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Abstract

In software reverse engineering, decompilation is the process of re-
covering source code from binary files. Decompilers are used when it
is necessary to understand or analyze software for which the source
code is not available. Although existing decompilers commonly obtain
source code with the same behavior as the binaries, that source code is
usually hard to interpret and certainly differs from the original code
written by the programmer. This is because obtaining the original
source code from a binary file is an undecidable problem. The cause
is that the compiler discards high-level information in the translation
process, such as type information, that cannot be recovered in the
inverse process.

Existing decompilers associate binary patterns with high-level lan-
guage constructs so that binary code can be decompiled. However,
those binary patterns strongly depend on different variables such as
the compiler used to generate the binaries, target microprocessor and
operating system, and the compiler options. If the values of one of
these variables change, so do the binary patterns.

In the last years, machine learning and big data techniques have been
used to build tools aimed at improving software construction. The
“big code” research line is focused on using massive code-bases from
open source-code repositories to train predictive models. With this
approach, different software development tools have been built, such
as deobfuscators, automatic source-code translators, and error and
vulnerability detectors. This dissertation poses how to use these kinds
of techniques to tackle the undecidable problem of decompilation.

This dissertation proposes a method that, using supervised machine
learning, improves the high-level semantic information inferred by ex-
isting decompilers. First, it identifies the variables that influence the
models to be created. Different models are created, using the appro-
priate one depending on the values of the influencing variables. An-
other challenge faced by the method is the strong variability of binary
code. Together with a domain expert, supervised machine learning is
used to generalize the binary patterns and reduce the high dimension-
ality of the problem. Moreover, another iterative process is defined to
assist the expert in the creation of decompilation models for different
language constructs. Therefore, machine learning is not only used to
train the models, but also as a feature engineering method.

We design and implement a platform for the automatic creation of



datasets to build predictive models. It facilitates the instrumentation
of source code that helps to associate binary patterns and high-level
language constructs. Binary patterns are extracted and generalized
(as explained above) to reduce the number of features and improve the
performance of the models. The datasets are then created, identifying
the binary patterns for each instance (individual or row), and labeled
with the target high-level construct. The platform implementation
has been highly parallelized, obtaining 3.5 factors of speedup out of a
theoretical maximum value of 4 factors (in a 4-core multiprocessor).

Our models are trained with C source code, but it is not easy to
gather massive code-bases of standard C projects. For this reason,
we implemented Cnerator, a stochastic C source-code generator. It is
highly configurable, allowing the user to specify the probability distri-
butions of each language construct, properties of the generated code,
and post-processing modifications of the output programs. The syn-
thetic code generated is added to different real open-source projects.
In this way, we cover a high search space (synthetic code) and the
common C idioms used by real programmers.

Using all these elements, we apply the proposed method to decompile
the high-level type returned by functions. We first build the dataset
with synthetic and real programs. Then, we train 14 different models
using traditional machine learning algorithms. Those models are eval-
uated with 3 distinct methods and compared with the state-of-the-art
decompilers. All the models outperform the existing decompilers, for
the 3 evaluation methods. The best predictive model obtains a 79.1%
F1-score, whereas the best decompiler gets a 30% F1-score.

The dataset created is also used to document the binary patterns used
to predict the high-level return type. We create association rules that
correlate binary patterns with C return types. Such patterns combine
the binary code used to return a value (inside the function body),
and the binary patterns that use the returned expression after the
function is called. This information is a valuable asset to improve the
implementation of existing decompilers.
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Resumen

La decompilación es el proceso dentro de la ingenieŕıa inversa de soft-
ware encargado de recuperar el código fuente de alto nivel a partir de
un fichero binario. Aunque el código fuente obtenido tiene el mismo
comportamiento que el programa original, su legibilidad suele ser in-
ferior y casi siempre es distinto al código escrito por el programador.
La obtención del programa original a partir de un binario es conside-
rado como un problema indecidible puesto que, cuando se compila un
programa, el compilador descarta mucha información de alto nivel no
necesaria en el binario generado.

Para tratar de reconstruir esta información, los decompiladores aso-
cian patrones de instrucciones ensamblador a construcciones de alto
nivel, permitiendo obtener construcciones de alto nivel a partir de pa-
trones binarios. No obstante, la obtención de los patrones binarios es
una tarea compleja y éstos dependen de variables tales como el com-
pilador utilizado, opciones de compilación, el lenguaje de alto nivel
de origen y el procesador para el que se genera el binario, entre otros.
Si alguna de estas variables cambia, los patrones binarios a detectar
también cambian.

