
ASOO’99

Implicit Object Persistence on a Reflective Abstract
Machine

F. Ortín Soler, A.B. Martínez Prieto, D. Álvarez Gutiérrez, J.M. Cueva Lovelle

Department of Computer Science, University of Oviedo
Calvo Sotelo 33007, Oviedo, Spain

E-mail: {ortin, belen, darioa, cueva}@pinon.ccu.uniovi.es

Abstract. Currently, using OODBMSs or persistence systems lacks flexibility
due to the need of including additional code not related to the functionality of
applications and learning of new APIs.

This paper explores the possibilities of an integral object-oriented system, based
on an abstract machine with reflection. This permits the addition of the property
of implicit persistence to the system, so that the user does not need to take
special action to make objects persistent. A database engine is part of this
persistence mechanism as an integral element of the system.

Computational reflection is defined as an inherent feature of the system. Due to
this kind of reflection, both the database engine and the programming of
applications are very flexible. Database engine properties can be dynamically
modified in order to satisfy application requirements.

Reflectivity accounts for the design of a middleware that is able to achieve an
implicit persistence system for the programmer in collaboration with the
database engine. Transparent runtime selection of a level of persistence for the
objects of an application without having to resort to additional code is now
possible. The result is a very high-level object-oriented programming, very
portable and with runtime flexibility.

Keywords: Abstract Machine, Reflection, Implicit Persistence, Integral Object
Oriented System, Database Engine

1.� Introduction. Object-Oriented DBMS and Persistent
Languages

1.1.� Object-Oriented DBMS

Object-Oriented Database Management Systems (OODBMSs) were primarily
motivated by those applications implemented with an Object-Oriented programming
language that demand data to be stored. These systems have a common feature: using
the OO model and integration with existing (persistent) languages (Cattell 1994a).
Now "classic" examples of these systems are ObjectStore, O2, GemStone, Poet, and
Versant. Differences between systems were basically the election of the supported
programming and query languages. This was also the cause of a limited portability.
To alleviate this, the Object Database Management Group launched a standarization
process (ODMG 1.0 and 2.0) (Cattell 1994b; Cattell 1997). Nowadays, the majority
of these systems claim to be ODMG compliant.

An evolution of relational systems towards extended relational systems is
carried in parallel with these OODBMSs systems. These systems try to combine the
OO model with the existing relational model. Changes in the storage and data
managers of the relational DBMS are carried as needed. Examples of these systems
are Informix, Oracle and Persistence.

1.2.� Persistent Programming Languages

Currently, and in co-existence with the above technologies, the support for
persistent objects into OO programming languages is being incorporated.

Taking Java as an example, there are many different persistent Java flavours to
choose. ������ (Persistent Java) (Atkinson 1996) provides a persistent programming
environment for the Java programming language based in a orthogonally persistent
variant of the Java platform and machine.

Other initiatives use persistent storage engines, such as PSE and PSE Pro (Abell
1999) for Java (with a C++ version as well), that allow to store and retrieve objects in
their native format. These persistent engines offer an API with varying learning
curves and ease of use. These APIs endow the programming language with database
functionality. Another example is Jeevan (Jeevan 1999), a single user object oriented
database for the Java platform, that provides a simple API of four classes and two
interfaces. The Jeevan API provides for index specification and dynamic queries.

Source Code

Pre-processor

Compiler

Application

Application
Programming

Interface (API)

(QJLQH

uses

Preprocessor
Language

linker

OO Engine
access

Fig. 1. Overall structure for the inclusion of database functionality into a programming
language

Other approaches translate Java objects into the relational model. Some rely on
the programmer to translate into tables (StreamStore 1999). Others make the
translation process transparent for the user (JavaBlend 1999).

1.3.� Adding Database Functionality to a Programming Language

Figure 1 shows the overall structure for the inclusion of database functionality
into a programming language, which is commonly accomplished by means of an API,
with a pre-processor used sometimes (i.e. extensions to the existing programming
language).

A summary of the disadvantages of this approach follows:

1. User complexity. The user has to learn the introduced API and/or the
extensions added to the programming language.

2. Legibility and maintainability suffers, as additional code, not related to
the application logic ("intruder" code), has to be injected into the source
code to have the added database functionality.

