
Graph Representations used in the design of ProgQuery

(Technical Report)

Oscar Rodriguez-Prieto, Francisco Ortin∗

University of Oviedo, Computer Science Department,
C/Federico Garcia Lorca 18, 33007, Oviedo, Spain

Abstract

This technical report is a support document for the article Efficient and Scalable Platform for
Java Source Code Analysis using Overlaid Graph Representations, written by Oscar Rodriguez-
Prieto, Alan Mycroft and Francisco Ortin.

Keywords: Code analysis, graph database, coding guidelines, declarative query language,
program representation, Cypher, Java, Neo4j.

1. Introduction

ProgQuery is a platform to allow users to write their own Java program analyses in a declarative
fashion, using graph representations [1]. We modify the Java compiler to compute seven syntactic
and semantic representations, and store them in a Neo4j graph database [2]. Such representations
are overlaid, meaning that syntactic and semantic nodes of the different graphs are interconnected
to allow combining different kinds of information in the queries/analyses. In this technical report,
we describe the ontology defined to represent syntactic and semantic information of Java programs.
For more information about ProgQuery, please check [1].

Next section describes the nodes (concepts) used in the seven representations defined in Prog-
Query. Then, we detail the concepts, relationships and properties (attributes) of each representa-
tion.

2. Nodes

Figure 1 shows the nodes used for the seven graph representations described in [1]. We use
the multi-label capability of Neo4j to assign multiple types (subtyping polymorphism) to a single
node. For example, a METHOD INVOCATION node is also classified as CALL, EXPRESSION, AST NODE and
PQ NODE. All the nodes in ProgQuery hold the PQ NODE label. Nodes belonging to AST, Control
Flow Graph, Program Dependency Graph, Package Graph and Type Graph are labeled with,
respectively, AST NODE, CFG NODE, PDG NODE, PACKAGE NODE and TYPE NODE. The Call Graph and Class
Dependency Graph representations define no new nodes (only relationships).

∗Corresponding author
Email addresses: rodriguezoscar@uniovi.es (Oscar Rodriguez-Prieto), ortin@lsi.uniovi.es (Francisco

Ortin)
URL: http://www.reflection.uniovi.es/ortin (Francisco Ortin)

Technical Report February 25, 2020

ANNOTATION
COMPILATION_UNIT
ENUM_ELEMENT
IMPORT
TYPE_PARAM

AST_NODE

PQ_NODE

EXPRESSION

ASSIGNMENT

COMPOUND_ASSIGNMENT

BINARY_OPERATION

CONDITIONAL_EXPRESSION

NEW_ARRAY

TYPE_CAST

INSTANCE_OF

LAMBDA_EXPRESSION

LITERAL

MEMBER_REFERENCE

UNARY_OPERATION

CALL

METHOD_INVOCATION

NEW_INSTANCE

LVALUE

ARRAY_ACCESS

IDENTIFIER

MEMBER_SELECTION

DEFINITION

TYPE_DEFINITION

CLASS_DEF

CALLABLE_DEF

INTERFACE_DEF

ENUM_DEF

CONSTRUCTOR_DEF

VARIABLE_DEF

METHOD_DEF

ATTR_DEF

LOCAL_DEF

PARAMETER_DEF

AST_TYPE

ANNOTATED_TYPE

STATEMENT

ASSERT_STATEMENT

BLOCK

FINALLY_BLOCK

BREAK_STATEMENT

CASE_STATEMENT

CATCH_BLOCK

CONTINUE_STATEMENT

DO_WHILE_LOOP

EMPTY_STATEMENT

FOREACH_LOOP

FOR_LOOP

IF_STATEMENT

LABELED_STATEMENT

RETURN_STATEMENT

SWITCH_STATEMENT

EXPRESSION_STATEMENT

SYNCHRONIZED_BLOCK

THROW_STATEMENT

TRY_STATEMENT

WHILE_LOOP

CFG_NODE

CFG_NORMAL_END
CFG_ENTRY

CFG_EXCEPTIONAL_END

CFG_LAST_STATEMENT_IN_FINALLY

TYPE_NODE

NULL_TYPE

CALLABLE_TYPE

TYPE_VARIABLE

VOID_TYPE

PACKAGE_TYPE

PRIMITIVE_TYPE

INTERSECTION_TYPE

UNION_TYPE

GENERIC_TYPE

WILDCARD_TYPE

PDG_NODE

THIS_REF
INITIALIZATION

PACKAGE_NODE

PACKAGE
PROGRAM

LOCAL_VAR_DEF

ARRAY_TYPE

Figure 1: Labels defined to categorize the nodes used for the different Java program representations.

3. Abstract Syntax Tree

The syntactic information is represented with the AST. This is the main representation in
ProgQuery. It provides 67 labels for 56 nodes (Figure 1), 100 relationships and 26 properties.
They define common syntax elements of an object-oriented language [3].

3.1. Nodes

Root nodes in Figure 1 represent concrete nodes of the AST. When a program is represented,
all the particular nodes in the AST are instances of these concrete labels. The rest of labels in
Figure 1 are used to generalize/classify nodes. These are the labels defined to represent ASTs:

� ANNOTATION: concrete node type that represents any Java annotation.

� COMPILATION UNIT: Java files, which are the root nodes in ASTs (see [1]).

� ENUM ELEMENT: elements included in an enum definition.

� IMPORT: import clauses used in the Java source code.

� TYPE PARAM: type parameters used when a generic type, method or constructor is defined.

� EXPRESSION: this label is a generalization of all entities representing expressions in the AST.
These are expressions defined:

– ASSIGNMENT: non-compound assignment expressions.

– COMPOUND ASSIGNMENT: Java compound assignment expressions (e.g., +=, *=, &= and >>=).

– BINARY OPERATION: binary arithmetic, logical, bitwise and relational expressions.

2

– CONDITIONAL EXPRESSION: ternary conditional expression(expr1 ? expr2 : expr3).

– NEW ARRAY: array creation expression.

– TYPE CAST: cast expression (explicit type conversion).

– INSTANCE OF: expressions created with the instanceof operator.

– LAMBDA EXPRESSION: represents lambda expressions, including its parameters and body.

– LITERAL: Java literals for built-in types, String and null.

– MEMBER REFERENCE: method reference expression created with the :: operator.

– UNARY OPERATION: unary arithmetic, logical and bitwise expressions.