En los últimos años se están utilizando técnicas de aprendizaje au-
tomático y big data para construir herramientas orientadas a mejorar
el desarrollo de software. La ĺınea de investigación big code obtiene
grandes volúmenes de código fuente a partir de repositorios de código
fuente para entrenar modelos probabiĺısticos predictores. Con este ti-
po de técnicas se han construido herramientas de diversa ı́ndole, tales
como desofuscadores de código, traductores automáticos o detectores
de errores y vulnerabilidades en código fuente. Esta tesis plantea en
qué medida este tipo de técnicas pueden ser utilizadas para resolver
el problema indecidible de la decompilación.

Esta tesis describe un método que, utilizando aprendizaje automáti-
co supervisado, mejora la extracción de información de alto nivel en
comparación con los decompiladores existentes en el mercado. Inicial-
mente, el método plantea la creación de distintos modelos en función
de las variables influyentes en la detección de los patrones binarios,
eligiendo uno de los modelos creados una vez se hayan detectado los
valores de las variables influyentes. Otro de los retos abordados por el
método es la enorme variabilidad en la representación binaria de ins-
trucciones ensamblador. Para ello, se define proceso de generalización
de patrones en el que el aprendizaje automático es utilizado junto con
un experto de dominio para reducir la variabilidad de dichos patrones.



Finalmente, un proceso iterativo es el encargado de ayudar al experto
de la creación de modelos que puedan inferir nuevas construcciones
en lenguajes de alto nivel. El método propuesto no se limita a utilizar
aprendizaje automático para entrenar los modelos, sino que también
lo emplea como un mecanismo de descubrimiento de caracteŕısticas
(feature engineering).

Para entrenar los modelos predictivos de manera automática, dise-
ñamos e implementamos una plataforma altamente parametrizable
encargada de generar los conjuntos de datos usados en el entrena-
miento. Para ello, primero permite instrumentar el código fuente de
alto nivel para relacionar las construcciones de alto nivel y su repre-
sentación binaria. Posteriormente se extraen estos patrones binarios
iniciales y se aplican las generalizaciones previamente identificadas
por el método descrito en el párrafo anterior. Finalmente se compone
el conjunto de datos, caracterizando cada instancia, fila o individuo
mediante los patrones binarios obtenidos y etiquetándolo con la cons-
trucción de alto nivel oportuna. La implementación ha sido altamente
paralelizada y por ello es capaz de obtener una mejora de 3,5 factores
sobre un máximo teórico de 4, cuando se ejecuta en un procesador
con 4 núcleos.

Nuestros modelos se entrenan con código fuente C, pero es dif́ıcil obte-
ner grandes volúmenes de código C estándar que pueda compilarse en
diversos compiladores. Por ello implementamos un generador de códi-
go estocástico llamado Cnerator. Este generador, nos permite generar
grandes volúmenes de código fuente con descripciones probabiĺısticas
de las distintas construcciones del lenguaje, aśı como asegurar que se
cumplen determinadas reglas especificadas por el usuario. El código
sintético generado por Cnerator es enriquecido con código real obteni-
do de repositorios de código fuente. Aśı conseguimos cubrir un elevado
espacio de búsqueda (código sintético) y representar las construcciones
t́ıpicas mas utilizadas por los programadores (código real).

Con todo ello, se construyó un modelo predictivo orientado a detec-
tar el tipo de alto nivel retornado por todas las funciones existen-
tes en código binario. Tras construir el conjunto de datos, se crearon
14 modelos clasificadores con distintos algoritmos de aprendizaje au-
tomáticos, evaluándolos con 3 métodos que consideran su capacidad
predictiva ante código no utilizado en el entrenamiento. Todos los
modelos obtuvieron mejores resultados que todos los decompiladores
existentes, para los 3 métodos de evaluación. Comparando la capa-
cidad predictiva del mejor modelo y el mejor decompilador, nuestro
sistema obtuvo un F1-score del 79,1 % frente al 30 % F1-score del mejor
decompilador del mercado.

Tras la creación de los conjuntos de datos para entrenar los modelos,
realizamos un análisis de los primeros para documentar los patrones
utilizados en la clasificación del tipo de retorno de las funciones. Con



este fin obtuvimos y analizamos reglas que asocian patrones binarios
a los tipos de retorno de alto nivel. Dichas reglas de asociación com-
binan patrones binarios obtenidos dentro del cuerpo de una función
con patrones de utilización del valor devuelto tras las invocaciones a
la función. Las reglas combinan la información binaria de cómo una
función retorna un valor con información de cómo se usa dicho valor,
para detectar los tipos de retorno de alto nivel. Estos patrones pueden
ser incluidos en los decompiladores actuales y aśı mejorar la inferencia
que hacen de los tipos de retorno de las funciones decompiladas.