3. Portability suffers as well. There is a big dependence on the API used
and its implementation.

4. Poor flexibility. Changes to database engine related aspects, such as
adding a new indexing technique, are commonly made by changing and
recompiling the source code.

1.4� Implicit Persistence and Incorporation of a Database Engine into a
Reflective Integral Object Oriented System

We propose a different approach to the task of adding database functionality to
programming languages, which is based on the notion of ���	�
��� ��
������
�. This
means that the user does not need to take special action to make objects persistent, no
"intruder" code is needed, and so complexity, legibility and portability problems are
not a concern. The system needs a persistence subsystem with a database engine to
accomplish this.

To improve flexibility, a reflective architecture for this persistence subsystem is
proposed, which will allow dynamic changes to persistence related aspects (for
example, dynamic change of indexing techniques for a given application) without
changing application code. This will also allow experienced users to directly use
features of the database engine (explicit persistence). This is researched under the
experimental system Oviedo3, which is an integral object-oriented system based on a
reflective abstract machine. The persistence and database engine will be incorporated
as an integral part of the system, which gives additional benefits.

The rest of the document is organized as follows. Section 2 justifies the
developing of an Integral Object-Oriented System (IOOS), briefly describing the
features of the system’s object model and the abstract machine. Advantages of the
structure of the system for the database engine that will be incorporated in the system
is also described, as well as the different indexing mechanisms that will be
considered. Section 3 is devoted to the reflection concept. A proposal for endowing an
abstract machine with structural reflection is presented. In the next section persistence
and design of the database engine for the IOOS based on the reflection capabilities of
a reflective abstract machine is explored. Both explicit and implicit persistence is
treated. Advantages of this system such as flexibility, uniformity, etc. are mentioned
in section 5. Section 6 deals with related work in the field of reflective systems and
OO databases and implicit persistence. Finally, some conclusions are drawn in section
7.

2.� An Integral Object-Oriented System

The adoption of the object-oriented paradigm is not done in an integral way in
all the system components. There are languages, databases, user interfaces, etc. using
the object-oriented paradigm, which have to change to another paradigm to interact
with other elements of the system like the operating system. They even can have
different object models. This produces a serious impedance mismatch and
interoperability problem, for the paradigm changes and/or object translations made
depending on which element to work with. The result is a proliferation of additional
software layers trying to alleviate these problems, but introducing in fact extra
complexity in the system.

An approach in order to solve this problem is to move the OO support for the
rest of the system to a common place into the operating system. Oviedo3 (Alvarez
1997) is a research project that tries to build an experimental integral object-oriented
system based on that foundation. All components: user interfaces, applications,
languages, compilers, databases... and the operating system itself share the same
object-oriented paradigm.

HARDWARE

Abstract Machine
Operating System

'DWDEDVH and Compilers

Graphics and Multimedia Subsystems

User Interface

Fig. 2. Components of the Oviedo3 System, shown in logical order of development

The system provides one basic abstraction: objects. Objects can only create new
objects from a class or send messages to others. One technique to structure an OO
operating system aimed to support an integral OO system which offers many
advantages is to use an OO abstract machine as the substrate of the OO operating
system. This machine offers the basic object model and support to all objects of the
rest of the system, and is given a reflective architecture for extra flexibility. The
operating system functionality (as well as any subsystem functionality) is given by a
set of user objects not different from any other object. Thus, an IOOS ideally provides
a “world of objects” environment: a virtually infinite space where objects live
indefinitely and exchange messages regardless of its location (Figure 3). The
evolution of CORBA and Java is pointing towards this kind of heterogeneous
distributed interoperable object environment.

Machine Reflection

Operating System User

Computing Environment

Persistence and
Database

Fig. 3. Computing environment composed of a set of homogeneous objects

2.1.� System’s Object Model and Abstract Machine

The machine ultimately provides the basic support for the common object model
of the system, which intentionally follows the object model of the most popular OO
methodologies. The goal is to take advantage of well-established OO concepts as well
as carrying all the semantics of the object model (used in analysis and design phases)
all the way to the implementation phase. The features the model includes are:

• Unique object identity (used by references);

• Encapsulation (access to an object only through methods);

• Classes (which are also used to derive types);

• Multiple inheritance (is-a) relationships;

• Aggregation (is-part-of) relationships;

• General association (related-to) relationships;

• Polymorphism and type checking including run-time checking;

• Exceptions;

• Protection, Concurrency, Distribution and Persistence (with database
capabilities).