– CALL: generalization of method invocation and object creation expressions:

* METHOD INVOCATION: method invocation expressions.

* NEW INSTANCE: object creation by calling the constructor via new.

– LVALUE: generalization of lvalue expressions; i.e., those Java expressions that could be
placed as left-hand side of assignments:

* ARRAY ACCESS: array indexing expression, used to get one element collected by an
array through the [] operator.

* IDENTIFIER: variable, method and type expressions; this node also has the AST TYPE

label (see Figure 1).

* MEMBER SELECTION: represents expressions created with the . operator: field (obj.-
field) access, method invocation (obj.m()), full name qualifiers (java.util.List)
and nested type access (new OuterClass.InnerClass()). This node also has the
AST TYPE label (see Figure 1).

� DEFINITION: generalization of all the elements that can be defined, i.e. types (classes, inter-
faces and enumerations), methods, constructors and variables (attributes, parameters and
local variables):

– TYPE DEFINITION: generalization to group class, enumeration and interface definitions:

* CLASS DEF: class definition.

* INTERFACE DEF: interface definition.

* ENUM DEF: definition of enumeration.

– CALLABLE DEF: generalization of method and constructor definitions:

* CONSTRUCTOR DEF: constructor definition.

* METHOD DEF: method definition.

– VARIABLE DEF: generalization of field, parameter and local variable definitions:

* ATTR DEF: attribute (field) definition.

* LOCAL DEF: generalization of variables defined in a local scope:

· PARAMETER DEF: definition of a function formal parameter.

· LOCAL VAR DEF: local variable definition; this node also has the STATEMENT label
(see Figure 1).

3

� AST TYPE: generalization of types that could be writeN in the source code (and hence belong
to the AST):

– ANNOTATED TYPE: type that has been added one or more annotations.

– ARRAY TYPE: represents an array type .

– PRIMITIVE TYPE: primitive/built-in Java type.

– INTERSECTION TYPE: intersection type created with the & type constructor.

– UNION TYPE: intersection type created with the | type constructor, used to catch excep-
tions of different types.

– GENERIC TYPE: an instantiated generic type; i.e, Type<typelist>.

– WILDCARD TYPE: Java wildcard type created with ? as a special type parameter.

� STATEMENT

– ASSERT STATEMENT: Java assert statements.

– BLOCK: a block is a sequence of statements between { and }.

– FINALLY BLOCK: the finally clause, including the statements in the block.

– BREAK STATEMENT: Java break statement, which might include a label.

– CASE STATEMENT: case conditions in a switch statement.

– CATCH BLOCK: the catch clause, including the statements in the block.

– CONTINUE STATEMENT: continue statement, which might include a label.

– DO WHILE LOOP: includes the condition and the block.

– EMPTY STATEMENT: when the programmer writes a single ; as a statement.

– FOREACH LOOP: extended for loop with for-each semantics.

– FOR LOOP: classical for loop.

– IF STATEMENT: includes the condition and the if and else blocks.

– LABELED STATEMENT: Java labeled statements.

– RETURN STATEMENT: has an optional expression to be returned.

– SWITCH STATEMENT: it holds the condition and a sequence of case statements.

– EXPRESSION STATEMENT: an expression converted into a statement; they may be simple
or compound assignments, unary increments and decrements, and calls.

– SYNCHRONIZED BLOCK: it holds the expression representing the monitor and the code/block
with mutual exclusion.

– THROW STATEMENT: encloses the expression to be thrown.

– TRY STATEMENT: collects the try, catch and finally blocks.

– WHILE LOOP: holds the expression condition and the loop body.

4

3.2. Relationships

These are the relationships defined for the AST (their domain, range and cardinality are defined
in Tables 1 and 2):

� ARRAYACCESS EXPR: relates an array access to its first child, an expression which type is array.

� ARRAYACCESS INDEX: relates an array access to its index expression.

� ASSIGNMENT LHS: relates an assignment to its left-hand side.

� ASSIGNMENT RHS: relates an assignment to its right-hand side.

� BINOP LHS: relates a binary operation to its left-hand side.

� BINOP RHS: relates a (non logical) binary operation to its right-hand side.

� BINOP COND RHS: relates a logical binary operation to its right-hand side (which may be not
computed).

� CAST ENCLOSES: relates a type cast to the enclosed expression.

� CAST TYPE: relates a type cast to the type of the coerced expression.

� COMPOUND ASSIGNMENT LHS: relates a compound assignment to its left-hand side.

� COMPOUND ASSIGNMENT RHS: relates a compound assignment to its right-hand side.

� CONDITIONAL EXPR CONDITION: relates a conditional expression (ternary operator) to its con-
dition.

� CONDITIONAL EXPR THEN: relates a conditional (ternary) expression to the expression evaluated
if the condition holds.

� CONDITIONAL EXPR ELSE: relates a conditional (ternary) expression to the expression evaluated
if the condition does not hold.

� INSTANCE OF EXPRESSION: relates an instanceof expression to its child expression.

� INSTANCE OF TYPE: relates an instanceof expression to its child node representing the type.

� LAMBDA EXPRESSION BODY: relates a lambda expression to its body.

� LAMBDA EXPRESSION PARAMETERS: relates a lambda expression to its parameters, if any.

� MEMBER REFERENCE EXPRESSION: relates a member reference to the first operand (expression).

� MEMBER REFERENCE TYPE ARGUMENTS: relates a member reference to its type arguments, if any.

� MEMBER SELECT EXPR: relates a member selection to the first operand (expression).

� METHODINVOCATION ARGUMENTS: relates a method invocation to its arguments, if any.

� METHODINVOCATION METHOD SELECT: in obj.method(args), relates such method invocation to
obj.method.

5

� METHODINVOCATION TYPE ARGUMENTS: relates a method invocation to its type arguments, if any.

� NEW CLASS ARGUMENTS: relates a new instance expression to its arguments, if any.

� NEW CLASS BODY: relates a new instance expression to the class body defined when an anony-
mous class is being instantiated, if so.

� NEW CLASS TYPE ARGUMENTS: relates a new instance expression to its type arguments, if any.

� NEW ARRAY DIMENSION: relates a new array expression to its declared dimensions, if any.

� NEW ARRAY INIT: relates a new array expression to its initializer expressions (i.e., between {
and }) when an explicit initialization is included.

� NEW ARRAY TYPE: relates a new array expression to its declared type.

