files. To that
aim, we ordered the log entries by date and computed the percentile values, ignoring
outliers (i.e., entries with dates outside the interval [Q; — 1.5IQR, Qs+ 1.5IQR]') [32].
We then computed the percentile that best matches the course end date, finding that
value to be 95%. That is, 5% of the log entries (ignoring outliers) take place when the
course has already ended.

3.3. Moments of prediction

We want to create early predictors of student performance, so that lecturers could
devise ways of supporting their learning. An important decision is to define the moment
of prediction. If we are able to detect at-risk students at the beginning of the course, it
will be easier to increase their performance (we will have more time for it). However, we
will have fewer entries in the LMS log files, and hence prediction accuracy will probably
be not very high. It seems quite reasonable to think that the later the prediction is, the
better its accuracy will be. Therefore, we build different models for various moments
of prediction to analyze this expected trade-off between model accuracy and moment
of prediction. The moments of prediction used were 10%, 25%, 33% and 50% of the
course duration.

3.4. Feature engineering

LMS log files contain raw data about actions undertaken by students (Appendix
A) and evaluation tasks (Appendix B). Student actions include course access, lecturer
and external (URL) resource view, quiz submission and view, and forum interaction.
Some entries related to evaluation tasks include assignment submission and view, and
assignment evaluation.

We process raw data in LMS log files to extract the features of the dataset used to
build our predictive models. In this way, many absolute variables are converted into

1Q) stands for quartile and IQR stands for interquartile range.



relative features, including time dependent ones. For example, we create a Resource-
ViewPct feature that holds the percentage of accesses to lecturer resources, relative to
the total accesses to lecturer resources for all the students in that course. Likewise,
CourseViewTimel indicates the first time the student accessed the course, relative to its
duration (i.e., percentage of the course length).

It is common to propose optional assignments to students. Optional assignments in-
fluence students’ grades, but usually less than mandatory ones. Therefore, we thought
it could be useful to include features about the potential optionality of assignments.
We estimated such optionality the following way. We took 30 control courses that
provide both optional and mandatory assignments in the LMS. For such courses, we
computed the percentage of students submitting each assignment, and compute the
submission threshold that differentiates optional from mandatory assignments. In all
the cases, assignments with less than 40% submissions were optional. Therefore, we
used that value to create different evaluation features for optional and mandatory as-
signments (Appendix B). For example, AccomplishOptionalPctGraded provides the
percentage of optional assignments delivered by the student until the moment of pre-
diction. AccomplishMandatoryPercentileGrade tells us the student’s average mark in
the mandatory assignments, relative to (percentile) the rest of the students in the same
course.

It is worth noting that all the feature values are always computed with the log in-
formation obtained before the moment of prediction. Since the purpose of our work
is the early prediction of at-risk and excellent students, we only use the LMS log in-
formation generated by students until the moment of prediction. In this way, when
we build a model to predict student performance at 10% of the course duration, it is
highly probable that we do not have any assignment evaluation data to perform such
prediction.

Different discretization and rebalance processing techniques were used to test if bet-
ter models could be obtained. All the numeric data were discretized using equal width,
equal frequency and ChiMerge methods, with 3, 4 and 5 intervals [33]. The rebalance
techniques used were random undersampling, Tomek link, random oversampling and
SMOTE [34]. We achieved no benefits on the performance of the models created using
those discretization and rebalance techniques, so neither of the processes were finally
applied to the dataset.

3.5. Dependent (target) variable

Since we do not have the final grades of students, we define student performance
as their marks in the assignments published in the LMS (see Research Question 1).
To this aim, we compute the dependent (target) variable as an aggregation of all the
student’s marks for the LMS assignments retrieved throughout the course. Given that
the assignment marks before the moment of prediction are included as independent
variables, we check that no model is created with 50% (or more) of the student’s marks

10



used to compute the dependent variable.

Rather than just defining one aggregate of students’ marks, we tried different equa-
tions, and selected the one with closer values to the final grades. We took the 30 control
courses used in the previous section, for which we know the students’ final grades. Then,
we computed the two following equations with different values of « (assignment marks
and submissions are for each student):

mandatory assignment marks optional assignment mark
10X ([« 2 - —— + (1 —a) E - — 1)
mandatory assignment submissions optional assignment submissions

mandatory assignment marks optional assignment mark
10 x az . +(1—a)z . . (2)
mandatory assignments optional assignments

Both equations give an o weight (value between 0 and 1) to mandatory assignments
and 1-a to the optional ones. The first equation computes the average values of assign-
ments submitted only, whereas the second one considers the mark of a non-submitted
assignment as zero.

Table 22 shows differences between the two equations and the actual students’
grades, for different values of a. Such differences are computed as mean square er-
ror (MSE), root-mean-square error (RMSE), mean absolute error (MAE), coefficient
of determination (R?) and adjusted R? [35]. We also include the Person’s and Spear-
man’s correlation coefficients. We took the second equation with a=0.5 as our target
to represent students’ performance, since that aggregate is the closest one to the final
grade for the 30 control courses used. That equation has a strong correlation with final
grades and explains 47.16% of its variation.

4. Predictive models

We create different predictive models from the dataset described in Section 3 to
answer Research Question 1. Such models will show us to what extent it is possible
to predict students’ performance on the LMS assignments, at different moments of
prediction.

Section 3.5 defined the target variable as a continuous value between 0 and 10.
However, our intention is not to predict that exact value (regression models), but to
detect both at-risk and excellent students (classification models) to customize, reinforce
and improve their learning. For these two kinds of students, we define two values in the 0

2To interpret the values of MSE, RMSE and MAE, please notice that marks are normalized between
0 and 1.

11



Equation  « MSE RMSE  MAE R2 Adjusted R? Pearson Spearman

1 0.0070  0.0881  0.0756  0.3439 0.3146 0.6110 0.6272

0.75 0.0064 0.0810 0.0694  0.3742 0.3424 0.6650 0.6826

(1) 0.5 0.0063 0.0793  0.0680  0.3820 0.3495 0.6789 0.6969
0.25 0.0068  0.0861  0.0738  0.3519 0.3219 0.6253 0.6419

0 0.0077  0.0967  0.0830  0.3132 0.2865 0.5565 0.5713

1 0.0062  0.0841  0.0710  0.4111 0.4043 0.7165 0.7798

0.75 0.0055  0.0755  0.0638  0.4579 0.4503 0.7981 0.8685

(2) 0.5 0.0054 0.0733 0.0619 0.4716 0.4638 0.8218 0.8944
0.25 0.0069 0.0798  0.0674  0.4334 0.4262 0.7553 0.8220

0 0.0068  0.0922  0.0778  0.3751 0.3689 0.6537 0.7114

Table 2: Aggregates used to compute students’ performance, and their difference with final students’
grades (bold font shows the lowest differences).

Mark thresholds: < 2.5 <5 > 8.5
Percentage of students in the dataset: 25.76% 39.39% 20.34%

Table 3: Number of students in each group regarding their marks.

to 10 scale to create binary classification models. We take 2.5 as the threshold mark for
at-risk students, and 8.5 for excellent ones. We also take 5.0 as another mark threshold
to differentiate pass students from fail ones®. Table 3 shows how predicting whether
a student will pass or not will be more difficult than detecting at-risk and excellent
students, because pass/fail students are much closer to be balanced (61%/39%) in our
dataset than at-risk (25.76%) and excellent (20.34%) students.

These three mark thresholds define three different binary classifiers. Since we also
consider four different moments of prediction (10%, 25%, 33% and 50%), we create a
total of 12 different models.

4.1. Methodology

We divide the dataset into 80% of the instances for training and 20% for testing,
using a stratified random sampling method [36]. We repeat the training plus testing
process 30 times, measuring the mean, standard deviation and 95% confidence intervals
of accuracy, Fy-measure and AUC (Area Under Curve) values [36]. Data split is random
and stratified to ensure that the proportions between classes are the same in each fold,
as they are in the whole dataset.