Palabras Clave

Big code, decompilación, aprendizaje automático, patrones
binarios, construcciones del lenguaje, patrones ensambla-
dor, big data, Cnerator
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Chapter 1

Introduction

1.1 Motivation

Decompilers are tools that receive binary code as an input and generate high-
level code with the same semantics as the input. Although the decompiled source
code can be recompiled to produce the original binary code, the high-level source
code is not commonly the one originally written by the programmer. In fact,
the source code is usually much less readable than the original one [1]. This is
because obtaining the original source code from a binary file is an undecidable
problem [1]. The cause is that the compiler discards high-level information in
the translation process, such as type information, that cannot be recovered in the
inverse process.

In the implementation of current decompilers, experts analyze source code
snippets and the associated binaries generated by different compilers to identify
decompilation patterns. Such patterns associate sequences of assembly instruc-
tions with high-level code constructs. These patterns are later included in a
decompiler implementation [2, 3]. The identification of these code generation
patterns is not an easy task, because of many factors such as the optimizations
implemented by compilers, the high expressiveness degree of high-level languages,
the compiler used, the target CPU, and the compilation parameters.

The use of large volumes of source code has been used to create tools aimed
at improving software development [4]. This approach has been termed “big
code” [5] since it applies big data techniques to source code. In the big code area,
existing source-code corpora have already been used to create different systems
such as JavaScript deobfuscators [6], automatic C#-to-Java translators [7], and
tools for detecting program vulnerabilities [8]. Probabilistic models are built
with machine learning and natural language processing techniques to exploit the
abundance of patterns in source code [9].

Our idea is to use large portions of high-level source code and their related
binaries to train machine learning models. These models will help us find code
generation patterns not used by current decompilers. Machine learning has al-
ready been used for decompilation (Chapter 2). Different recurrent neural net-
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1.2. A motivating example

#include <stdlib.h>

#include <stdio.h>

#include <stdbool.h>

struct stats { int count; int sum; int sum_squares; };

void stats_update(struct stats * s, int x, bool reset) {

if (s == NULL) return;

if (reset) * s = (struct stats) { 0, 0, 0 };

s->count += 1;

s->sum += x;

s->sum_squares += x * x;

}

double mean(int data[], size_t len) {

struct stats s;

for (int i = 0; i < len; ++i)

stats_update(&s, data[i], i == 0);

return ((double)s.sum) / ((double)s.count);

}

void main() {

int data[] = { 1, 2, 3, 4, 5, 6 };

printf("MEAN = %lf\n", mean(data, sizeof(data) / sizeof(data[0])));

}

Figure 1.1: C source code example.

works have been used to recover the number and the built-in types of function
parameters [10]. Extremely randomized trees and conditional random fields have
provided good results inferring basic type information [11]. Decompilation has
also been tackled with encoder-decoder translation neural networks [12] and with
a genetic programming approach [13] (these works are detailed in Chapter 2)).

In this dissertation, we propose a method to use supervised machine learning
to improve the high-level information inferred by decompilers (Chapter 4). Par-
ticularly, we apply the proposed method to improve the performance of existing
decompilers in predicting the types returned by functions in high-level programs.
For that purpose, we implement an infrastructure that instruments C source
code to label binary patterns with high-level type information (Chapter 3). That
labeled information is then used to build predictive models (Chapter 5). More-
over, the dataset created is used to document the binary patterns found by the
classifiers and facilitate its inclusion in the implementation of any decompiler
(Chapter 7).

1.2 A motivating example

Before detailing the objectives of this dissertation, we describe a motivating ex-
ample related to the recovery of high-level type information.

Figure 1.1 shows an example C program compiled with the Microsoft’s cl 32-
bit compiler. The generated binaries were then decompiled with four different
decompilers. The following function signatures were produced by those decom-
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1.3. Contributions

pilers:

– Signature of the stats update function:

– IDA Decompiler: int __cdecl sub_401000(int a1, int a2, char a3)

– RetDec: int32_t function_401000(int32_t * a1, int32_t a2, int32_t a3)

– Snowman: void ** fun_401000(void ** ecx, void ** a2, void ** a3,

void ** a4, void ** a5, void ** a6)

– Hopper: int sub_401000(int arg0, int arg1, int arg2)

– Signature of the mean function:

– IDA Decompiler: int __cdecl sub_4010A0(int a1, unsigned int a2)

– RetDec: int32_t function_4010a0(int32_t a1, uint32_t a2)

– Snowman: void ** fun_4010a0(void ** ecx, void ** a2, void ** a3)

– Hopper: int sub_4010a0(int arg0, int arg1)

For both functions, no decompiler infers the correct return type. Although
IDA Decompiler, RetDec and Hopper detect the correct number of arguments,
most of the parameter types are not correctly recovered by any decompiler1.