The machine language is a pure OO low level language. It allows class
declaration, method definition and exception handling. Objects extending the
functionality of the basic machine provide features not provided directly by the
abstract machine.

2.2.� The Database Engine of the Integral OO System

The OODB engine is not an individual element inside this integral system, like
in conventional operating systems. It is an integral part of the computation
environment. Database objects are objects just like other objets in the system
(operating system or user ones), that provides database functionality: persistence,
indexing, query processing, etc. Grouping them into a subsystem offers convenient
access to them.

The existence of an object-oriented operating system and ultimately of an
object-oriented abstract machine provides a set of benefits for the construction of the
engine (Martínez 1998):

• Seamless integration with the rest of the system. The OODBMS can be seen
as playing the part of the file system in conventional operating systems, but
with database capabilities. The database would not be used in isolation, but
as a management system encompassing all objects in the system. For
example, a user would find any object uniformly by querying the database.

• Facilitates its construction. The engine will on one side take advantage of the
structural reflection of the machine, and on the other on some operating
system capabilities (protection, concurrency, etc.), building on them
incrementally by means of the object-orientation present in the system.

• Performance increase. It is not necessary to add new software layers to
conventional operating systems to fill the semantic gap between operating
system abstractions and objects. The integral system is already object-
oriented.

• Productivity increase. Building database applications on this system is more
productive, since it is not necessary for the programmer to change
paradigms. Database and operating system share the same object-oriented
paradigm, which is used uniformly in the system. For example, the same
query language would be applied to database programming and user
interface search tasks.

The engine is intended to be flexible and adaptative, using the extensibility
offered by object-orientation. Work is being carried specially on the indexing
mechanism, foundation for the query processing system. It will be used as a testbed
and an example of this flexibility.

2.3.� Indexing Mechanisms

OO query languages have some special features to take into account: the
existence of inheritance and aggregation hierarchies and the potential presence of
method invocations. Thus, indexing mechanisms are needed that allow an efficient
processing of queries under these circumstances. Many indexing techniques for OO
models have been proposed, which can be classified into (Bertino 1995):

a) ��
�
��
�	� These are based on object’s attributes. Further divisions can be
made: techniques that support for queries based on the inheritance hierarchy
(Kim 1989: Single Class, CH-Tree; Chin 1992: H-Tree), techniques that
support the aggregation hierarchy (Bertino 1989: Nested, Path y Multiindex),
and techniques that support both aggregation and inheritance hierarchies
(Bertino 1995: Nested Inherited).

b) ��������
�	� These provide an efficient execution for queries that include
method invocations. Method materialization (Kemper 1994) is one of these
techniques.

So, depending on the most frequent type of query on a given class (or class
hierarchy), some techniques are more efficient than others. However, most of the
existing OODBMS use only a fixed subset of these indexing mechanism, and the user
has neither the option of selecting her preferred indexing mechanism, nor the chance
of adding new schemes.

The proposed database engine will have the following basic features:

• Different indexing schemes. The system allows different indexing schemes.
Initially, SC, CH-Trees and Nested Index are considered in the first
prototype that is being developed. However, the indexing mechanism allows
for the easy addition of new schemes.

• Selection of the indexing mechanism. The system allows the selection of the
indexing mechanism deemed as the most appropriate depending on the type
of query made to the class (or class hierarchy) in question.

• Data type independence. It implies that the indexing can be performed over
any data type (not simple types only). In order to accomplish this, the
mechanism allows to use user-defined comparison operators.

3.� Reflection in the Integral Object-Oriented System

Reflection is the capability of a computational system to “reason about and act
upon itself” (Maes 1987) and adjust itself to changing conditions. The computational
domain of a reflective system is the structure and the computations of the system
itself. Two kinds of reflection can be observed: structural and computational
reflection (Ferber 1989).