We use the following algorithms to build each of the 12 the binary classifiers men-
tioned above: CART Decision Trees (DT, Naive Bayes (NB), Logistic Regression (LG),
Multilayer Perceptron (MLP) and Support Vector Machines (SVM). The algorithm im-

3Tn the Spanish educational system, 5 points out of 10 is the standard minimum grade to pass any
course.

12



plementations are those from the scikit-learn 0.22.2 framework [37], namely the Python
classes DecisionTreeClassifier (DT), GaussianNB (NB), LogisticRegression (LG),
MLPClassifier (MLP) and svc (SVM). We normalize all the feature values between
0 and 1, since some classifiers such as MLP and SVN show better performance with
normalized features [38]. All the code is implemented in Python 3.7.6.

For all the models, we first perform a feature selection process and then hyper-
parameter tuning. Features are selected with the scikit-learn RFECV feature ranking
algorithm with recursive feature elimination [37]. The best number of features is selected
with stratified randomized 3-fold cross validation (StratifiedKFold), accuracy as the
evaluation metric, and with at least 10 features selected for each model.

For hyper-parameter tuning, we start with the default hyper-parameters provided
by scikit-learn. Then, we select the best hyper-parameters for each algorithm with ex-
haustive parallel search across common parameter values (RandomizedSearchCV), using
stratified randomized 3-fold cross validation (StratifiedKFold). Accuracy is the metric
used to measure the performance of each hyper-parameter combination.

Appendix C details all the hyper-parameters used for each algorithm [39]. For the
particular case of the MLP artificial network, we try with different number of hidden
layers (from 1 to 3) with 10 to 30 units per layer, obtaining the best accuracy with
1 layer and 20 units.

All the algorithms, including feature selection and hyper-parameter tuning, are exe-
cuted in parallel using all the cores in our server. We use a Dell PowerEdge R530 server
with two Intel Xeon E5-2620 v4 2.1GHz microprocessors (32 cores) with 128GB DDR4
2400MHz RAM memory, running CentOS operating system 7.4-1708 for 64 bits.

4.2. Results

Figure 1 shows accuracies of all the classifiers for the three mark thresholds and
growing moments of prediction. Figure 1 represents as baseline the prediction that
takes the most frequent class, because the dataset is not balanced.

Table 4 details the AUC values obtained for the 5 algorithms implementing the 12
models. AUC measures the entire two-dimensional area underneath the ROC curve,
which considers the diagnostic ability of a binary classifier taking into account its true-
and false-positive rates [40]. Table 4 shows in bold font the greatest AUC values. When
there are not significant differences statistically between two algorithms (p-value<0.05
for Student’s t test), multiple accuracies are displayed in bold font.

Figure 2 shows the ROC curves for the 12 classifiers built with MLP. This is the
only algorithm used in Figure 2, because it obtains the best AUC results in all the
scenarios. Table 5 compares MLP accuracy and the most frequent class, for all the
models. Table 6 details the best Fg5-, F1- and Fo-measures in order to discuss the cost
of false positives and negatives (type I and type II errors) in different models.

13



Mark Threshold 2.5 Mark Threshold 5.0

—
]
0.8 / 08 s
-------------------------------------------------- g
4 &

0.6 - > 06 AT e seentttettttitettttttttttntetstetetene
[y - 3
g 2
E

0.4 0.4

0.2+ 0.2

0 0
10% 25% 33% 50% 10% 25% 33% 50%
Prediction Moments Prediction Moments

Mark Threshold 7.5

»— Naive Bayes

0.8

Decision Tree
0.6 4 Logistic Regression

—&— Multi-layer Perceptron

Accuracy

0.4
—=&=— Support Vector Machine

P A Most frequent class

10% 25% 33% 50%

Prediction Moments

Figure 1: Model accuracies for 3 mark thresholds and growing moments of prediction.

4.8. Discussion

Figure 1 and Table 4 show how the predictive models are more accurate as the
moment of prediction increases, for the three mark thresholds. The log files generated
by the LMS when half of the course has taken place have more information than those
generated for just 10% of the course, thus producing more accurate models. That is
why it is not advisable to build early predictive models with information taken from
the whole course [10].

Apart from naive Bayes, the rest of the algorithms behave quite similar, showing
differences in their accuracy lower than 5%. They always perform better than the most
frequent class.

For the moment of prediction 10%, MLP is able to classify pass/fail students (mark
5.0) with 68% of accuracy, 7.38% more than the baseline (Table 5). This difference
drops to 3.14% for at-risk students (mark 2.5) and just 0.42% for excellent ones (mark
8.5). For these two last groups, there is less room from improvement, since data are
not balanced.

As mentioned, prediction accuracy keeps growing as the moment of prediction grows.

14



Moment of Mark threshold

prediction 2.5 5.0 8.5 Algorithm
0.70501 0.67395  0.60651 NB
0.73664  0.68049  0.67235 DT
10% 0.72470 071220  0.65633 LR
0.76016  0.72783  0.68783 MLP
0.70990 071260  0.63956 SVC
0.79181 0.74912  0.70559 NB
0.84986  0.82854  0.82014 DT
25% 0.84773  0.83737  0.78587 LR
0.87717  0.84596  0.82083 MLP
0.85885  0.83609  0.79264 SVC
0.81336  0.81923  0.75494 NB
0.89871 0.88324  0.88024 DT
33% 0.88105  0.88386  0.83148 LR
0.91724  0.89223  0.88046 MLP
0.89199  0.88375  0.83206 SVC
0.87335  0.88090  0.80257 NB
093633 093506  0.93515 DT
50% 0.92493 093435  0.87315 LR
0.95834  0.94669  0.93199 MLP
0.93858 093388  0.89550 SVC

Table 4: AUC measures for all the models and algorithms. Bold font indicates highest value. Multiple
values are in bold font when there is no significant difference.

At half the course, we are able to reach accuracies higher than 90% for both at-risk
and excellent student detection (these two values are higher than 83% for 25% of the
course). For pass/fail classification, we get 87.2% accuracy at 50% of the course duration
(Table 5).

Table 4 analyzes differences among algorithms. In all the cases, MLP is the al-
gorithm that performs the best. For three models, there is no significant difference
between MLP and CART decision trees (DT). Figure 2 shows the prediction capabil-
ity of MLP models regarding the moment of prediction, for the three different mark
thresholds. In that figure, we can clearly see how the classifier performance grows as
the moment of prediction increases.

One important discussion to be considered is the cost of false positives and false
negatives. In this scenario, we consider positive as a student with a mark higher than
the mark threshold (2.5, 5.0 or 8.5). For 2.5 and 5.0 models, we would rather have
models with high precision, reducing the number of at-risk and fail students wrongly
classified (reduce false positives). That is, the cost of wrong classification of at-risk
and fail students is higher than the cost of erroneously classifying not-at-risk and pass
students. For these case scenarios, the F s-measure is used to give twice the weight to
precision as recall [41]—F;-measure gives the same weight to precision and recall.

15



True Positive Rate

Mark Threshold 2.5 Mark Threshold 5.0 Mark Threshold 8.5

0.8

°
S

°
o
True Positive Rate

True Positive Rate

0.2

00 02 04 06 08 1.0 0.0 0.2 04 06 08 1.0 0.0 0.2 04 06 08 1.0
False Positive Rate False Positive Rate False Positive Rate

Moment of prediction 10% Moment of prediction 25% Moment of prediction 33% Moment of prediction 50% «+*+=+* Random

Figure 2: ROC curves for MLP classifiers.