As mentioned, we take as a particular case scenario the inference of the high-
level type returned by functions, by analyzing their binary code. This is a complex
task because the value is returned to the caller in a register (bool, char, short,
int, long, pointer, and struct2 values are returned in the accumulator; long
long in edx:eax; and float, double and long double in the FPU register
stack), but the value stored in that register could be the result of a temporary
computation in a function returning void. We search for patterns in the binary
code before returning and after the invocation, to see if we can recover the high-
level return type written by the programmer.

The problem to be solved is a multi-label classification problem, where the
target variable is an enumeration of all the high-level built-in types of the C
programming language (including void), plus the type constructors that can be
returned3 (pointer and struct). The models we build (Chapter 4) are able to
correctly infer the high-level C types returned by the stats update and mean

functions in Figure 1.1.

1size t and uint32 t are aliases for unsigned int in a 32-bit architecture.
2A struct is commonly returned as a pointer to struct (i.e., its memory address is returned

instead of its value).
3In C, a function returning an array actually returns a pointer. For Microsoft’s cl, the

union type is actually represented as int, long or struct, depending on its size (explained in
Section 5.3.1).
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1.4. Structure of the document

1.3 Contributions

1. Improving the high-level information inferred by decompiles using super-
vised machine learning. Particularly, we improve the inference of the types
returned by functions. The models are trained with a dataset that relates
binary patterns with high-level return types. To evaluate their performance,
we conduct a comparison with four different decompilers.

2. Design and implementation of a platform for the automatic extraction of
patterns from binary files (Chapter 3). The implemented platform is highly
parameterized so that it can be used in different scenarios. When debug
information is not available or the platform is used directly with binary
code, it can be used to predict features of native code. The implementation
has been parallelized (data and task parallelization) to provide important
runtime performance benefits for multicore architectures.

3. A method to create predictive models for improving the performance of
existing decompilers (Chapter 4). The proposed method considers all the
variables that influence the decompilation process, the huge variability of
binary instructions and the different language constructs provided by high-
level programming languages. Machine learning is used not only to create
the predictive modes but also as a feature engineering technique.

4. A collection of patterns to identify the high-level types returned by a func-
tion from its binary code (Chapter 6). The dataset created is used to
obtain explainable patterns that predict return types. Such patterns com-
bine binary sequences of code used to return an expression and the code
written just after function invocation. They could be included in existing
open-source decompilers.

5. A stochastic C source code generator for training big code machine learning
models (Chapter 7). This tool, called Cnerator, creates large amounts of
standard ANSI/ISO C source code [14]. Moreover, it is highly customizable
to generate all the syntactic constructs of the C language, necessary to build
accurate predictive models with machine learning algorithms.

1.4 Structure of the document

This PhD dissertation is structured as follows. The next chapter describes the
related work. Chapter 3 describes the platform used to extract the binary pat-
terns and generate the datasets. The method used to create predictive models
from binary code is described in Chapter 4. In Chapter 5, we apply the proposed
method to the problem of inferring function return types, evaluate its perfor-
mance and compare it with the existing decompilers. Chapter 6 discusses some
interesting patterns discovered from the dataset. Our stochastic C code generator
is described in Chapter 7. Conclusions are presented in Chapter 8 and Chapter 9
identifies future lines of work.

Appendix A shows a complete set of association rules that correlate binary
patterns with high-level return types. All the generalization templates used dur-
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1.4. Structure of the document

ing the dataset generation are listed in Appendix B, and the usage of Cnerator is
detailed in Appendix C. In Appendix D you can see the hyperparameters selected
for each predictive model. Finally, Appendix E enumerates the publications de-
rived from this dissertation.
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Chapter 2

Related work

We detail the research work related to this dissertation. We start by describing
those works aimed at inferring types from binary code. Then, we see how machine
learning has been used to improve decompilers, and some other uses of machine
learning for code reversing. The last subsection describes the existing research
on decompilation, from a general point of view.

2.1 Type inference

There are some research works aimed at inferring high-level type information
from binary code. Chua et al. [10] use recurrent neural networks (RNN) [15]
to detect the number and type of function parameters. First, they transform
each instruction into word embeddings (256 double values per instruction) [16].
Then, a sequence of instructions (vectors) is used to build 4 different RNNs
for counting caller arguments, counting function parameters, recovering types of
caller arguments and recovering types of function parameters. In this work, they
infer seven different types: int, float, char, pointer, enum, union and struct.
They only consider int for integer values and float for real ones. They achieved
84% accuracy for parameter counting and 81% for type recovery.