� NEWCLASS ENCLOSING EXPRESSION: relates a new class expression to its enclosing expression (i.e.,
for nested inner classes, expression is the enclosing expression of expression.new Class(args)).

� UNARY ENCLOSES: relates a unary operation to its child expression.

� NEWCLASS IDENTIFIER: relates a new class expression to its class identifier referencing the type
to be instantiated.

� ASSERT CONDITION: relates an assert statement to its condition.

� ASSERT DETAIL: relates an assert statement to its message.

� CATCH ENCLOSES BLOCK: relates a catch statement to its block.

� CATCH PARAM: relates a catch statement to its parameter.

� WHILE CONDITION: relates a while statement to its condition.

� DO WHILE CONDITION: relates a do-while statement to its condition.

� FOREACH EXPR: relates a for-each statement to its iteration expression.

� FOREACH STATEMENT: relates a for-each statement to its enclosed statement or block.

� FOREACH VAR: relates a for-each statement to its iteration variable.

� FORLOOP CONDITION: relates a for statement to its condition.

� FORLOOP INIT: relates a for statement to its initialization statements, if any.

� FORLOOP STATEMENT: relates a for statement to its enclosed statement or block.

� FORLOOP UPDATE: relates a for statement to its update/increment statements, if any.

� CASE EXPR: relates a case statement to its expression.

� CASE STATEMENTS: relates a case statement to its statements, if any.

� IF CONDITION: relates an if statement to its condition.

6

� IF ELSE: relates an if statement to its else part, if any.

� IF THEN: relates an if statement to its then part.

� SWITCH ENCLOSES CASE: relates a switch statement to its cases, if any.

� SWITCH EXPR: relates a switch statement to its comparison expression.

� SYNCHRONIZED ENCLOSES BLOCK: relates a synchronized statement to its enclosed block.

� SYNCHRONIZED EXPR: relates a synchronized statement to its expression.

� THROW EXPR: relates a throw statement to the expression to be thrown.

� TRY BLOCK: relates a try statement to its try block.

� TRY CATCH: relates a try statement to its catch statements, if any.

� TRY FINALLY: relates a try statement to its finally block, if any.

� TRY RESOURCES: relates a try statement to its java.lang.AutoCloseable resources, if any.

� LABELED STMT ENCLOSES: relates a labeled statement to its statement.

� RETURN EXPR: relates a return statement to the returned expression.

� ENCLOSES: relates a block to the statements it contains, if any.

� ENCLOSES EXPR: when an expression is represented as a statement, this relationship connects
the statement to the expression.

� WHILE STATEMENT: relates a while loop to the enclosed statement or block.

� DO WHILE STATEMENT: relates a do-while loop to the enclosed statement or block.

� IMPORTS: relates a compilation unit to its imports, if any.

� HAS TYPE DEF: relates a compilation unit to each type definition included, if any.

� HAS ANNOTATIONS: relates a definition (type, callable or variable) or annotation type to its
annotations, if any.

� HAS ANNOTATIONS ARGUMENTS: relates an annotation to its arguments, if any.

� HAS ANNOTATION TYPE: relates an annotation to its annotation type.

� HAS EXTENDS CLAUSE: relates a class or interface definition to the extended types (in the
extends clause).

� HAS IMPLEMENTS CLAUSE: relates a class or enum definition to its implements clauses, if any.

� HAS CLASS TYPEPARAMETERS: relates a type definition to its declared type parameters, if any.

� DECLARES FIELD: relates a type definition to its declared fields, if any.

7

� DECLARES METHOD: relates a type definition to its declared methods, if any.

� DECLARES CONSTRUCTOR: relates a class or enum definition to its declared constructors, if any.

� HAS ENUM ELEMENT: relates an enum definition to its declared elements, if any.

� UNDERLYING TYPE: relates an annotated type to the underlying type being annotated.

� HAS DEFAULT VALUE: relates a method definition to its default value, if any.

� CALLABLE HAS BODY: relates a callable definition to its declared body, if any.

� CALLABLE HAS PARAMETER: relates a callable definition to its declared parameters, if any.

� CALLABLE RETURN TYPE: relates a callable definition to its declared return type.

� CALLABLE HAS THROWS: relates a callable definition to its throws clauses.

� CALLABLE HAS TYPEPARAMETERS: relates a callable definition to its declared type parameters, if
any.

� HAS RECEIVER PARAMETER: relates a callable definition to its receiver parameter, if any.

� HAS STATIC INIT: relates a class or enum definition to its static initializer, if any.

� HAS VARIABLEDECL INIT: relates a variable definition to its initialization, if any.

� HAS VARIABLEDECL TYPE: relates a variable definition to its declared type.

� INITIALIZATION EXPR: relates an initialization to the initializer expression.

� INTERSECTION COMPOSED OF: relates an intersection type to the types comprising the intersec-
tion type.

� PARAMETERIZED TYPE: relates a generic type to the type to parameterize.

� GENERIC TYPE ARGUMENT: relates a generic type to its type arguments.

� TYPEPARAMETER EXTENDS: relates a type parameter to its extends bounds, if any.

� UNION TYPE ALTERNATIVE: relates a union type to its types comprising the union type.

� WILCARD BOUND: relates a wildcard type to its type bound.

ProgQuery also implements the following user-defined procedures:

� database.procedures.getEnclosingClass: relates a statement or variable definition to its
enclosing class. Domain: STATEMENT ∪ VARIABLE DEF, range: TYPE DEFINITION, cardinality: 1.

� database.procedures.getEnclosingMethod: relates a statement or parameter to the method
or constructor in which they are enclosed. Domain: STATEMENT ∪ PARAMETER DEF, range:
CALLABLE DEF, cardinality: 1.