Mark Classifier Moment of prediction
threshold 10% 25% 33% 50%

95 Most Frequent Class 74.24% 74.24% 74.24% 74.24%

' MLP 77.38% 83.49% 86.50% 90.02%

5 Most Frequent Class 60.61% 60.61% 60.61% 60.61%
MLP 67.99% 76.37% 81.61% 87.17%

85 Most Frequent Class 79.66% 79.66% 79.66% 79.66%

' MLP 80.08% 83.75% 86.24% 90.06%

Table 5: MLP accuracy vs the most frequent class in all the datasets.

Mark Fomeasures Moment of prediction
threshold 10% 25% 33% 50%
95 Fy MLP (0.8634) MLP (0.8944) MLP (0.9121) DT (0.9382)
’ Fos MLP (0.8130) MLP (0.8681) DT (0.8970) DT (0.9300)
5.0 Fy MLP (0.7527) MLP (0.8129) MLP (0.8525) MLP (0.8941)
’ Fos MLP (0.7133) DT (0.7948) DT (0.8382) MLP (0.8781)
85 Fy DT (0.8909) DT (0.9074) DT (0.9217) DT (0.9419)
' Fs DT (0.9370) DT (0.9457) DT (0.9464) DT (0.9540)

Table 6: Best Fg 5-, F1- and Fa-measures for different mark thresholds and moments of prediction.

16



For excellent students (mark>8.5), we may give more weight to recall than to preci-
sion. The idea is to allow students to perform optional additional activities to increase
their learning. Therefore, we want to reduce the number of excellent students not
detected by our model (false negatives). Fy-measure doubles the weight given to recall.

Table 6 shows the best Fg 5- and Fi-measures for 2.5 and 5.0 models, and the best F;-
and Fy-measures for the models predicting excellent students. The two best algorithms
are MLP and DT. Lecturers may use one of these two algorithms depending on the
weight they want to give to the misclassification of students, for the three different
mark thresholds.

After all these analyses, we can answer Research Question 1: it is possible to
predict the students’ performance in solving the LMS assignments, by analyzing their
LMS logs when only 10%, 25%, 33% and 50% of the course has been completed. For
10% of the course, there is a statistically significant difference with the most frequent
class only for 2.5 and 5.0 mark thresholds; all the differences are significant for 25%
on. Prediction accuracy grows as the moment of prediction increases. The two best
classifiers are MLP and DT, to be chosen depending on the mark threshold and the
costs to be given to false positives and false negatives.

4.4. Analysis of independent variables

Besides the performance of predictive models, it is also interesting to analyze the
generated models to see to what extent the LMS log entries influence students’ per-
formance (Research Question 2). Not all the algorithms we use create interpretable
white-box models. DT has this capability, since the paths from root to leaf nodes can
be interpreted as classification rules [42]. Such classification rules are based on the
values of the features. Since DT models also provides high accuracy to classify students
by their performance (Tables 4 and 6), we study DT models to analyze dependencies
among independent variables and the target.

When building a DT, information gain is used to determine which feature provides
the maximum information about a class. One measure of information gain is Gini
importance, which computes the importance of each feature as the sum over the number
of splits that include that feature, relative to the number of samples it splits [43, 44].
Table 7 shows the five features with greatest Gini importance for all the models. 57%
of the most important variables belong to evaluation tasks (Appendix B) and 43% are
related to actions performed by students (Appendix A). For the moment of prediction
10%, fewer evaluation variables are used because it is less common to have evaluated
assignments. The weight of evaluation variables grows as the moment of prediction
increases. That weight is 43%, 56%, 62% and 64% for, respectively, 10%, 25%, 33%
and 50% prediction moments.

The independent variable with the strongest influence on the target is Accomplish-
MandatoryGrade, which describes the average mark of mandatory assignments before
the moment of prediction, considering non-submitted assignments as zero mark. It

17



is the most influential variable in all the models but one, where it is the second most
influential. Evaluation variables (Accomplish#Grade) are more important as the moment
of prediction increases, because at the very early stages of the course many students do
not have any assignment evaluation.

Table 7 shows that student accesses to resources uploaded by lecturers (Resource-
ViewPct and ResourceViewUniquePct) are important variables to detect at-risk and fail
students (mark thresholds 2.5 and 5.0), predicting such students when the values of
those variables are low. On the contrary, this kind of variables are not decisive to
classify excellent students.

The CourseViewPct variable measures the percentage of course accesses relative to
the accesses of the rest of students enrolled in the same course. This variable is only
important to detect excellent students. It seems that such learners access the course
LMS more often than the rest of the students, particularly at the early stages of the
course.

The independent variables associated to discussion forums (ForumViewForumPct and
ForumViewDiscussionPct) do not appear as the five most influential variables, for any
of the models (Table 7). It seems that student interaction with forums is not correlated
with their performance, for course-agnostic models. Likewise, students’ performance
does not strongly depend on quiz variables, since only two independent variables are
used for the 12 predictive models (Table 7).

These analyses comprise the response to Research Question 2, aimed at identi-
fying the variables that most influence the students’ performance using course-agnostic
LMS log data. Evaluation variables are more important as the moment of prediction
increases; a small number of accesses to lecturer’s resources identify at-risk and fail
students; a high number of course accesses at early stages detect excellent students;
quizzes have very low influence on students’ performance; and discussion forums none.

5. Student clustering

The objective of this section is to answer research questions 3 and 4. We first
see if it is possible to cluster students by their interaction with the LMS, regardless
the characteristics, methodology and discipline of the course. After identifying such
clusters, we analyze whether there is any correlation between the student groups found
and their performance in solving the assignments published in the LMS.

5.1. Methodology

The input dataset to obtain student clusters is the one described in Section 3.
The dependent variable defined to estimate student’s performance (Section 3.5) is not
included, since we use unsupervised leaning to find the clusters. For tuples with missing
values, we use the mean substitution method, based on replacing null values with

18



Prediction Moment

10% 25% 33% 50%
AccomplishMandatory- AccomplishMandatory- AccomplishMandatory- AccomplishMandatory-
Grade Grade Grade PctGraded
(0.36) (0.66) (0.29) (0.38)
. ResourceViewUniquePct ResourceViewUniquePct AccomplishMandatory- AccomplishMandatory-
~ (0.12) (0.08) PctGraded Grade
= (0.27) (0.35)
véq:é AssignSubmitUniquePct AssignSubmitUniquePct AccomplishMandatory- AccomplishMandatory
E (0.07) (0.04) PercentileGrade (0.09)
= (0.11)
"E AccomplishOptionalPct- AssignViewUniquePct AccomplishMandatory ResourceViewUniquePct
= Graded (0.02) (0.06) (0.02)
(0.05)
AccomplishOptional- AccomplishMandatory AssignViewUniquePct AssignViewUniquePct
PercentileGrade (0.02) (0.04) (0.02)
(0.04)
AccomplishMandatory- AccomplishMandatory- AccomplishMandatory- AccomplishMandatory-
Grade Grade Grade Grade
(0.17) (0.56) (0.72) (0.77)
=} QuizCloseAttempt- AccomplishMandatory- AssignViewUniquePct AccomplishMandatory-
,L; UniquePct PercentileGrade (0.05) PercentileGrade
S (0.12) (0.17) (0.09)
§ AssignSubmitPct AssignViewUniquePct AssignSubmitUniquePct AssignViewUniquePct
= (0.07) (0.03) (0.03) (0.02)
24 ResourceViewPct ResourceViewUniquePct AccomplishMandatory- AccomplishMandatory
z (0.06) (0.03) PctGraded (0.02)
= (0.02)
AccomplishMandatory- AssignSubmitUniquePct ResourceViewUniquePct AssignSubmitUniquePct
PctGraded (002) (002) (001)
(0.06)
AccomplishMandatory- AccomplishMandatory- AccomplishMandatory- AccomplishMandatory-
Grade Grade Grade Grade
(0.42) (0.76) (0.8) (0.74)
o CourseViewPct AccomplishMandatory- AccomplishMandatory AccomplishMandatory
0 (0.18) PctGraded (0.08) (0.1)
= (0.07)
% AccomplishMandatory- CourseViewPct CourseViewPct dsurseViewPct
é PercentileGrade (0.06) (0.04) (0.05)
= (0.13)
- AccomplishOptionalPct- AccomplishMandatory- QuizAttemptPct AccomplishMandatory-
g Graded PercentileGrade (0.01) PercentileGrade
(0.09) (0.05) (0.04)
AccomplishMandatory- AssignViewPct AssignViewPct AccomplishMandatory-
PctGraded (0.01) (0.01) PctGraded
(0.07) (0.01)

Table 7: Independent variables with the greatest Gini importance to classify at-risk, fail/pass and
excellent students (respective mark thresholds 2.5, 5.0 and 8.5).