He et al. [11] build a prediction system that takes as input a stripped binary
and outputs a new binary with debug information that includes type information.
They combine extremely randomized trees (ERT) with conditional random fields
(CRFs) [17]. The ERT model aims to extract identifiers. Although identifiers
are always mapped to registers and memory offsets, not every register and mem-
ory offset stores identifiers. Then, the CRF model predicts, the name and type
of the identifiers discovered by ERT. They use a maximum a posteriori (MAP)
estimation algorithm to find a globally optimal assignment. This tool handles
17 different types, but it lacks floating-point types support. This is because the
library used to handle the assembly code, Binary Analysis Platform (BAP) [18],
does not support floating-point instructions. Their system achieves 68.8% preci-
sion and 68.3% recall.

Mycroft [19] proposes a type reconstruction algorithm that uses unification to
recover types from binary code. Mycroft starts by transforming the binary code
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2.2. Machine learning for decompilation

into a register transfer language (RTL) intermediate representation. The RTL
representation is then transformed into a single static assignment (SSA) form to
undo some optimizations performed by the compiler. Then, each code instruction
is used to generate constraints about the type of its operands, regarding their use.
Those constraints are used to recover types by applying a modified version of
Milner’s W algorithm [20]. In this variation, any constraint violation causes type
reconstruction (recursive structs and unions) instead of premature termination.
This work does not discuss stack-based variables, only register-based ones.

TIE (Type Inference on Executables) [21] addresses the stack-based variable
limitation of Mycroft’s approach by using a variation of the value set analy-
sis (VSA) [22] called DVSA. Additionally, the constraint solving algorithm uses
subtyping to model the inherent polymorphism in assembly instructions. For
example, add can be used to add two numbers but also a number and a pointer.

All these works are valid examples of static analysis, however, there exist
alternatives based on gathering information dynamically, when the native code
is being run [23]. Raman et al. [24] use an execution trace to identify recursive
data structures linked by pointers. They track all the memory allocations to
identify the heap objects and use the links between them to create a shape graph.
This dynamic analysis approach can be combined with static analysis to obtain
finer-grain information. Caballero et al. [25] combine static analysis with several
execution traces, being able to extract the prototype of target functions.

2.2 Machine learning for decompilation

Some works are not focused on type inference exclusively, but they undertake
decompilation as a whole, including type inference. The works in [12, 26, 27]
propose different systems based on neural machine translation [28, 29]. They use
RNNs with an encoder-decoder scheme to learn high-level code fragments from
binary code, for a given compiler.

Katz (Deborah) et al. [12] use RNN models for snippet decompilation with
additional post processing techniques. They tokenize the binary input with a
byte-by-byte approach and the output with a C lexer. C tokens are ranked
by its frequency and replaced by the ranking position. Less frequent tokens
(below a frequency threshold) are replaced by a common number to minimize the
vocabulary size. This transformation reduces the number of tokens, speeding up
the training of the RNN. For the binary input, a language model is created, and
byte embeddings are found for the binary information. Once the encoder-decoder
scheme is trained, translation from binary code into C tokens is performed. The
final step is to apply several post processing transformations, such as deleting
extra semicolons, adding missing commas, and balancing brackets, parenthesis,
and curly braces.

The previous work was later modified by Katz (Omer) et al. to reduce the com-
piler errors in the output C code [26]. In this previous work, most of the output C
code could not be compiled because errors were found. Therefore, they modified
the decoder so that it produces prefixed templates to be filled. This idea is in-
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spired by delexicalization [30]. Delexicalized features are n-gram features where
references to a particular slot or value are replaced with a generic symbol. In
this way, locations in the output C source code are substituted with placeholders.
After the translation takes place, those placeholders are replaced with values and
constants taken from the binary input, improving the code recovery process up
to 88%.

Coda [27] is an end-to-end neural-based framework for code decompilation.
First, Coda employs an instruction type-aware encoder and a tree decoder for
generating an abstract syntax tree (AST) with attention feeding during a code
sketch generation stage. Afterward, it updates the code sketch using an itera-
tive error correction machine guided by an ensembled neural error predictor. An
approximate candidate is found first and then fixed to produce a compilable pro-
gram that generates the original binaries when compiled. Evaluation results show
that Coda achieves 82% program recovery accuracy on unseen binary samples.

Schulte et al. [13] propose genetic programming to generate readable C source
code from compiled binaries. Taking binary code as the input, an evolutionary
search seeks a combination of source code excerpts from a big code database. That
source code is compiled into an executable, which should be byte-equivalent to
the original binary. The decompiled source code reproduces the behavior, both
intended and unintended, of the original binary. As they use evolutionary search,
decompilation time can vary dramatically between executions.