• Structural Reflection: is the most obvious and still the most developed form of
reflection. It concerns the infinitary status of some data structures defined by
reflexive domains (Ferber 1988). The Java Reflection API (Sun 1997) is an
example of a restricted kind of Structural Reflection (better called
���
����
����).

• Computational or Behavioral Reflection: Is the ability for a process to
describe, analyse and modify itself while running.

The Integral Object-Oriented System warrants portability by using the binary
code of an abstract machine (Álvarez 1998a). To build an IOOS on that machine, the
design of the machine is very important. The first prototype of this OO abstract
machine had inheritance, polymorphism, exception handling and multithreading
(Cueva 1996). Later on, properties were added, such as a distribution (Álvarez 1998b)
and protection (Díaz 1998).

One option to augment the functionality of the machine is to add new
instructions to the instruction set. A correspondent interpretation of these instructions
has to be defined, to implement the new desired functionality. This implies a
modification of the machine (interpreter).

A more flexible alternative uses the reflection concept, introducing structural
reflection into the machine. The object is defined as the computation unit, and a set of
primitives (basically method invocations) are defined upon objects. Objects have
structural reflection, so its structure is always known. An object’s properties can be
freely modified, except properties defined as primitive.

This design allows to dynamically introduce any property that can be expressed
in terms of primitives. Instead of modifying the machine (interpreter), additional
functionality will be coded into binary code of the machine, implemented upon its
structural reflection. This kind of design for abstract machines is also adopted by
Smalltalk-80 (Krasner 1984), and especially by ObjVLisp (Cointe 1988).

3.1.� Computational Reflection

However, most of the power of the system is due to computational reflection.
Smith (Smith 1982) proposes an interpreter tower to obtain a system with this
property. We will define just two levels on this tower:

• The execution of an interpreter for a language �, expressed by binary code of
the virtual machine ��

• The execution of a user program expressed in the language � by the
interpreter.

To make the system expressed in the language � computationally reflective, two
things are needed:

1. A “jump” 1 from the computation of � to the computation of � in the two-
level tower must be possible.

2. Computation of � has to be structurally reflective in order to modify the
computation state of �.

1 This kind of “jump” is called reification [Maes87].

6WUXFWXUDO�5HIOHFWLYH

9LUWXDO0DFKLQH

/DQJXDJH%

/ ,QWHUSUHWHU

% 2EMHFWV

/DQJXDJH/

8VHU�3URJUDP

/DQJXDJH%

5HLILFDWLRQ

....

....

0RGLILFDWLRQ

ZLWK�6WUXFWXUDO

5HIOHFWLRQ

&RPSXWDWLRQDO

5HIOHFWLRQ

Fig. 4. Computational reflection on an abstract machine with structural reflection

There are some techniques to build reflective systems, such as MOPs (Kizcales
1991). A MOP (Meta Object Protocol) is the interface exposed by some auxiliary
objects (metaobjects) that offers the option to change existing objects. This interface
is defined at compile-time, losing some flexibility for the sake of efficiency. Others
like MetaJava are more flexible, instantiating this protocol at runtime, but less
efficient. A higher degree of flexibility2 is achieved by the before mentioned “jump”
between different computation levels.

The rest of the paper will just use “reflection” for “computational reflection”.

4.� Achieving Persistence by means of Reflection

As mentioned in a previous section, the persistence system of the integral
object-oriented system relies on a database engine. Only the interface is specified for
better flexibility, leaving the actual implementation unspecified, as in other
architectures such as CORBA (CORBA 1997). This design opens the door for ����
���	������������(Maeda 1997). For example, many different implementations could
be selected depending on a set of parameters, as in the case of the indexing
mechanisms.

Portability is another feature of this kind of architecture. As in the Java platform
(Kramer 1996), the binary code of the abstract machine is portable to different
hardware platforms. With regard to portability of the application code, access to

2 Flexibility usually hurts efficiency. In the first prototype of the system we will concentrate on

flexibility, leaving optimizations for future versions.

objects not directly part of the application has to be studied. OS objects and specially
database engine objects are in this group. When migrating the application to a
different hardware platform and version of the abstract machine, the database engine
could have a different implementation, taking advantage of special features of the
hardware system. In this former case, portability is also assured by the common
specification of the interface of the engine.