19



the average value for that feature in the whole dataset [45, 46]. Additionally, all the
variables are z-score normalized (u=0 and o=1) to facilitate their comparison. We
create four unsupervised classifiers, one for each moment of prediction (mark thresholds
are not included, because they are targets of supervised classifiers).

Our dataset has 63 different features, representing a high dimensional space. Since
cluster algorithms work with distance methods to identify the clusters, they are not
accurate for high dimensional spaces [47]. This is the reason why it is better to reduce
the number of dimensions before executing the clustering algorithm [48]. In this work,
we tried the PCA (Principal Component Analysis) and FA (Feature Agglomeration)
dimension reduction algorithms [49]. With PCA, we need 20 variables to explain 80% of
the total variance of the dataset, whereas with FA we get to explain the same percentage
of variance with just 4 variables. Therefore, we used FA (with ward criterion to compute
distances) to reduce the dimensions of our dataset to four, improving the performance
of the clustering algorithm and the interpretation of the generated clusters.

What follows is a description of the four variables found by the FA algorithm,
considering the variables they group (details are presented in Appendix D):

— URL and assignment access (UAA). This variable mostly aggregates submission
and view of URLs and assignments in the LMS.

— Mandatory and optional assignment evaluation (MOA). The majority type of
variables aggregated by MOA is evaluation of assignments.

— Quiz access time (QAT). All the variables aggregated by QAT refer to quiz actions.

— Course and resource view (CIR). Every variable in CIR refers to course and re-
source views.

After reducing the dimensionality of the dataset, we apply the k-means algorithm
to obtain the student clusters. However, k-means receives as a parameter the number
of clusters to be created. Therefore, we use the gap statistic method to determine the
optimal number of clusters to be created [50]. When running k-means, centroid were
initialized with random values and we used the Euclidean distance.

ANOVA analyses are run to see if there are significant differences of the aggregated
variables among the clusters found. Afterwards, we use Tukey’s Honest Significant
Difference (HSD) post-hoc tests to see exactly where those differences lie (i.e., to find out
which specific aggregate variables are different one another)—Research Question 3. All
these analyses were carried out for the four models (one for each moment of prediction).

5.2. Results

The gap statistic method identified six clusters to be created for the four moments of
prediction. Figure 3 and Table 8 detail the distribution of the four aggregate variables
in the six clusters created by the k-means algorithm, for each moment of prediction.

20



Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

N 12,162 1,691 837 756 4,198 5,616
UAA 0.0284+0.256  -1.1638+0.608  0.2016+0.543  -0.1940+0.700  0.281140.530 0.0748+0.386
10% MOA  -0.1506+0.328  0.315340.471 0.506140.729 0.6515+0.708  -0.0237+0.345  0.0859+0.412
QAT  -0.00214+0.174 -0.0092+0.389  2.3969+0.873  -2.6879+1.194  0.03284+0.250  -0.0127+0.286
CIR 0.0841+0.250  -0.6530£0.465  0.18624+0.807  -0.4885+0.590 1.19914+0.489  -0.8440+0.331

N 7,088 1,897 8,600 3,353 1,315 3,007
UAA 0.1469+0.379  -0.0436£0.545  0.06584+0.329  -0.7834£0.416  0.145540.504 0.3028+0.503
25% MOA  -0.001040.389  0.4188+0.641  -0.1851+0.381 0.2586+0.435 0.21284+0.570  -0.1140+0.359
QAT 0.0153+0.274  -1.6652+0.580  0.0066+0.212 0.0002+0.274 2.141340.799 0.0591+0.324
CIR -0.5945+0.269  -0.398440.474  0.2397+0.298  -0.5274£0.356  0.107540.799 1.5082+0.556

N 4,134 7,438 2,460 1,452 7,266 2,510
UAA  -0.6901£0.392 0.07024+0.331  -0.04714+0.507  0.1817+0.524 0.180040.387 0.3482+0.527
33% MOA  0.239440.429 -0.20614+0.406  0.34324+0.607 0.1563+0.519  -0.0245+0.394  -0.139340.390
QAT 0.0166+0.262 0.0095+0.215  -1.432140.488  2.0941+0.754 0.018040.266 0.0846+0.357
CIR -0.4895+0.329  0.31484+0.320  -0.3755+0.433  0.115040.799  -0.519140.263 1.6775+0.626

N 3,055 8,051 1,520 1,627 4,957 6,050
UAA  -0.071240.454  0.1980+0.382 0.42684+0.586 0.1841+0.518 0.14794+0.421  -0.5054+£0.409
50% MOA  0.271740.488  -0.20224+0.414 -0.2664+0.433  0.085940.537  -0.098540.401 0.2563+0.452
QAT  -1.27914+0.422  0.011240.242 0.1999+0.559 1.9876+0.758 0.010940.265 0.0374+0.266
CIR -0.3566+0.371  -0.354340.293  2.139740.671 0.0930+0.734 0.6423+0.346  -0.4374+0.301

Table 8: Number of students per group (N), and variable average + standard deviation values per
cluster, for the four different moments of prediction (10%, 25%, 33% and 50%).

For all the variables, ANOVA found differences among the six groups (p-value<0.05),
for every moment of prediction. Therefore, the Tukey’s post-hoc test can be applied to
analyze inter-cluster differences among the values of each variable [51]. Figure 4 shows
the results of those tests, which could be summarized the following way:

10% of the course. UAA, MOA and CIR variables show significant differences for
all the clusters (i.e., p-value<0.05 for all the Tukey’s tests). For QAT, there is no
difference among Clusters 1, 2 and 6.

25% of the course. MOA and CIR are significantly different for all the clusters.
UAA values are not different between Clusters 1 and 5. The same happens in
Clusters 1, 3 and 4 for QAT.

33% of the course. All the clusters show different values for MOA and CIR
variables. For UAA, there is no significant difference between Clusters 4 and 5.
Clusters 1, 2 and 5 show similar values for QAT.

50% of the course. There is no significant difference between: Clusters 2 and 4
for UAA, Clusters 1 and 6 for MOA, Clusters 2 and 5 for QAT and Clusters 1
and 2 for CIR.

5.3. Discussion

It is worth noting than each cluster set is different for each moment of prediction,
since we used different datasets to create the clusters. Therefore, we should analyze
the characteristics of each cluster for each moment of prediction and see if there are

21



4 Moment of Prediction 10% [ mUAA mMOA mOQAT = CIR
3
2 ]
1
0 I 1 I g I %; I " ; i - T I ¢
; Rl T :
-2
-3
-4

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
4 Moment of Prediction 25% [ mUAA mMOA mQAT = CR]
3
: !
. I
o 4TI I R EREEEE -+ 1 SERE N -1
; = [Tge TE mT T 1
2 !
-3
-4

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
4 Moment of Prediction 33% HUAA EMOA QAT = CR]
3
2 | i
1

T i . L — T T T

0 + 1 e T I + %% I _J.L 11 +1_— I
, = T r i T
-2
-3
-4

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
4 Moment of Prediction 50% [ mUAA WMOA ®QAT =CR]
3
2 | I
1
0 T I - ] L1M7 I o7 M 1

E 1 T I T ¢ Ll 1 R R - T

-1 I
-2
-3
-4

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Figure 3: Average variable values per cluster for different moments of prediction; whiskers represent
standard deviations.

similarities among different moments of prediction. To this aim, we analyze how the
variable values determine cluster membership (Tukey’s test), and then see if those
cluster memberships are repeated in other moments of predictions. That is, we see if
k-means generated similar clusters for different moments of prediction.