2.3 Other uses of machine learning for code re-

versing

Apart from recovering high-level type information from binaries, other works
use machine learning for different code reversing purposes [31]. Rosenblum et
al. [32] use CRFs to detect function entry points (FEPs). They use n-grams
of the generalized instructions surrounding FEPs, together with a call graph
representing the interaction between FEPs. The FEP detection problem consists
in finding the boundaries of each function in the binary code. CRFs allow using
both sources of information together. Since standard inference methods for CRFs
are expensive, they speed up training with approximate inference and feature
selection. Nonetheless, feature selection took 150 days of computation on 1171
binaries. This approach does not seem to be tractable for big code scenarios.

Bao et al. [33] utilize weighted prefix trees (or weighted tries) [34] to detect
FEPs, considering generalized instructions as tree nodes. Once trained, each node
represents the likelihood that the sequence from the root node to the current node
will be a FEP. They trained the model with 2064 binaries in 587 computing hours,
obtaining better results than [32]. The approach of Shin et al. [35] uses RNNs for
the same problem. The internal feedback loops of RNNs make them suitable to
handle sequences of bytes. This approach reduces training time to 80 computing
hours using the same dataset as Bao et al. [33], while performing slightly better.

Rosenblum et al. [36] use CRFs to detect the compiler used to generate bi-
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nary files. Binaries frequently exhibit gaps between functions. These gaps may
contain data such as jump tables, string constants, regular padding instructions
and arbitrary bytes. While the content of those gaps sometimes depends on the
functionality of the program, they sometimes denote compiler characteristics. A
CRF model is built to exploit this difference among binaries and detect the com-
piler used to generate the binaries. They later extend this idea to detect different
compiler versions and optimization levels [37].

Malware detection is another field related to binary analysis where machine
learning has been used [38]. Alazab et al. [39] separate malware from benign
software by analyzing the sequence of Windows API calls performed by the pro-
gram. First, they process the binaries to extract all the Windows API invocations.
Then, those sequences are vectorized and used to build eight different supervised
machine learning models. Those models are finally evaluated, finding that sup-
port vector machine (SVM) with a normalized poly-kernel classifier is the method
with the best results. SVM achieves 98.5% accuracy.

Rathore et al. [40] detect malware by analyzing opcodes frequency. They use
various machine learning algorithms and deep learning models. In their experi-
ments, random forest outperforms deep neural networks. Static analysis of the
assembly code is used to generate multi-dimensional datasets representing opcode
frequencies. Different feature selection strategies are applied to reduce dimen-
sionality. They collect binaries from different sources, selecting 11,688 files with
malware and 2,819 benign executables. The dataset is balanced with adaptive
synthetic (ADASYN) sampling. Random forest obtained 99.78% accuracy.

2.4 General research on decompilation

There has been a long line of research on decompilation. Cifuentes [2] establishes
the foundations of modern decompilers. She covers a wide range of techniques,
like data-flow analysis and control-flow analysis. All this knowledge is included
in the implementation of DCC [41], a decompiler for Intel 80286 DOS programs.
DISC [42] is another decompiler that works with DOS executables, although it is
exclusively focused on binaries generated with the Turbo C compiler.

Following the steps of Cifuentes, van Emmerick explores the use of single static
assignment (SSA) form to facilitate decompilation tasks such as dead code prop-
agation and type analysis [3]. Those techniques are included in the Boomerang
decompiler [43]. The design of Boomerang is similar to DCC, but with a particu-
lar emphasis on modularity. EiNSTeiN is another open-source decompiler based
on the work of van Emmerick [44].

The REC decompiler is derived from Cifuentes’ work [45]. It adds the imple-
mentation of complex algorithms to analyze control flow graphs, which provide
the reconstruction of some advanced constructs such as switch statements. Its
last version also includes SSA transformations.

Hex-Rays IDA Decompiler [46] is the de facto industry standard. It derives
from Guilfanov’s early work [47, 48] on the Belgian company DataRescue. It is
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developed as a plugin for the Interactive Disassembler Pro (IDA Pro). Since it is
a proprietary development, little is known about its internals. One of its key fea-
tures is the Fast Library Identification and Recognition Technology (FLIRT) [49].
FLIRT is a binary pattern-recognition library that is used to identify the compiler
used to generate the binaries and to detect start-up and statically-linked code.

Troshina et al. implement TyDec [50] and its successor, SmartDec [51]. Both
decompilers are focused on recovering specific constructs of C++ such as ob-
jects, class hierarchies and the indirect calls resulting from virtual inheritance.
Snowman is a fork of SmartDec that is actively maintained [52].