The implementation of the engine will use the structural reflection offered by
the machine. This eases the implementation of the engine, as all objects’ properties
are accessible at runtime. Creation, access, modification and deletion of objects and
its properties are services provided by the machine itself by means of reflection.

Once the engine’s interface is specified and implemented, applications can use it
as an actual persistence system.

4.1.� Applications Using Explicit Persistence

Experienced users which code applications willing to use the persistence
property of the integral system can do so by accessing directly the services of the
database engine through its interface. A reference to the engine has to be acquired
before the application can use it, as the engine will be an object of the integral system
(Álvarez 1997).

In this ���	�
��� ��
������
� the programmer decides when a specific service of
the engine is to be used. This is usually more efficient than implicit persistence (next
section), but the programmer is concerned with the burden of managing in a correct
way all the persistent objects of the application.

As the engine is an integral part of the (operating) system, and being accessible
from any part of the system3, access to databases is from the programming language
itself, as in the case of PSE Pro, Jeevan, etc.

4.2.� Applications Using Implicit Persistence

With ���	�
��� ��
������
�, applications do not have to take special actions to
make objects persist. The system makes objects persistent transparently, without
having to include additional “intruder” code besides the proper application logic. That
is, there is no need to explicitly specify calls to the database engine, as in the case of
explicit persistence (Ortín 1997). The programmer does not have to take the
responsibility of linking the application with the persistence system; the system will
transparently do so. With this kind of persistence, an application could be created,
debugged and tested, and later, at execution time, certain objects could be made

3 As a note, the abstract machine and the Integral System use distributed references. So, remote

objects can be accessed just like local ones, and in particular remote persistence systems can
be accessed.

persistent dynamically, even with different levels of persistence (with encryption,
replication, logging of updates, different kinds of stable storage, etc.)

The language for applications (section 3) is interpreted by an interpreter
program developed on the reflective abstract machine, being then a computationally
reflective language. The middleware that accomplishes this transparent persistence for
any object will be built taking advantage of this reflective property to implement
different levels of persistence.

This middleware software will dynamically make computational modifications
to the objects implementing an application, so that these objects will now
automatically make the appropriate calls to the database engine (figure 5). The
programmer will just have to select the desired persistence level for her applications
objects (or use default levels selected by a system policy). An example of
implementation of this middleware would modify the method invocation system,
updating the object anytime its attributes change their values.

Updating of objects could be done using different persistence levels at various
times, for example:

• Creation and deletion of objects

• Invocation of a given set of methods

• Update of the state of an object

• At regular intervals of time

...

22�'DWD%DVH
(QJLQH

Indexing Transactions

3HUVLVWHQFH�/HYHO
0LGGOH:DUH

...

...

8VHU�$SSOLFDWLRQ

Computational
Reflection

Updating
Objects

Different Levels

Different Services

Fig. 5. Overall structure of an implicit persistence reflective system

If there is a need to dynamically change the behaviour of persistence for the
objects of a running application, for example, updating changes upon any changes to
the state of an object, the system could proceed as follows. The message passing
mechanism of user objects will be modified, making it now call the database engine to

make the object persist when the invocation of a method results in changes to the state
of the object. There are no changes to user code. User code is also not conscious that
its functionality has been changed, this is completely transparent to it.

Obviously, the combination of the persistence level with activations of
persistent updates will be less efficient when the number of updates increases.
However, this transparent middleware takes work and responsibility out from the
programmer, making applications easier to debug as well.

5.� Advantages of this Architecture

The most important feature of this persistence subsystem is the higher degree of
flexibility allowed by reflection. Some advantages derived from this property are
mentioned below.

5.1.� Uniform Use of the Persistence System

The database engine is an integral part of the system. The engine services can be
used either directly or transparently from any other part of the system: from the OS
shell to user applications.

These services are also homogeneously used throughout the system. There is no
need to make distinctions between data files, databases, executable files, etc.
Persistent objects are the only abstraction of the system.

5.2.� Flexible Use

For applications using implicit persistence there are two different variables to
take into account at runtime: the persistence level desired for objects and the different
existing mechanisms or implementations for the services of the engine. A flexible and
dynamic selection of this parameters is possible with this computational reflective
system, so the balance between persistence functionality and updating frequency and
efficiency can be tuned as needed, adjusting them along time.