Since variables were normalized with =0 and o=1 (Section 5.1), we consider a
variable to be very low if it is below -1, low between -1 and -0.5, average between
-0.5 and 0.5, high between 0.5 and 1, and very high if its value is greater than 1.
By analyzing the values of the four aggregate variables, we can identify the following
student clusters, valid for all the moments of prediction:

— QAT variable. As shown in Figure 4, there are two extreme values for QAT

22



3

I3

@

=}

@

a

3

s

a

=}

a

3

I3

<

a

e}

a

UAA variable Tukey result by Cfor PM 10%
.

.
42 10 08 06 04 02 0 02

UAA variable Tukey result by Cfor PM 25%

.
12 410 08 06 04 02 0 02

UAA variable Tukey result by Cfor PM 33%

.
12 10 08 06 04 02 0 02

UAA variable Tukey result by Cfor PM 50%
.

.
12 10 08 06 04 02 0 02

04

06

03

MOA variable for moment of prediction 10%
.

e

MOA variable for moment of prediction 25%

.

MOA variable for moment of prediction 33%

MOA variable for moment of prediction 50%

07

3

I3

<3

a

@

a

3

s

a

=}

a

3

I3

<

a

e}

a

3

0

QAT variable for moment of prediction 10%
.

.
25 20 15 10 05 0 05 10 15

QAT variable for moment of prediction 25%
.

.
25 20 15 10 05 0 05 10 15

QAT variable for moment of prediction 33%
.

.
25 20 15 10 05 0 05 10 15

QAT variable for moment of prediction 50%
.

.
25 20 15 10 05 0 05 10 15

20

25

10

CIR variable for moment of prediction 10%

CIR variable for moment of prediction 25%

CIR variable for moment of prediction 33%

CIR variable for moment of prediction 50%

20

Figure 4: Inter-cluster variable values for different moments of prediction (whiskers represent 95%

confidence intervals; dotted line represents mean values; Cn stands for Cluster n).

that determine two clusters, and this pattern is repeated in all the moments of

prediction

o QATL]. A very low value of QAT define a group of students who answer
quizzes significantly faster than the rest of the students. Table 9 shows how
this condition holds for Clusters 4, 2, 3 and 1 in, respectively, the moments
of prediction 10%, 25%, 33%, and 50%.

o QAT1TT. On the other hand, there is one cluster of students with very low
values of QAT for all the moments of prediction.

— UAAJ. Low (and very low) values for UAA define one cluster in each moment of
prediction (Figure 4). This cluster represents students that view external URLs
and assignments in the LMS significantly earlier than the rest of the students.

— CIR1T. Figure 4 shows how the four moments of prediction have one cluster for
very high values of CIR. The students in this group procrastinate when it comes
to viewing course contents and the resources uploaded by lecturers.

— MOA|CIRT. There is a cluster for all the prediction moments with assign-
ment evaluations below the average (MOA), and course and lecturer’s resources
views (CIR) above the mean. Students in this cluster cannot hold the previous

23



Moment of
prediction QAT]],  QATTT UAA|l  CIRTt MOA|LCIRT  Average

10% C4 C3 C2 C5 C1 C6
25% C2 Ch C4 C6 C3 C1
33% C3 C4 C1 C6 C2 C5
50% C1 C4 C6 C3 C5 C2

Table 9: Correspondence between clusters for particular moment of predictions and clusters for any
moment of prediction (Cn stands for Cluster n).

conditions—i.e., very low or high QAT, and (very) low UAA.
— Awverage. The last cluster is made up of the rest of the students, who have average
values for most of the aggregate variables (Figure 4).

We can now answer Research Question 3. There are six student clusters, valid for
all the prediction moments, that group students regarding their interaction with LMS,
regardless particular course characteristics. Remarkably, the only variable related to
evaluation (MOA) does not determine group membership by their own. Table 9 shows
the correspondence between clusters found by the k-means algorithm for each particular
moment of prediction and the six student groups identified for any moment of prediction.

5.4. Correlation between student clusters and students’ performance

We now analyze whether there is any dependence between the clusters identified
in the previous section and the students’ performance continuous variable defined in
Section 3.5. We run ANOVA tests, showing that such relationship exits (p-value<0.05).
Then, we conducted Tukey’s HSD post-hoc tests to see, for each pair of clusters, if there
are significant differences in the performance of their students.

Figure 5 shows the results of Tukey’s post-hoc tests (overlapping intervals mean no
significant difference). The following relationships between student clusters and their
performance are identified:

— The highest performance is obtained by those students who answer quizzes signif-
icantly faster than the rest (QATJ])—differences are sometimes not significant
with other groups.

— The students with the lowest marks are those that procrastinate when it comes to
viewing lecturer resources and course contents, and with assignment evaluations
below the average (MOA] CIRT)—differences are not significant with the next
cluster for the 50% prediction moment.

— Students with very late view of lecturer resources and course contents are the
ones with the second worst performance (CIRT1)—together with MOA] CIRT in
the 50% of course length.

24



Moment of Prediction 10% Moment of Prediction 25%

Average = = Average o
MOALCIRT o MOALCIRT = o
CIRTT —e— CIRTT —eo—
UAAL —@—i UAAL —@—
QATTT ——i QATTT —e—i
QATLL i QATIL i
4.0 4.5 5.0 5.5 6.0 6.5 7.0 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Moment of Prediction 33% Moment of Prediction 50%
Average o Average =
MOALCIRT = MOAICIRT @
CIRTT —eo—i CIRTT —eo—i
UAAL o UAAL e
QATTT —e—i QATTT —e—i
QATLL —e—i QATULL o

4.0 4.5 5.0 5.5 6.0 6.5 7.0 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Figure 5: Students’ performance for each cluster (whiskers represent 95% confidence intervals; dotted
line represents mean values). Overlapping intervals represent non-significant difference.

— UAA] is the cluster with the second best performance: students that view exter-
nal URLs and assignments in the LMS significantly earlier than the rest of the
students.

— The average and QAT1T clusters get average performance, and sometimes there
are not significant differences between both groups.

The response to Research Question 4 is that four (out of the six) clusters iden-
tified for any moment of prediction are correlated with the performance of students
belonging to such groups. This correlation holds for heterogeneous courses with differ-
ent methodologies, knowledge areas, learning formats and duration.

6. Conclusions

Students’ performance in solving the LMS assignments can be predicted at the early
stages of the course by using the log files generated by the LMS. Moreover, we find six
student-LMS interaction patterns that are repeated in all the initial stages of the course,
and four of them are correlated with the performance of the students belonging to them.
An important characteristic of our work is that the predictive and clustering models
were created with multiple heterogeneous courses, so they do not depend on a particular
learning methodology, discipline, format or duration.

25



At 10% of the course, prediction accuracies are better than the most-frequent-class
classification for at-risk and fail students. For 25% of the course on, excellent students
are also detected. Accuracy grows up to 93% when half of the course has been delivered.
MLP and DT are the algorithms with the highest accuracy, which can be selected
depending on the particular costs of misclassification.

The log entries related with the actions performed by students show a strong influ-
ence on students’ performance in the very early stages of the course. Later, evaluation
tasks become more influential. Procrastination when it comes to viewing the resources
uploaded by lecturers has an important influence on at-risk and fail students. Course
view actions at the beginning of the course strongly influence the detection of excellent
students.