8

Relationship Domain Range Cardinality

ARRAYACCESS EXPR ARRAY ACCESS EXPRESSION 1

ARRAYACCESS INDEX ARRAY ACCESS EXPRESSION 1

ASSIGNMENT LHS ASSIGNMENT LVALUE 1

ASSIGNMENT RHS ASSIGNMENT EXPRESSION 1

BINOP LHS BINARY OPERATION EXPRESSION 1

BINOP RHS BINARY OPERATION EXPRESSION 0..1

BINOP COND RHS BINARY OPERATION EXPRESSION 0..1

CAST ENCLOSES TYPE CAST EXPRESSION 1

CAST TYPE TYPE CAST AST TYPE 1

COMPOUND ASSIGNMENT LHS COMPOUND ASSIGNMENT LVALUE 1

COMPOUND ASSIGNMENT RHS COMPOUND ASSIGNMENT EXPRESSION 1

CONDITIONAL EXPR CONDITION CONDITIONAL EXPRESSION EXPRESSION 1

CONDITIONAL EXPR THEN CONDITIONAL EXPRESSION EXPRESSION 1

CONDITIONAL EXPR ELSE CONDITIONAL EXPRESSION EXPRESSION 1

INSTANCE OF EXPRESSION INSTANCE OF EXPRESSION 1

INSTANCE OF TYPE INSTANCE OF AST TYPE − PRIMITIVE TYPE 1

LAMBDA EXPRESSION BODY LAMBDA EXPRESSION EXPRESSION ∪ BLOCK 1

LAMBDA EXPRESSION PARAMETERS LAMBDA EXPRESSION PARAMETER DEF 0..*

MEMBER REFERENCE EXPRESSION MEMBER REFERENCE EXPRESSION 1

MEMBER REFERENCE TYPE ARGUMENTS MEMBER REFERENCE AST TYPE 0..*

MEMBER SELECT EXPR MEMBER SELECTION EXPRESSION 1

METHODINVOCATION ARGUMENTS METHOD INVOCATION EXPRESSION 0..*

METHODINVOCATION METHOD SELECT METHOD INVOCATION EXPRESSION 1

METHODINVOCATION TYPE ARGUMENTS METHOD INVOCATION AST TYPE 0..*

NEW CLASS ARGUMENTS NEW INSTANCE EXPRESSION 0..*

NEW CLASS BODY NEW INSTANCE EXPRESSION 0..1

NEW CLASS TYPE ARGUMENTS NEW INSTANCE AST TYPE 0..*

NEW ARRAY DIMENSION NEW ARRAY EXPRESSION 0..*

NEW ARRAY INIT NEW ARRAY EXPRESSION 0..*

NEW ARRAY TYPE NEW ARRAY AST TYPE 1

NEWCLASS ENCLOSING EXPRESSION NEW CLASS IDENTIFIER ∪ MEMBER SELECTION 0..1

NEWCLASS IDENTIFIER NEW CLASS
IDENTIFIER ∪ MEMBER SELECTION ∪
ANNOTATED TYPE ∪ GENERIC TYPE 1

UNARY ENCLOSES UNARY OPERATION EXPRESSION 1

ASSERT CONDITION ASSERT STATEMENT EXPRESSION 1

ASSERT DETAIL ASSERT STATEMENT EXPRESSION 0..1

CATCH ENCLOSES BLOCK CATCH BLOCK BLOCK 1

CATCH PARAM CATCH BLOCK LOCAL VAR DEF 1

WHILE CONDITION WHILE LOOP EXPRESSION 1

DO WHILE CONDITION DO WHILE LOOP EXPRESSION 1

FOREACH EXPR FOREACH LOOP EXPRESSION 1

FOREACH STATEMENT FOREACH LOOP STATEMENT 1

FOREACH VAR FOREACH LOOP LOCAL VAR DEF 1

FORLOOP CONDITION FOR LOOP EXPRESSION 0..1

FORLOOP INIT FOR LOOP EXPRESSION STATEMENT ∪ LOCAL VAR DEF 0..*

FORLOOP STATEMENT FOR LOOP STATEMENT 1

FORLOOP UPDATE FOR LOOP EXPRESSION STATEMENT 0..*

CASE EXPR CASE STATEMENT

LITERAL ∪ IDENTIFIER ∪ MEMBER SELECTION

∪ BINARY OPERATION ∪
CONDITIONAL EXPRESSION ∪ TYPE CAST

0..1

CASE STATEMENTS CASE STATEMENT STATEMENT 0..*

IF CONDITION IF STATEMENT EXPRESSION 1

IF ELSE IF STATEMENT STATEMENT 0..1

IF THEN IF STATEMENT STATEMENT 1

Table 1: Relationships defined for ASTs (part 1).