Hopper [53] is a commercial decompiler developed by Cryptic Apps. It is orig-
inally aimed at decompiling Objective-C constructs such as selectors and message
passing. It is available for and Mac OS X. However, it also supports decompilation
of C code (as Objective-C is a superset of C) from Windows executables.

Schwartz et al. [54] present Phoenix, which is built on top of BAP and TIE
tools from the same research group. BAP (Binary Analysis Platform) [18] trans-
forms native assembler code to an Intermediate Language (IL) representation,
TIE (Type Inference on Executables) [21] is aimed at recovering high-level type
information from IL. Then, the decompiled code is tested with the original unit
tests to check that decompilation preserves semantics.

RetDec (Retargetable Decompiler) [55] was first implemented by Křoustek as
part of his PhD [56]. RetDec is independent of any architecture, language or
ABI (Application Binary Interface) because it uses the LLVM [57] Intermediate
Representation (IR) across all the phases of the decompilation. Since December
2017, RetDec is supported by AVAST.

Yakdan et al. developed the DREAM [58] and DREAM++ [59] decompilers,
both aimed at producing goto-free code. They define a set of semantics-preserving
code transformations, capable of transforming unstructured control flow graphs
into structured ones.

2.5 C source code generators

There are tools for the random generation of C code. Most of them are aimed at
finding bugs in C compilers, rather than at training machine learning models.

Csmith is a well-known generator of random C programs [60] created as a
fork of randprog [61]. Its main purpose is the detection of bugs in C compilers.
Generated programs conform to the C99 standard, and they avoid the undefined
behavior constructs specified in C99. To find compiler bugs, each generated
program is compiled by different compilers and executed. If a checksum of the
global variables upon program termination is different from the rest of executions,
the compiler that produced that binary has an error (i.e., randomized differential
testing). Csmith implements different safety mechanisms such as pointer analysis,
bounded loop constructs, and different dynamic checks. Csmith has been used to
detect more than 325 errors in existing compilers, including the verified CompCert
C compiler [62].
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2.5. C source code generators

ldrgen is a tool for the random generation of C programs to test compilers
and program analysis tools [63]. Existing systems generate large amounts of
dead code that the compiler reduces to little relevant binary, because dead code
is deleted. For this reason, ldrgen implements a liveness analysis algorithm
during program generation to avoid producing dead code. It is implemented as
a plugin for the Frama-C extensible framework [64]. ldrgen has been used to
detect missed compiler optimizations [65].

YARPGen is a random test-case generator for C and C++ compilers, created
to find and report compiler bugs [66]. YARPGen is created to overcome the
saturation point reached by existing compiler testing methods, where very few
bugs are found. This is not because compilers are bug-free, but rather because
generators contain biases that make them incapable of testing specific parts of
compiler implementations. YARPGen generates programs free of undefined be-
haviors without dynamic safety checks, unlike Csmith. Its approach is to imple-
ment different static analyses to generate code that conservatively avoids unde-
fined behaviors. It also implements generation policies that systematically skew
probability distributions to cause certain optimizations to take place more often.
YARPGen has found more than 220 bugs in GCC, LLVM, and the Intel C++
compiler. Those bugs were not previously found by other compiler testing tools.

The family of Orange random C code generators is focused on generating arith-
metic expressions [67]. Instead of differential testing, they track the expected
values of each test after execution, checking whether the obtained values are the
expected ones. The programs generated by Orange generators are safe, avoiding
the undefined behaviors of the C programming language. Orange code genera-
tors do not include important language features such as control flow statements,
structs, arrays or pointers.

Quest is a code generator tool aimed at finding several compiler bugs related
to calling conventions [68]. It generates function declarations randomly, and then
generates type-driven test cases that invoke each function. A global variable is
generated for each parameter and return value. Assertions are used to check that
each value received and returned is the appropriate one. Quest avoids unde-
fined behavior by simply not generating potentially dangerous constructs (e.g.,
arithmetic expressions). It was used to find 13 bugs in 5 different compilers [68].
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Chapter 3

Automatic extraction of patterns
in native code

The objective of obtaining high-level information from massive binary codebases
demands an efficient mechanism to extract binary patterns [69]. Example tools
that extract patterns in binary code are decompilers, packed executable file recog-
nizers, authorship analyzers, and malware detectors. In this chapter, we identify
the requirements of such a platform to facilitate the extraction of binary patterns.