For example, an application could use different indexing mechanisms for
queries depending on the system load; even persistence could be disabled when faster
execution is required, being re-enabled later.

Flexibility needs control: arbitrary changes to a running system by any user
must not be allowed. The existence of a protection mechanism that can be used
homogeneously to control message passing for the whole system (Díaz 1998) could
be used in particular to control which reflective calls are allowed.

5.3.� Parameter Tuning

To find the optimum performance level of a computer system with limited
resources is a complex task. This is applicable to the field of databases, trying to
access higher data volume in the shortest time possible.

One particular case is related to search algorithms in databases that use different
data structures. Some strategies perform better in some contexts but are less efficient
in others. For example, nested index has the best retrieval performance, however
multiindex has the best update performance (Bertino 1989).

A study of the impact of the variables that affect the performance of the engine
has to be carried in order to select a given strategy for a context. The flexibility of the
system facilitates these studies. The most important variables are:

• Classification of an application’s objects.

• Existing persistence levels

• Different implementations for the engine’s services.

Reflectivity makes very simple for an application to modify these variables and
generate statistics in order to make a compromise. The system is a very suitable
platform for the benchmarking of different indexing mechanisms, for example.
Guidelines for the dynamic selection of indexing mechanisms depending on specific
contexts will be produced after analyzing this data.

5.4� Higher Programming Level

Applications programming is simpler now with persistence implemented
reflectively, as programmers do not have to deal with persistence4 (being it implicit).
At runtime, the user will just need (if desired) to identify which objects should persist
and the persistence level desired. Moreover this decisions can be changed later. The
abstraction level is consequently raised.

Another advantage of this raise of abstraction level achieved by using an
integral database engine with a related reflective middleware is a big improvement
when debugging, porting and maintaining applications.

6.� Related Work

There is some related work in the field of reflective programming languages.
Most of these languages are based in the Meta Object Protocol, being 3-KRS (Maes

4 Although not treated here, similar considerations can be made about distribution and

protection in the integral system.

1987) a pioneer. Some current examples are OpenC++ (Chiba 1995) and MetaJava
(Kleinöder 1996).

These languages give ���
��
� reflective executions by generating compile-time
additional code or by extending the instruction set of a virtual machine. But a running
application can not be modified unless source code is recompiled. These MOPs
generate more efficient code but losing the flexibility of modifying running
applications present in our system.

There are also reflective object-oriented operating systems such as Apertos
(Yokote 1993). Every object is associated with an execution environment called
metaspace and composed of metaobjects. Communications with the metaspace is
possible through a set of metaobjects with these specific functions.

There are many OODMBSs, in the form of independent servers (O2,
ObjectStore, etc.) or in the form of complements for programming languages (PSE,
PSE Pro, etc.). However, these systems usually work like black boxes with poor
flexibility. There are no provisions for the dynamic addition of new indexing
mechanisms or for applications to select a given indexing mechanism, etc. On the
other hand, these systems are conceived as independent elements, not as an integral
part of a global system like the one proposed in this paper.

OODMBSs and persistent systems in general have three different possibilities to
determine which objects are to persist: ��� ���� (an object may be made persistent
when it is created, based on its type, persistent types versus transient types, as in
Objectivity/DB), ��� ���	�
���
�		 (the user may explicitly specify persistence of an
object, as in ObjectStore), and ���
���
��
� (determine persistence of objects by
reachability from certain globally known persistent root objects, as in GemStone).
Nevertheless, a less explored alternative is the utilization of implicit persistence by
means of a reflective mechanism in the sense in which it is proposed in this paper.
That is, systems that allow the dynamic change at runtime of the level of persistence
of an object, which the consequent increase in simplicity for the programmer.

To explore the concept of implicit persistence, a first prototype used a design in
which persistence was implemented by adding functionality to the base code of the
abstract machine (Ortin 1997). Although applications programming in fact took
advantage of this transparent persistence, this designed lacked flexibility in the way
described before. Implementing implicit persistence with the reflective design
proposed in this paper retains the benefits of implicit persistence while giving more
flexibility.