9

Relationship Domain Range Cardinality

SWITCH ENCLOSES CASE SWITCH STATEMENT CASE STATEMENT 0..*

SWITCH EXPR SWITCH STATEMENT EXPRESSION 1

SYNCHRONIZED BLOCK SYNCHRONIZED STATEMENT BLOCK 1

SYNCHRONIZED EXPR SYNCHRONIZED STATEMENT EXPRESSION 1

THROW EXPR THROW STATEMENT EXPRESSION 1

TRY BLOCK TRY STATEMENT BLOCK 1

TRY CATCH TRY STATEMENT CATCH BLOCK 0..*

TRY FINALLY TRY STATEMENT FINALLY BLOCK 0..1

TRY RESOURCES TRY STATEMENT LOCAL VAR DEF 0..*

LABELED STMT ENCLOSES LABELED STATEMENT STATEMENT 1

RETURN EXPR RETURN STATEMENT EXPRESSION 1

ENCLOSES BLOCK STATEMENT 0..*

ENCLOSES EXPR EXPRESSION STATEMENT EXPRESSION 1

WHILE STATEMENT WHILE LOOP STATEMENT 1

DO WHILE STATEMENT DO WHILE LOOP STATEMENT 1

IMPORTS COMPILATION UNIT IMPORT 0..*

HAS TYPE DEF COMPILATION UNIT TYPE DEFINITION 0..*

HAS ANNOTATIONS
DEFINITION ∪ TYPE PARAM ∪

ANNOTATED TYPE ANNOTATION 0..*

HAS ANNOTATIONS ARGUMENTS ANNOTATION

LITERAL ∪ IDENTIFIER ∪ MEMBER SELECTION

∪ BINARY OPERATION ∪
CONDITIONAL EXPRESSION ∪ TYPE CAST

0..*

HAS ANNOTATION TYPE ANNOTATION IDENTIFIER ∪ MEMBER SELECTION 1

HAS EXTENDS CLAUSE CLASS DEF ∪ INTERFACE DEF IDENTIFIER ∪ MEMBER SELECTION 0..*

HAS IMPLEMENTS CLAUSE CLASS DEF ∪ ENUM DEF IDENTIFIER ∪ MEMBER SELECTION 0..*

HAS CLASS TYPEPARAMETERS TYPE DEFINITION AST TYPE 0..*

DECLARES FIELD TYPE DEFINITION ATTR DEF 0..*

DECLARES METHOD TYPE DEFINITION METHOD DEF 0..*

DECLARES CONSTRUCTOR CLASS DEF ∪ ENUM DEF CONSTRUCTOR DEF 0..*

HAS ENUM ELEMENT ENUM DEF ENUM ELEMENT 0..*

UNDERLYING TYPE ANNOTATED TYPE AST TYPE 1

HAS DEFAULT VALUE METHOD DEF

LITERAL ∪ IDENTIFIER ∪ MEMBER SELECTION

∪ BINARY OPERATION ∪
CONDITIONAL EXPRESSION ∪ TYPE CAST

0..1

CALLABLE HAS BODY CALLABLE DEF BLOCK 0..1

CALLABLE HAS PARAMETER CALLABLE DEF PARAMETER DEF 0..*

CALLABLE RETURN TYPE CALLABLE DEF AST TYPE 1

CALLABLE HAS THROWS CALLABLE DEF IDENTIFIER ∪ MEMBER SELECTION 0..*

CALLABLE HAS TYPEPARAMETERS CALLABLE DEF AST TYPE 0..*

HAS RECEIVER PARAMETER CALLABLE DEF PARAMETER DEF − RECEIVER PARAMETER 0..1

HAS STATIC INIT CLASS DEF ∪ ENUM DEF BLOCK 0..1

HAS VARIABLEDECL INIT VARIABLE DEF INITIALIZATION 0..1

HAS VARIABLEDECL TYPE VARIABLE DEF AST TYPE 1

INITIALIZATION EXPR INITIALIZATION EXPRESSION 1

INTERSECTION COMPOSED OF INTERSECTION TYPE AST TYPE 2..*

PARAMETERIZED TYPE GENERIC TYPE
IDENTIFIER ∪ MEMBER SELECTION ∪

ANNOTATED TYPE 1

GENERIC TYPE ARGUMENT GENERIC TYPE
AST TYPE − {PRIMITIVE TYPE,

INTERSECTION TYPE, UNION TYPE} 0..*

TYPEPARAMETER EXTENDS TYPE PARAM

AST TYPE − {PRIMITIVE TYPE, ARRAY TYPE,
WILDCARD TYPE, UNION TYPE,

INTERSECTION TYPE}
0..*

UNION TYPE ALTERNATIVE UNION TYPE
IDENTIFIER ∪ MEMBER SELECTION ∪

ANNOTATED TYPE 2..*

WILCARD BOUND WILDCARD TYPE

AST TYPE − {PRIMITIVE TYPE,
INTERSECTION TYPE, UNION TYPE,

WILDCARD TYPE}
0..1

Table 2: Relatioships defined for ASTs (part 2).

10

� database.procedures.getEnclMethodFromExpr: relates expressions to the method or con-
structor containing the statement in which they are enclosed. Domain:EXPRESSION, range:
CALLABLE DEF, cardinality: 0..1.

� database.procedures.getEnclosingStmt: relates expressions to the statement in which they
are enclosed; attribute initialization expressions are related to their attribute definition.
Domain: EXPRESSION, range: STATEMENT ∪ ATTR DEF, cardinality: 1.

3.3. Properties

The following properties were defined (detailed in Table 3):

� lineNumber: the line number of this node of the AST.

� column: column number of this node of the AST.

� position: position of this node in the AST nodes list.

� isDeclared: holds whether a specific AST element (or package) is declared in the project.

� isAbstract: holds if a class, interface or method is declared as abstract.

� isNative: holds if method is declared as native.

� isStatic: holds if an AST element is declared as static.

� isFinal: holds if an AST element is declared as final.

� isStrictfp: holds if a method is declared as strictfp.

� isSynchronized: holds if a method is declared as synchronized.

� isTransient: holds if a field is declared as transient.

� isVolatile: holds if a field is declared as volatile.

� accessLevel: represents the access level of a type, callable or attribute definition.

� name: string holding the name for identifier, variable and method definition, type parameter
and package nodes.

� memberName: string holding the name of the accessed member.

� completeName: for a given method/constructor, a string with the format java.lang.Object-

:equals.

� fullyQualifiedName: for a given method/constructor, a string with the format java.lang-

.Object:equals(java.lang.Object).

� simpleName: string holding the simple name of types.

� packageName: string holding the package name of each compilation unit.

� fileName: string holding the path and file name of each compilation unit.

11

� qualifiedIdentifier: string representing the package or class to be imported.

� typetag: string representing the type of literal.

� label: string holding the name of the label associated to a break or continue statement.

� operator: operator of common expressions, represented as a string.

� argumentIndex: integer value representing the index of an argument among all the arguments
in the given method.

� paramIndex: Integer value representing the index of a parameter among all the parameters
in the given method.

4. Control Flow Graph

4.1. Nodes

These are the nodes of the CFG:

� CFG NORMAL END: endpoint of the control flow that represents the normal completion of the
method/constructor execution.

� CFG ENTRY: starting point of the control flow connected to the first statement of the method/constructor.

� CFG EXCEPTIONAL END: endpoint of the control flow; it represents the abrupt completion of the
method/constructor execution caused by an exception.

� CFG LAST STATEMENT IN FINALLY: artificial statement created to model the statement just be-
fore exiting the finally block.

4.2. Relationships

We now describe the relationships of CFG. Table 4 defines their domain (source node), range
(target node) and cardinality.

� CFG ENTRIES: relates a callable definition to the entry point of its control flow.

� CFG END OF: connects the endpoint of the control flow to the method/constructor definition
that creates the flow path.

� CFG FINALLY TO LAST STMT: relates a finally block to an artificial statement representing the
flow just before exiting the finally block.

� CFG NEXT STATEMENT: connects one statement with the following one, when no jump exists.

� CFG NEXT STATEMENT IF TRUE: relates a statement that bifurcates the control flow to the next
one, when the condition holds.

� CFG NEXT STATEMENT IF FALSE: relates a statement that bifurcates the control flow to the next
one, when the condition does not hold.