LMS log files generated at the beginning of the course are also useful to detect
student clusters regarding their interaction with LMSs. Six clusters are identified for all
the early moments of prediction analyzed. Four of those clusters have strong correlation
with students’ performance, and they do not depend on the particular features of a
course. Patterns such as early answer to quizzes, and promptly LMS resource and
assignment view are related to high performance; whereas procrastination when it comes
to viewing resources and course contents is associated to low performance.

We plan to include the predictive models in a customized Moodle version to be
used by the University of Oviedo. In this way, lecturers could receive messages about
students’ performance predicted at the early stages of the courses. We also would
like to enrich the predictive models with other external sources of information such as
demographic data [52] and information taken from student-LMS interaction in former
courses. Another line of work could be analyzing if the order of certain actions would be
related with students’ performance, where LSTM recurrent networks could be used [53].

The dataset used to create the models, the original collection of log files, the reusable
Python models, the source code used to build and evaluate the models, data obtained
and the hyper-parameters used can be freely downloaded from

https://github.com/moisesriestra/moodle-early-performance-prediction
Acknowledgments

This work has been partially funded by the Spanish Department of Science, Innova-
tion and Universities: project RTT2018-099235-B-100. The authors have also received

funds from the University of Oviedo through its support to official research groups
(GR-2011-0040).

26



Appendix A. Variables related to students’ actions

The following enumeration depicts the variables describing student actions, com-
puted from the LMS log files. All the variables are relative to the moment of prediction.
That is, no data after that moment are considered to compute the variables.

— CourseViewPct: percentage of accesses to the course, relative to the total accesses
all the students in that course.

— CourseViewTime{1,2,3,4,5}: first to fifth time the student accessed the course,
relative to its duration (i.e., percentage of the course length).

— CourseViewTimePct: geometric mean of the five CourseViewTime{1,2,3,4,5} values.

— ResourceViewPct: percentage of accesses to lecturer resources, relative to the total
accesses to lecturer resources for all the students in that course.

— ResourceViewTime{1,2,3,4,5}: first to fifth time the student view a lecturer re-
source, relative to the course duration (percentage).

— ResourceViewTimePct: geometric mean of the five ResourceViewTime{1,2,3,4,5}
values.

— ResourceViewUniquePct: percentage of lecturer resources viewed by the student,
relative to the total number of lecturer resources in the course.

— UrlViewPct: percentage of URL views, relative to the total URL views for all the
students in that course.

— UrlViewTime{1,2,3,4,5}: first to fifth time the student viewed a URL, relative to
the course duration (percentage).

— UrlViewTimePct: geometric mean of the five UrlViewTime{1,2,3,4,5} values.

— UrlViewUniquePct: percentage of URLs viewed by the student, relative to the
total number of URLs in the course.

— AssignViewPct: percentage of assignment views, relative to the total assignment
views for all the students in that course.

— AssignViewTime{1,2,3}: first to third time the student viewed an assignment,
relative to the course duration (percentage).

— AssignViewTimePct: geometric mean of the three AssignViewTime{1,2,3} values.

— AssignViewUniquePct: percentage of assignments viewed by the student, relative
to the total number of assignments in the course.

— QuizViewPct: percentage of quiz views, relative to the total quiz views for all the
students in that course.

— QuizViewTime{1,2,3}: first to third time the student viewed a quiz, relative to the
course duration (percentage).

— QuizViewTimePct: geometric mean of the three QuizViewTime{1,2,3} values.

— QuizViewUniquePct: percentage of quizzes viewed by the student, relative to the
total number of quizzes in the course.

— AssignSubmitPct: percentage of assignment submissions, relative to the total as-
signment submissions for all the students in that course.

27



— AssignSubmitTime{1,2,3}: first to third time the student submitted an assignment,
relative to the course duration (percentage).

— AssignSubmitTimePct: geometric mean of the three AssignSubmitTime{1,2,3} val-
ues.

— AssignSubmitUniquePct: percentage of assignments submitted by the student,
relative to the total number of assignments in the course.

— QuizAttemptPct: a quiz attempt is when the student starts a quiz, so this variable
measures the percentage of quiz attempts, relative to the total quiz attempts for
all the students in that course.

— QuizAttemptTime{1,2,3}: first to third time the student started a quiz, relative to
the course duration.

— QuizAttemptTimePct: geometric mean of the three QuizAttemptTime{1,2,3} values.

— QuizAttemptUniquePct: percentage of quizzes started by the student, relative to
the total number of quizzes in the course.

— QuizCloseAttemptPct: percentage of quiz submissions, relative to the total quiz
submissions for all the students in that course.

— QuizCloseAttemptTime{1,2,3}: first to third time the student submitted a quiz,
relative to the course duration.

— QuizCloseAttemptTimePct: geometric mean of the three QuizCloseAttemptTime{1,2,3}
values.

— QuizCloseAttemptUniquePct: percentage of quizzes submitted by the student, rel-
ative to the total number of quizzes in the course.

— ForumViewForumPct: percentage of forum views, relative to the total number of
forum views for all the students in the course.

— ForumViewDiscussionPct: percentage of discussion views, relative to the total
number of discussion views for all the students in the course.

Appendix B. Variables related to assignment tasks

What follows is the independent variable list related to assignment tasks before the
moment of prediction (no data after that moment are included in the model).

— AccomplishMandatory: indicates whether any mandatory assignment has been
submitted.

— AccomplishMandatoryGrade: average mark of mandatory assignments, considering
non-submitted assignments as zero mark.

— AccomplishMandatoryPctGraded: percentage of mandatory assignments submitted
until prediction time, relative to the total number of mandatory assignments in
the course.

— AccomplishMandatoryPercentileGrade: student’s average mark in the mandatory
assignments, relative to (percentile) the rest of the students in the same course.

— AccomplishOptional: indicates whether any optional assignment has been sub-
mitted.

28



— AccomplishOptionalGrade: average mark of optional assignments, considering
non-submitted assignments as zero mark.

— AccomplishOptionalPctGraded: percentage of optional assignments delivered by
the student until the moment of prediction.

— AccomplishOptionalPercentileGrade: student’s average mark in the optional as-
signments, relative to (percentile) the rest of the students in the same course.

Appendix C. Hyper-parameters

We now detail the hyper-parameters selected for each predictive model, using the
hyper-parameter tuning method described in Section 4.1. For those hyper-parameters
not listed, we took the default value provided by scikit-learn.

— Decision tree:

e Mark threshold 2.5:

o 10%, 25%, 33% and 50%: splitter = random, presort = False, max-
_features = None, max depth = 10, criterion = gini, class weight =
None.

e Mark threshold 5.0:

o 10%: splitter = best, presort = False, max_features = sqrt, max-
_depth = 10, criterion = gini, class_weight = None.

o 25% and 50%: splitter = random, presort = True, max features =
None, max_depth = 10, criterion = gini, class_weight = balanced.

o 33%: splitter = random, presort = True, max_features = None, max-
_depth = 10, criterion = entropy, class weight = balanced.

e Mark threshold 8.5:

o 10%, 25%, 33% and 50%: splitter = best, presort = True, max-
_features = None, max_depth = 5, criterion = entropy, class_weight
= None.

— Naive Bayes:
e Mark threshold 2.5, 5.0 and 8.5:
o 10%, 256%, 33% and 50%: var_smoothing = le-09.
— Logistic regression:
e Mark thresholds 2.5:

o 10% and 25%: tol = 0.0001, solver = liblinear, penalty = 11, max-
_iter = 200.

o 33%: tol = 0.001, solver = liblinear, penalty = 12, max_iter = 50.

o 50%: tol = 0.01, solver = liblinear, penalty = 12, max_iter = 100.

e Mark threshold 5.0:

o 10%: tol = le-05, solver = liblinear, penalty = 12, max_iter = 200.

o 25% and 33%: tol = 0.001, solver = liblinear, penalty = 11, max_iter
= 100.