7.� Conclusions

Currently, programming an object-oriented application using OODBMSs
implies the knowledgements of different APIs and the inclusion of additional code.
An alternative approach uses the concept of implicit persistence, in which the user

does not need to take special action to make objects persistent, no "intruder" code is
needed, and so complexity, legibility and portability problems are not a concern.

An integral object-oriented system based on an abstract machine that provides
basic support for objects in the system is used to implement implicit persistence. The
seamless integration of a flexible database engine in this system taking the part of
conventional file systems is a first step towards this, with additional benefits.

The use of an abstract machine with structural reflection upon which languages
with computational reflection are built is the fundamental piece to achieve flexibility
in the database engine and the persistence mechanism.

The flexibility in the database engine and the specification of its interface builds
on the object-orientation and reflection capabilities of the machine. Experienced users
can now use explicit persistence by calling directly services of the engine.

Implicit persistence is achieved by a reflective middleware that makes runtime
computational changes to the application objects, doing (transparent) calls to the
database engine to make objects persist. This accounts for flexibility, as no additional
application code is needed, changes can be dynamically made while the application is
running and different levels of persistence can be selected for objects.

The system then has a number of benefits related to persistence such as a
uniform use of the persistence system throughout the system. Flexible use of
persistence by dynamic selection of parameters related to persistence is another
benefit. This also makes the system a very good platform for benchmarking and/or
parameter tuning.

The overall result is a very high-level object-oriented programming, very
portable and with runtime flexibility.

8.� References

Abell S.T. �������������������. Java White Paper. http://www.odi.com, March 1999.

Álvarez D. ��� �� �
�!�
�����"� ����
�
�� ��
����� ��� ���� �����
���� ��
� ��� �� �
�!
�
�����"� ���
������ ������� 11th European Conference on Object-Oriented
Programming (ECOOP’97). Jyväskylä (Finland). June 1997.

Álvarez D. #���	������
������
����
����$� �
�!$
�����"�$��
���������������������
����
�
�� %�
����� ����� &��	�
����� �

����
��
�, Ph. D. Thesis, University of
Oviedo, Spain, March 1998.

Álvarez F., Tajes L., Díaz M., Álvarez D., Cueva J.M.���
�'�(���$� �
��)���
�������
���������� ��� ���� �$*� $� �
�!$
�����"� $��
������ ������. Proceedings of the
PDPTA'98. International Conference on Parallel and Distributed Processing
Techniques and Applications, pp. 255-258. CSREA Press. 1998.

Atkinson M., Daynès L., Jordan M., Printezis T., Spence S. ��� $
�������		�
��
����������������+,%$)�&�
�
"-�.�	�/0�12*��)�
����
-3445

Bertino E., Kim W. +�"������ (�
���6���� ��
� 7��
���� ��� 1����"� $� �
��. IEEE
Transactions on Knowledge and Data Engineering. Vol.1 nº2, 1989.

Bertino E. Foscoli P. +�"��� $
����8������� ��
� $� �
�!$
�����"�)�������� �������.
IEEE Transactions on Knowledge and Data Engineering. Vol.7, 1995.

Cattell R.� $� �
��)���� %����������� $� �
�� $
�����"� ��"� �����"�"� &�	������	
)��������������� (Revised Edition). Addison Wesley, 1994.

Cattell R., Atwood T., Duhl J. et. al. (��� $� �
��)�������� ����"�
"'$)%,!49.
Morgan Kaufmann, 1994.

Cattell R., Barry D., Bartels D��(���$� �
��)������������"�
"'�$)%,�/�:� Morgan
Kaufmann, 1997.

Chiba S. ��%����� �
���
���
�	���
�#;;. Proceedings of the Conference on Object-
Oriented Programmings, Systems, Languages, and Applications, OOPSLA’95. pp.
285-299.

Chin C., Chin B., Lu H.�<!�
���'���)�����
�����
����������

�� � +�"��� ��
�$$)��
ACM SIGMOD, 1992.

Cointe P. (��� $� .	���� =�
��	'� �� &��	�
����� ����� �

����
��
�� ��� "������ �� �����
�
$� �
�!$
�����"� ������� Meta-Level Architectures and Reflection. P. Maes, D.
Nardi (Editors). North-Holland, 1998.