12

Property Type Domain Value-Type Cardinality

lineNumber Node AST NODE Integer[1, Inf) 1

column Node AST NODE Integer[1, Inf) 1

position Node AST NODE Integer[1, Inf) 1

isDeclared Node
PACKAGE ∪ TYPE DEFINITION ∪ CALLABLE DEF ∪

ATTR DEF Boolean 1

isAbstract Node CLASS DEF ∪ INTERFACE DEF ∪ METHOD DEF Boolean 1

isNative Node METHOD DEF Boolean 1

isStatic Node
METHOD DEF ∪ TYPE DEFINITION ∪ BLOCK ∪ IMPORT

∪ ATTR DEF Boolean 1

isFinal Node METHOD DEF ∪ TYPE DEFINITION ∪ VARIABLE DEF Boolean 1

isStrictfp Node METHOD DEF Boolean 1

isSynchronized Node METHOD DEF Boolean 1

isTransient Node ATTR DEF Boolean 1

isVolatile Node ATTR DEF Boolean 1

accessLevel Node TYPE DEFINITION ∪ CALLABLE DEF ∪ ATTR DEF
{ public, protected, package,

private} 1

name Node

CALLABLE DEF ∪ IDENTIFIER ∪ TYPE PARAM ∪
VARIABLE DEF ∪ LABELED STATEMENT ∪

MEMBER REFERENCE ∪ PACKAGE
String 1

memberName Node MEMBER SELECTION String 1

completeName Node CALLABLE DEF String 1

fullyQualifiedName Node
TYPE DEFINITION ∪ ARRAY TYPE ∪ CALLABLE TYPE ∪

PRIMITIVE TYPE ∪ UNION TYPE ∪ CALLABLE DEF String 1

simpleName Node
TYPE DEFINITION ∪ ARRAY TYPE ∪ CALLABLE TYPE ∪

PRIMITIVE TYPE ∪ UNION TYPE String 1

packageName Node COMPILATION UNIT String 1

fileName Node COMPILATION UNIT String 1

qualifiedIdentifier Node IMPORT String 1

typetag Node LITERAL

{INT LITERAL, FLOAT LITERAL,
STRING LITERAL, NULL LITERAL,
CHAR LITERAL, DOUBLE LITERAL,

LONG LITERAL}
1

label Node BREAK STATEMENT ∪ CONTINUE STATEMENT String 1

operator Node
BINARY OPERATION ∪ UNARY OPERATION ∪

COMPOUND ASSIGNMENT
{PLUS, MINUS, DIVIDE, EQUAL TO,

PREFIX INCREMENT. . .} 1

argumentIndex Node

METHODINVOCATION ARGUMENTS ∪
METHODINVOCATION TYPE ARGUMENTS ∪

NEW CLASS ARGUMENTS ∪ NEW CLASS TYPE ARGUMENTS

∪ MEMBER REFERENCE TYPE ARGUMENTS ∪
HAS ANNOTATIONS ARGUMENTS ∪

GENERIC TYPE ARGUMENTS

Integer 1

paramIndex Node

HAS METHODDECL PARAMETERS ∪
LAMBDA EXPRESSION PARAMETERS ∪

HAS CLASS TYPEPARAMETERS ∪
HAS METHODDECL PARAMETERS ∪
HAS METHODDECL TYPEPARAMETERS

Integer 1

Table 3: Properties defined for ASTs.

13

� CFG FOR EACH HAS NEXT: relates for-each statements to the first statement to be executed if
there is any element to iterate.

� CFG FOR EACH NO MORE ELEMENTS: relates for-each statements to the statement outside the loop
to be executed if there are no more elements to iterate.

� CFG SWITCH CASE IS EQUAL TO: relates a switch statement to the statement to be executed if
a case expression is matched.

� CFG SWITCH DEFAULT CASE: relates a switch statement to the statement to be executed if no
case expression is matched.

� CFG AFTER FINALLY PREVIOUS BREAK: the last statement in a finally block is connected to the
statement to be executed in case the try block contains a break statement.

� CFG AFTER FINALLY PREVIOUS CONTINUE: the last statement in a finally block is connected to
the statement to be executed in case the try block contains a continue statement.

� CFG NO EXCEPTION: relates the last statement in a finally block to the statement to be exe-
cuted if no exceptions are thrown.

� CFG IF THERE IS UNCAUGHT EXCEPTION: relates a catch statement or the last statement in a
finally block to the statement to be executed if a thrown exception is not caught.

� CFG CAUGHT EXCEPTION: relates a catch statement to its local variable (between (and)) if,
considering the hierarchical type information, the exception could be caught.

� CFG MAY THROW: relates a statement that may throw an exception to the statement to be
executed if so.

� CFG THROWS: relates a throw statement to the statement to be executed after the exception is
thrown.

ProgQuery provides the following user-defined procedures:

� database.procedures.getAnySucc: relates a statement or control flow node to its successors,
including itself. Domain: CFG NODE ∪ STATEMENT, range: CFG NODE ∪ STATEMENT, cardinality:
1..*.

� database.procedures.getAnySuccNotItself: relates a statement or control flow node to its
possible successors, not including itself. Domain: CFG NODE ∪ STATEMENT, range: CFG NODE ∪
STATEMENT, cardinality: 0..*.

4.3. Properties

These are the properties of the CFG nodes and relationships (see details in Table 5):

� mustBeExecuted: holds whether a statement is unconditionally executed regardless the exe-
cution path.

� exceptionType: string holding the fully qualified name of the exception type to be thrown.