29



o 50%: tol = le-05, solver = liblinear, penalty = 11, max_iter = 200.
e Mark threshold 8.5:

o 10%: tol = le-05, solver = liblinear, penalty = 12, max_iter = 50.
25%: tol = 0.01, solver = liblinear, penalty = 11, max_iter = 100.
33%: tol = 0.0001, solver = liblinear, penalty = 11, max_iter = 100.
50%: tol = 0.01, solver = liblinear, penalty = 12, max_iter = 100.

O O O

— Multi-layer perceptron:

e Mark threshold 2.5:
o 10%, 25%, 33% and 50%: solver = lbfgs, learning rate = constant,
hidden layer sizes = 20, alpha = 0.1, activation = tanh.
e Mark threshold 5.0:
o 10% and 50%: solver = 1lbfgs, learning rate = adaptive, hidden-
_layer_sizes = 20, alpha = (.01, activation = relu.
o 25%: solver = adam, learning rate = constant, hidden_layer_sizes =
20, alpha = 0.001, activation = relu.
o 33%: solver = lbfgs, learning rate = invscaling, hidden layer sizes
= 20, alpha = 0.1, activation = relu.
e Mark threshold 8.5:
o 10%: solver = adam, learning rate = adaptive, hidden_layer_sizes =
20, alpha = 0.001, activation = relu.
o 25%: solver = lbfgs, learning rate = adaptive, hidden_layer_sizes
= 20, alpha = 1, activation = relu.
o 33% and 50%: solver = lbfgs, learning rate = invscaling, hidden-
_layer _sizes = 20, alpha = 1, activation = relu.
— Support vector machine:
e Mark thresholds 2.5, 5.0 and 8.5.
o 10%, 25%, 33% and 50%: tol = 0.01, probability = True, kernel =
rbf, gamma = scale, cache size = 4096, C = 1.

Appendix D. Aggregate variables

Table D.1 shows the aggregate variables obtained by the feature agglomeration
algorithm.

References

[1] R. Li, J. T. Singh, J. Bunk, Technology Tools in Distance Education: A Review of
Faculty Adoption, in: EdMedia+ Innovate Learning, Association for the Advance-
ment of Computing in Education (AACE), 2018, pp. 1982-1987.

[2] R. K. Ellis, Field guide to learning management systems, ASTD learning circuits
(2009) 1-8.

30



10JUOTSSNOSTQMO TAWNIO]
10JUNIOJMO T AUNIO ]
1odenbtunidweqiyesoTnzIny
10denbtupeso1nzIny
10genbruniduwsyiyziny
10d3dwe1yzIny
10denbruniTUqngulTSsy
1043 TUqngusTSsy
10denbrupmetTpZTINY
10dMOTAZINY

1odenbtunmeTp\uUSTSSY

90INOSaI purv 9sInNoy)

(Ly®) awry sseooe zmg)

-ugisse [euorydo pue Alojepur]y

1odmeTpudTSSY
10denbTunMeTATIN 19d9WTIITUQNSUITSSY
10JOWT MO TAODINOSOY qodgeutrdweqiyesoTHzIny 10JMOTATIN COWT 3 TWANSUSTSSY
GOWT [MOTAODINOSOY cowtadweqayesoTHZINY qogenbrunmetpedINOSDY ZOWT A TWQNSUSTSSY
LOUWTMOTASDINOSDY zowt13dwe131yesSoT)ZINY 10JMOTASDINOSSY ToWT1TUQNGUITSSY
COWTIMOTADDINOSDY TeurradusliyesoTnZzIny 10dMOTASSINOY) 104oWT MO TAUSTSSY
ZOWT MO TASDINOSOY 10dewt11dwel31yzInY epexnsTriusdsIsdreuoradgystTdwoooy coWT MO TAUSTSSY
TOWTMOTASOINOSEY cowt3dwesayzIny pepeaniodreuotidgystTdwoooy ZOWTMOTAUSTSSY
10JOWTJMOT \SSINOY) zeuwt adweaayzIny epeayTeuotadgys tTdwoooy TOWTIMOTA\USTSSY
GOWTIMOTASSINO) Tourl1dwelayzIng TeuotadgystTdwoooy 10JOWTIMOTATIN
GOWTIMOTASSINO) TourriduslayzIng TeuotadgystTdwoooy GOWTIMOTATIN
HOWTIMOTASSINOY) 10JOUWTIMOTAZINY opeinsTriusdIsdlrorepurystTdwoooy HOWTIMOTATIN
COWTIMOTADSINO) COWTIMOTAZTINY pepeinidodhrosepueyus tTdwoooy COWTIMOTATIN
ZOWTAMOTA\DSINO) ZOWTIMOTAZTNY epeanfioqepuelys tTdwoooy ZOWTIMOTATIN
TOWTIMOTASSINO) TOWTIMOTAZTINY Axoqepueyystdwosoy TOWTIMOTATIN
(U1D) mota (VOIN) uotpenpead juow (VY1) sseoor juewa

-ugdisse  pue YN

Table D.1: Aggregate variables.

31



3]

[10]

[11]

[12]

[13]

[14]

R. Conijn, C. Snijders, A. Kleingeld, U. Matzat, Predicting student performance
from LMS data: A comparison of 17 blended courses using Moodle LMS, TEEE
Transactions on Learning Technologies 10 (1) (2017) 17-29.

M. Llamas, M. Caeiro, M. Castro, 1. Plaza, E. Tovar, Use of LMS functionalities
in engineering education, in: 2011 Frontiers in Education Conference (FIE), IEEE,
2011, pp. S1G-1.

B. W. Tuckman, Relations of academic procrastination, rationalizations, and per-
formance in a web course with deadlines, Psychological reports 96 (3) (2005) 1015-
1021.

R. Cerezo, M. Sanchez-Santillan, M. P. Paule-Ruiz, J. C. Nunez, Students’ LMS
interaction patterns and their relationship with achievement: A case study in
higher education, Computers & Education 96 (2016) 42-54.

N. Kadoi¢, D. Oreski, Analysis of student behavior and success based on logs in
Moodle, in: 2018 41st International Convention on Information and Communi-
cation Technology, Electronics and Microelectronics (MIPRO), IEEE, 2018, pp.
0654-0659.

C. R. Henrie, R. Bodily, R. Larsen, C. R. Graham, Exploring the potential of
LMS log data as a proxy measure of student engagement, Journal of Computing
in Higher Education 30 (2) (2018) 344-362.

L. P. Macfadyen, S. Dawson, Mining LMS data to develop an “early warning
system” for educators: A proof of concept, Computers & education 54 (2) (2010)
588-599.

Y.-H. Hu, C.-L. Lo, S.-P. Shih, Developing early warning systems to predict stu-
dents’ online learning performance, Computers in Human Behavior 36 (2014) 469
478.

P. Brusilovsky, Methods and techniques of adaptive hypermedia, User Modeling
and User-Adapted Interaction 16 (1996) 87-129.

M. del Puerto Paule Ruiz, M. J. F. Diaz, F. Ortin, J. R. P. Pérez, Adaptation in
current e-learning systems, Computer Standards & Interfaces 30 (1) (2008) 62 —
70.

N. Dabbagh, A. Kitsantas, Using Web-based Pedagogical Tools as Scaffolds for
Self-regulated Learning, Instructional Science 33 (5) (2005) 513-540.

T. M. Kelly, N. Nanjiani, The Business Case for E-Learning, Cisco Press, 2004.

32



[15]

[18]

[19]

[21]

[22]

[23]

[24]

[25]

[20]

E. B. Costa, B. Fonseca, M. A. Santana, F. F. de Aratjo, J. Rego, Evaluating the
effectiveness of educational data mining techniques for early prediction of students’
academic failure in introductory programming courses, Computers in Human Be-

havior 73 (2017) 247-256.