#$&��'��

����
��
����"����
���
�������OMG. 1997.

Cueva J.M.� (��� +����
�	� $� �
�� $
�����"� ������� $���"�9. II Jornadas sobre
Tecnologías Orientadas a Objetos. Oviedo, 1996.

Díaz M., Álvarez D., García-Mendoza A., Álvarez F., Tajes L., Cueva J.M��%�
����
#�����	������ ����� ���� $� �
�� %�"�	� ��� ��� $� �
�!$
�����"� ����
�
�� %�
�����
Proceedings of the ECOOP'98 Workshop on Distributed Object Security and the
4th Workshop on Mobile Object Systems, pp. 9-13. Inria Rhône-Alpes, Francia,
Julio de 1998.

Ferber J. #�
�����	�
��	�
����� ��"� �
��
� 	��������. Meta-Level Architectures and
Reflection. P. Maes, D. Nardi (Editors). North-Holland, 1988.

Ferber J. #�����������	� &��	�
����� ���
	���� ����"� $� �
�!$
�����"� ����������
Proceedings of the Conference on Object-Oriented Programmings, Systems,
Languages, and Applications, OOPSLA’89, New Orleans, Oct. 1989, pp. 317-326.

����� �	��"'� +����
������ ����� $� �
��� ����� ����
�
����)���. White paper.
http://java.sun.com, March 1999.

����������
>��,��"�. http://www.w3apps.com/, March 1999.

Kemper A., Kilger C., Moerkotte G. ?��
����� %���
��	�8������ ��� $� �
�� �����'
)�����-�&��	�8�����-���"����	������� IEEE Transactions on Knowledge and Data
Engineering, 1994.

Kim W., Kim K.C., Dale A��+�"������(�
���6������
�$� �
�!$
�����"�)��������� En
W. Kim y F.H. Lochovsky (ed) : Object-Oriented Concepts, Databases, and
Applications. Addison-Wesley, 1989.

Kizcales G., des Rivieres J., Bobrow D.G.(��� �
�� ��� %���!$� �
�� �
���
�	� MIT
Press 91.

Kleinöder J., Golm M. %�������'� ��� ����
����� &��!(���� %���� �

����
��
�� ��

���� . TR-14-96-03. Computer Science Department, Friedrich-Alexander-
University Erlangen-Nürnberg, Germany. June 1996.

Kramer D. (������� ��	����
�����@���������
. Sun JavaSoft. May 1996.

Krasner G. ���		��	A!B:-��������������
�-���
"������"����� Xerox Palo Alto Research
Center. Addison Wesley 1984.

Maeda C., Lee A., Murphy G., Kiczales G.� $���� +��	����������� ��"�)�����.
Proceedings Symposium on Software Reuse. May 1997.

Maes P. #�����������	� &��	�
����. Technical Report 87_2, Artificial Intelligence
Laboratory, Vrieje Universiteit Brussel, 1987.

Martínez A.B, Álvarez D., Cueva J.M., Ortín F., Pérez J.A. +�
�
��
���������$� �
�!
Oriented�)�%����������+����
�	�$� �
�!$
�����"���������World Multiconference
on Systemics, Cybernetics and Informatics and International Conference on
Information Systems, Florida, 1998.

Ortín F., Álvarez D., Izquierdo R., Martínez A.B., Cueva J.M.� (��� $���"�9
��
������
�� ������. III Jornadas de Tecnologías de Objetos. Sevilla, 1997.(in
spanish).

Smith B.C. &��	�
�������"��������
��������
�
�"�
�	���������, MIT-LCS-TR-272,
MIT, Cambridge, 1982.

��
������
�����
>��,��"�. http://www.bluestream.com/ss/default.htm, March 1999.

Sun Microsystems. ����� #�
�� &��	�
������ ��+� ��"� ���
���
������� JavaSoft. January
1997.

Yokote Y. =�
��	� ��
�
��
���� ��
�$� �
�!$
�����"�$��
������ �������'� (��� ���
���
���
��
�. Workshop on Reflection and Meta-level Architectures at
OOPSLA 93.