14

Relationship Domain Range Cardinality

CFG ENTRIES CALLABLE DEF CFG ENTRY 0..1

CFG END OF CFG NORMAL END ∪ CFG EXCEPTIONAL END CALLABLE DEF 1

CFG FINALLY TO LAST STMT FINALLY BLOCK CFG LAST STATEMENT IN FINALLY 1

CFG NEXT STATEMENT STATEMENT CFG NODE ∪ STATEMENT 0..1

CFG NEXT STATEMENT IF TRUE
ASSERT STATEMENT ∪ DO WHILE LOOP ∪

FOR LOOP ∪ IF STATEMENT ∪ WHILE LOOP CFG NODE ∪ STATEMENT 1

CFG NEXT STATEMENT IF FALSE
DO WHILE LOOP ∪ FOR LOOP ∪
IF STATEMENT ∪ WHILE LOOP CFG NODE ∪ STATEMENT 1

CFG FOR EACH HAS NEXT FOR EACH LOOP STATEMENT 1

CFG FOR EACH NO MORE ELEMENTS FOR EACH LOOP CFG NODE ∪ STATEMENT 1

CFG SWITCH CASE IS EQUAL TO SWITCH STATEMENT CFG NODE ∪ STATEMENT 0..*

CFG SWITCH DEFAULT CASE SWITCH STATEMENT CFG NODE ∪ STATEMENT 0..1

CFG AFTER FINALLY PREVIOUS BREAK LAST STATEMENT IN FINALLY CFG NODE ∪ STATEMENT 0..1

CFG AFTER FINALLY PREVIOUS CONTINUE LAST STATEMENT IN FINALLY STATEMENT 0..1

CFG NO EXCEPTION LAST STATEMENT IN FINALLY CFG NODE ∪ STATEMENT 1

CFG IF THERE IS UNCAUGHT EXCEPTION
CATCH BLOCK ∪

LAST STATEMENT IN FINALLY
EXCEPTIONAL END ∪ CATCH BLOCK ∪
FINALLY BLOCK ∪ LOCAL VAR DEF 0..1

CFG CAUGHT EXCEPTION CATCH BLOCK LOCAL VAR DEF 0..1

CFG MAY THROW STATEMENT
EXCEPTIONAL END ∪ CATCH BLOCK ∪
FINALLY BLOCK ∪ LOCAL VAR DEF 0..1

CFG THROWS THROW STATEMENT
EXCEPTIONAL END ∪ CATCH BLOCK ∪
FINALLY BLOCK ∪ LOCAL VAR DEF 1

Table 4: Relationships defined for CFGs.

� methodName: string holding the fully qualified name of the method that may raise the checked
exception, if any.

� label: string holding the label name (if any) of the break/continue statement that causes
the control-flow jump.

� caseIndex: integer value representing the index of the case (among all the other cases
contained in the switch) to be executed.

� caseValue: string representing the expression of the case to be executed.

Property Type Domain Value-Type Cardinality

mustBeExecuted Node STATEMENT Boolean 1

exceptionType Edge
CFG THROWS ∪ CFG MAY THROW ∪ CFG CAUGHT EXCEPTION ∪

CFG IF THERE IS UNCAUGHT EXCEPTION String 1

methodName Edge CFG MAY THROW String 0..1

label Edge AFTER FINALLY PREVIOUS CONTINUE ∪ AFTER FINALLY PREVIOUS BREAK String 0..1

caseValue Edge CFG SWITCH CASE IS EQUAL TO String 1

caseIndex Edge CFG SWITCH CASE IS EQUAL TO ∪ CFG SWITCH DEFAULT CASE Integer 1

Table 5: Properties defined for CFGs.

15

Relationship Domain Range Cardinality

CALLS CALLABLE DEF CALL 0..*

HAS DEF CALL CALLABLE DEF 1

REFERS TO CALL CALLABLE DEF 0..1

MAY REFER TO CALL CALLABLE DEF 0..*

Table 6: Relationships defined for Call Graphs.

5. Call Graph

5.1. Nodes

No new nodes are defined for the Call Graph.

5.2. Relationships

These are the Call Graph relationships (detailed in Table 6):

� CALLS: relates a callable definition to the method/constructor invocations in its body.

� HAS DEF: connects invocations to the static definition of the method/constructor invoked.

� MAY REFER TO: when a method is overridden, this relationship connects the invocation to the
method definitions that may be called.

� REFERS TO: when only one method/constructor may be called, REFERS TO connects the call to
the definition to be invoked.

5.3. Properties

The only property defined is isInitializer for CALLABLE DEF nodes (one-cardinality and Boolean
value-type). It indicates whether a callable definition is an intializer; i.e., it is either a constructor
or a (private or package) method that is only called from another initializer.

6. Type Graph

6.1. Nodes

These are the nodes defined for Type Graphs:

� ARRAY TYPE: node representing an array type.

� TYPE DEFINITION: class, enumeration or interface definition.

� CALLABLE TYPE: type of any method or constructor.

� INTERSECTION TYPE: intersection of two or more types (i.e., Java & type constructor).

� VOID TYPE: node representing the void type.

� PACKAGE TYPE: type attached to an package reference expression (i.e. java.lang).

� NULL TYPE: node representing the type of null.

� PRIMITIVE TYPE: representation of any Java primitive type.

16

Relationship Domain Range Cardinality

IS SUBTYPE EXTENDS TYPE DEFINITION TYPE DEFINITION 0..*

IS SUBTYPE IMPLEMENTS CLASS DEF OR ENUM DEF INTERFACE DEF 0..*

ITS TYPE IS CALLABLE DEF ∪ EXPRESSION ∪ VARIABLE DEF TYPE NODE 1

INHERITS FIELD TYPE DEFINITION ATTR DEF 0..*

INHERITS METHOD TYPE DEFINITION METHOD DEF 0..*

OVERRIDES METHOD DEF METHOD DEF 0..1

ELEMENT TYPE ARRAY TYPE TYPE 1

RETURN TYPE CALLABLE TYPE TYPE 1

PARAM TYPE CALLABLE TYPE TYPE 0..*

THROWS TYPE CALLABLE TYPE TYPE 0..*

INSTANCE ARG TYPE CALLABLE TYPE TYPE 0..1

UPPER BOUND TYPE TYPE VAR TYPE 1

LOWER BOUND TYPE TYPE VAR TYPE 1

WILDCARD EXTENDS BOUND WILCARD TYPE TYPE 0..1

WILCARD SUPER BOUND WILCARD TYPE TYPE 0..1

Table 7: Relationships defined for Type Graphs.

� TYPE VARIABLE: type variables used with generic types.

� UNION TYPE: union of two or more types, used in catch blocks (i.e., Java | type constructor).

� GENERIC TYPE: a generic type that is parameterized with other types.

� WILDCARD TYPE: node representing a Java wildcard type (i.e., ?).

6.2. Relationships

The following relationships are defined for Type Graphs (Table 7):

� IS SUBTYPE EXTENDS: relates a type definition to its direct supertypes.

� IS SUBTYPE IMPLEMENTS: relates a class or enum definition to its direct super-interfaces.

� ITS TYPE IS: relates expressions, and variable and method/constructor definitions to their
type.

� INHERITS FIELD: relates type definitions to their (directly or indirectly) inherited fields, if
any.

� INHERITS METHOD: relates type definitions to their (directly or indirectly) inherited methods,
provided that they are not overridden.

� OVERRIDES: relates a method definition to the overridden method definition, if any.

� ELEMENT TYPE: relates an array type to the type of its elements.

� RETURN TYPE: relates a callable type to its return type.