N. Tomasevic, N. Gvozdenovic, S. Vranes, An overview and comparison of super-
vised data mining techniques for student exam performance prediction, Computers
& education 143 (103676) (2020) 1-18.

G. Cobo, D. Garcia-Solérzano, J. A. Moran, E. Santamaria, C. Monzo, J. Me-
lenchén, Using agglomerative hierarchical clustering to model learner participa-
tion profiles in online discussion forums, in: Proceedings of the 2nd International
Conference on Learning Analytics and Knowledge, 2012, pp. 248-251.

L. Gerritsen, Predicting student performance with Neural Networks, Ph.D. thesis,
Doctoral dissertation, Tilburg University (2017).

D. Gasevi¢, S. Dawson, T. Rogers, D. Gasevic, Learning analytics should not pro-
mote one size fits all: The effects of instructional conditions in predicting academic
success, The Internet and Higher Education 28 (2016) 68-84.

C. Romero, P. G. Espejo, A. Zafra, J. R. Romero, S. Ventura, Web usage mining for
predicting final marks of students that use Moodle courses, Computer Applications
in Engineering Education 21 (1) (2013) 135-146.

J. Lépez-Zambrano, J. A. Lara, C. Romero, Towards Portability of Models for Pre-
dicting Students’ Final Performance in University Courses Starting from Moodle
Logs, Applied Sciences 10 (1) (2020) 354.

C. Romero, M.-I. Lépez, J.-M. Luna, S. Ventura, Predicting students’ final per-
formance from participation in on-line discussion forums, Computers & Education
68 (2013) 458-472.

M. F. Marbouti, H. A. Diefes-Dux, Building course-specific regression-based mod-
els to identify at-risk students, in: The american society for engineering educators
annual conference, 2015, pp. 1-10.

A. Jokhan, B. Sharma, S. Singh, Early warning system as a predictor for student
performance in higher education blended courses, Studies in Higher Education
44 (11) (2019) 1900-1911.

D. Ljubobratovi¢, M. Mateti¢, Using LMS Activity Logs to Predict Student Failure
with Random Forest Algorithm, The Future of Information Sciences (2019) 113.

L. Talavera, E. Gaudioso, Mining student data to characterize similar behavior
groups in unstructured collaboration spaces, in: Workshop on artificial intelligence
in CSCL. 16th European conference on artificial intelligence, 2004, pp. 17-23.

33



[27]

[28]

[29]

J.-L. Hung, K. Zhang, Revealing online learning behaviors and activity patterns
and making predictions with data mining techniques in online teaching, MERLOT
Journal of Online Learning and Teaching (Dec. 2008).

D. Hooshyar, M. Pedaste, Y. Yang, Mining Educational Data to Predict Students’
Performance through Procrastination Behavior, Entropy 22 (1) (2020) 12.

M. I. Lopez, J. M. Luna, C. Romero, S. Ventura, Classification via clustering
for predicting final marks based on student participation in forums., International
Educational Data Mining Society (Jun. 2012).

Y. Park, J. H. Yu, I.-H. Jo, Clustering blended learning courses by online behavior
data: A case study in a Korean higher education institute, The Internet and Higher
Education 29 (2016) 1-11.

J. Cole, H. Foster, Using Moodle: Teaching with the popular open source course
management system, 2nd Edition, O’Reilly Media, Inc., 2007.

J. W. Tukey, Exploratory Data Analysis, Addison-Wesley, 1977.

S. Garcia, J. Luengo, J. A. Sdez, V. Lopez, F. Herrera, A survey of discretiza-
tion techniques: Taxonomy and empirical analysis in supervised learning, IEEE
Transactions on Knowledge and Data Engineering 25 (4) (2012) 734-750.

N. Rout, D. Mishra, M. K. Mallick, Handling imbalanced data: a survey, in:
International Proceedings on Advances in Soft Computing, Intelligent Systems
and Applications, Springer, 2018, pp. 431-443.

T. O. Kvalseth, Cautionary note about R?, The American Statistician 39 (4) (1985)
279-285.

Z. Reitermanova, Data splitting, in: Proceedings of the 19th Annual Conference
of Doctoral Student, WDS, 2010, pp. 31-26.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine
Learning in Python, Journal of Machine Learning Research 12 (2011) 2825-2830.

B. K. Singh, K. Verma, A. S. Thoke, Investigations on impact of feature nor-
malization techniques on classifier’s performance in breast tumor classification,
International Journal of Computer Applications 116 (19) (2015).

M. Riestra Gonzalez, Moodle early performance prediction, https://github.com/
moisesriestra/moodle-early-performance-prediction (2020).

34



[40]

[50]

[51]

J. Davis, M. Goadrich, The relationship between precision-recall and ROC curves,
in:  Proceedings of the 23rd International Conference on Machine Learning,
ICML’06, Association for Computing Machinery, New York, NY, USA, 2006, p.
233-240.

C. J. V. Rijsbergen, Information Retrieval, 2nd Edition, Butterworth-Heinemann,
USA, 1979.

F. Ortin, O. Rodriguez-Prieto, N. Pascual, M. Garcia, Heterogeneous tree structure
classification to label Java programmers according to their expertise level, Future
Generation Computer Systems 105 (2020) 380-394.

B. H. Menze, B. M. Kelm, R. Masuch, U. Himmelreich, P. Bachert, W. Petrich,
F. A. Hamprecht, A comparison of random forest and its Gini importance with

standard chemometric methods for the feature selection and classification of spec-
tral data, BMC bioinformatics 10 (1) (2009) 213.

S. Nembrini, I. R. Konig, M. N. Wright, The revival of the Gini importance?,
Bioinformatics 34 (21) (2018) 3711-3718.

G. L. Schlomer, S. Bauman, N. A. Card, Best practices for missing data manage-
ment in counseling psychology., Journal of Counseling psychology 57 (1) (2010)
1.

S. M. Fox-Wasylyshyn, M. M. El-Masri, Handling missing data in self-report mea-
sures, Research in nursing & health 28 (6) (2005) 488-495.

N. Tomasev, M. Radovanovi¢, D. Mladeni¢, M. Ivanovi¢, The role of hubness in
clustering high-dimensional data, in: Proceedings of the 15th Pacific-Asia Con-
ference on Advances in Knowledge Discovery and Data Mining - Volume Part I,
PAKDD’11, Springer-Verlag, Berlin, Heidelberg, 2011, p. 183-195.

P. Mitra, C. A. Murthy, S. K. Pal, Unsupervised feature selection using feature
similarity, IEEE transactions on pattern analysis and machine intelligence 24 (3)
(2002) 301-312.

7. Zhao, H. Liu, Spectral feature selection for supervised and unsupervised learn-
ing, in: Proceedings of the 24th international conference on Machine learning,
ACM, 2007, pp. 1151-1157.

S. Trivedi, Z. A. Pardos, N. T. Heffernan, Clustering students to generate an
ensemble to improve standard test score predictions, in: International Conference
on Artificial Intelligence in Education, Springer, 2011, pp. 377-384.

H. Abdi, L. J. Williams, Tukey’s honestly significant difference (HSD) test, in:
Encyclopedia of Research Design, SAGE, 2010, pp. 1-5.

35



[52] J. Kuzilek, M. Hlosta, D. Herrmannova, Z. Zdrahal, A. Wolff, OU Analyse:
analysing at-risk students at The Open University, Learning Analytics Review
(2015) 1-16.

[53] F. Okubo, T. Yamashita, A. Shimada, H. Ogata, A neural network approach for
students’ performance prediction, in: Proceedings of the Seventh International
Learning Analytics & Knowledge Conference, 2017, pp. 598-599.

36