� PARAM TYPE: relates a callable type to its parameter types, if any.

17

Property Type Domain Value-Type Cardinality

actualType Node
EXPRESSION ∪ CALLABLE DEF ∪

VARIABLE DEF String 1

typeKind Node
EXPRESSION ∪ CALLABLE DEF ∪

VARIABLE DEF

{ ARRAY, BOOLEAN, BYTE, CHAR, DECLARED, DOUBLE, EXECUTABLE,
FLOAT, INT, INTERSECTION, LONG, NULL, PACKAGE, SHORT,

TYPE VAR, VOID, UNION, WILDCARD }
1

typeBoundKind Node WILCARD TYPE { SUPER WILDCARD, EXTENDS WILDCARD, UNBOUNDED WILDCARD } 1

Table 8: Properties defined for Type Graphs.

� THROWS TYPE: connects a callable type to the exceptions in its throws clause, if any.

� INSTANCE ARG TYPE: relates a constructor type to the type to be instantiated.

� UPPER BOUND TYPE: given < T1 extends T2 >, this relationship connects T1 to T2.

� LOWER BOUND TYPE: given <? super T >, this relationship connects the type that the compiler
instantiates for ? to T .

� WILDCARD EXTENDS BOUND: relates a wildcard to the type included in its extends clause, if any
(e.g., ? extends Type).

� WILCARD SUPER BOUND: relates a wildcard to the type included in its super clause, if any (e.g.,
? super Type).

6.3. Properties

The following properties are defined (Table 8):

� actualType: string representing the type of an expression, callable or variable definition.

� typeKind: string representing a type generalization (Table 8).

� typeBoundKind: string describing the kind of bound of a wildcard type (Table 8).

7. Program Dependency Graph

7.1. Nodes

The following new nodes are defined for PDGs:

� THIS REF: represents the implicit object (this) in each type definition.

� INITIALIZATION: represents the initialization of variable (attribute, parameter or local vari-
able) definitions.

18

Relationship Domain Range Cardinality

USED BY VARIABLE DEF IDENTIFIER ∪ MEMBER SELECTION 0..*

MODIFIED BY VARIABLE DEF
ASSIGNMENT ∪ COMPOUND ASSIGNMENT ∪

UNARY OPERATION 0..*

STATE MODIFIED BY VARIABLE DEF ∪ THIS REF
ASSIGNMENT ∪ COMPOUND ASSIGNMENT ∪

UNARY OPERATION ∪ CALL ∪ CALLABLE DEFINITION 0..*

STATE MAY BE MODIFIED BY VARIABLE DEF ∪ THIS REF CALL ∪ CALLABLE DEFINITION 0..*

HAS THIS REFERENCE TYPE DEFINITION THIS REF 0..1

Table 9: Relationships defined for PDGs.

7.2. Relationships

Relationships defined for PDGs (Table 9):

� USED BY: relates a variable (field, parameter or local variable) definition to the expressions
where the variable is read, if any.

� MODIFIED BY: relates a variable definition to the expressions in which its value is modified.

� STATE MODIFIED BY: relates a variable definition or the implicit object (this) to the expressions
or callable definitions where its state is certainly mutated, if any.

� STATE MAY BE MODIFIED BY: relates a variable definition or the implicit object (this) to the
invocations or callable definitions where its state may be modified.

� HAS THIS REFERENCE: relates a type definition to the implicit object reference (this).

7.3. Properties

The property isOwnAccess is defined for the first four PDG relationships (0..1 cardinality and
Boolean value-type). It indicates whether an expression accesses a field of the implicit object
(this).

8. Class Dependency Graph

For CDGs, we define two relationships:

� USES TYPE DEF: connects two type definitions (declared in the project or not), represent-
ing that the source node depends on the target one. Therefore, its domain and range are
TYPE DEFINITION; its cardinality is 0..*.

� HAS INNER TYPE DEF: relates a compilation unit to the inner types defined inside it. Its domain,
range and cardinality are, respectively, COMPILATION UNIT, TYPE DEFINITION and 0..*.

9. Package Graph

9.1. Nodes

Two nodes are added for Package Graphs:

� PACKAGE: represents any package declaration defined or used in the program.

� PROGRAM: models the whole program, representing the graph root.

19

Relationship Domain Range Cardinality

PROGRAM DECLARES PACKAGE PROGRAM PACKAGE 1..*

PACKAGE HAS COMPILATION UNIT PACKAGE COMPILATION UNIT 1..*

DEPENDS ON PACKAGE PACKAGE PACKAGE 0..*

DEPENDS ON NON DECLARED PACKAGE PACKAGE PACKAGE 0..*

Table 10: Relationships defined for Package Graphs.

9.2. Relationships

What follows are the Package Graph relationships defined (details in Table 10):

� PROGRAM DECLARES PACKAGE: relates a program to the packages defined in it.

� PACKAGE HAS COMPILATION UNIT: relates a package to the compilation units it contains.

� DEPENDS ON PACKAGE: relates a package to the packages it depends on, if any; target packages
must be defined in the source code.

� DEPENDS ON NON DECLARED PACKAGE: relates a package to the packages it depends on, if any;
target packages are not defined in the source code.

9.3. Properties

Finally, the following two properties are included in Package Graphs:

� ID: node property defined for PROGRAM. It is a unique identifier for each program. Its value-
type is string and has cardinality of one.

� timestamp: a property of the PROGRAM node indicating when the program was inserted in the
database. Its value-type is date and has cardinality of one.

Acknowledgments

This work has been partially funded by the Spanish Department of Science, Innovation and Uni-
versities: project RTI2018-099235-B-I00. The authors have also received funds from the University
of Oviedo through its support to official research groups (GR-2011-0040).

References

[1] O. Rodriguez-Prieto, A. Mycroft, F. Ortin, An efficient and scalable platform for Java source
code analysis using overlaid graph representations, (to be published) (2020).

[2] O. Rodriguez-Prieto, F. Ortin, An efficient and scalable platform for Java source
code analysis using overlaid graph representations (support material website),
http://www.reflection.uniovi.es/bigcode/download/2020/ieee-access (2020).

[3] F. Ortin, D. Zapico, J. M. Cueva, Design Patterns for Teaching Type Checking in a
Compiler Construction Course, IEEE Transactions on Education 50 (3) (2007) 273–283.
doi:10.1109/TE.2007.901983.

20