A platform to extract binary patterns should be able to use the debug infor-
mation (if any) generated by the compiler. This information is very valuable to
extract such binary patterns, which could later be used by a machine-learning
algorithm to create predictive tools. A large number of patterns may be extracted
from a small binary program since the number of assembly instructions is much
higher than in the original source high-level program. Therefore, the need of
processing debug information, plus the potentially huge number of patterns to be
extracted, makes it critical to use a highly parallelized and efficient approach for
extracting the patterns.

The platform should also be highly parameterized. The individuals or in-
stances (i.e., rows in the dataset generated) to be extracted will be specified by
the user. For instance, we may be interested in finding patterns for functions,
snippets, function entry points, or specific regions of binary code. The same pa-
rameterization is also required to specify the features of each individual (columns
in the dataset). For example, we may define the feature mov regax, any to rep-
resent the occurrence of an assembly instruction that moves any value to the
accumulator register (ah, al, ax, eax or rax). If that pattern (feature or column)
occurs in one given region of binary code (individual, instance or row), then the
corresponding value in the dataset (row and column) will be 1 [70].

The traditional method to extract features from binary code is to identify a
syntactically fixed unit of code, such as functions or basic blocks, and extract the
binary code inside them [33]. However, pattern extraction does not always fol-
low this scheme. Sometimes, nonsequential patterns such as subgraphs of control
flow and data dependency graphs need to be extracted. In these cases, a binary
pattern extraction platform should allow the association of patterns to pieces of
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3.1. Instrumentator

Source Code

Instrumentation 

Rules

Dataset

Instrumented 

Binary Code

Binary Pattern 

Extractor

Max Size,

Max Offset

Classification 

Rules

Classified 

Individuals

Instrumentator

Classifier

Instrumented

Source Code
Compiler

Pattern Detector

Pattern 

Generalization 

Rules 

Occurrences 

Table

Generalized 

Binary Patterns

Dataset 

Generator

Individual 

Detector

Pattern 

Generalizator

Binary Patterns

Figure 3.1: Platform architecture, receiving high-level code.

code outside their basic blocks, representing subgraph structures (Section 3.1.7).
Another scenario where the traditional method is not sufficient is the analysis of
binary code between two memory addresses, where the inconsistency overlapping
problem caused by the variable-length instruction set must be tackled [32]. This
kind of binary code analysis has been used for different purposes such as function
entry points detection [32], compiler recognition [36], authorship attribution [37],
and malware detection [71, 72]. Therefore, a generic platform for pattern extrac-
tion must be flexible enough to support any binary pattern extraction method
(not just the traditional one) and reduce development and execution times.

We first present the architecture of the implemented platform for the auto-
matic extraction of patterns in native code (Section 3.1). The platform is highly
parameterized so that it could be used in different scenarios. Its parallel im-
plementation provides important runtime performance benefits when multicore
architectures are used. It also uses the debug information that may be provided
by a compiler. The extracted patterns may be used by other tools for differ-
ent purposes. After the architecture, we present the most important challenges
faced in the implementation (Section 3.2). Section 3.3 evaluates the platform,
measuring the execution time of different configurations for a large number of
programs. We will see how the parallelization provides significant performance
improvements, and its efficiency is maintained for big volumes of programs. In
Chapter 5, we use it for the particular problem of predicting the high-level types
returned by functions.

3.1 Architecture

Our platform has two working modes. The most versatile is the one shown
in Figure 3.1. The platform receives the high-level source program that will
be used to generate the binary application. In this mode, the platform allows
instrumenting the input program and it uses the debug information produced by
the compiler. When the high-level program is not available, we provide another
configuration to process binary files, described in Section 3.1.6.
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procedure function return instrumentation(program)
for all stmt in program do

if stmt is typereturn idfunc ( (typearg idarg) ∗ ) stmtbody
∗ then

labels← 1
for all stmt in stmtbody

∗ do
if stmt is return exp then

stmt← RETURN idfunc labels : stmt
labels← label + 1

Figure 3.2: Instrumentation rule for return statements.

procedure procedure return instrumentation(program)
labels← 1
for all stmt in program do

if stmt is typereturn idfunc ( (typearg idarg) ∗ ) stmtbody
∗

↪→ and typereturn = void then
stmtbody

∗ ← stmtbody
∗ ; RETURN idfunc labels : return;

labels← labels + 1

Figure 3.3: Instrumentation rule for procedures.

3.1.1 Instrumentator

This module allows code instrumentation of the high-level input program. The
objective is to add information to the input program so that it will be easier to
find the patterns in the corresponding binary code generated by the compiler.
It can also be used to delimitate those sections of the generated binary code we
want to extract patterns from (Section 3.1.2), ignoring the rest of the program.
Notice that, once the machine learning model has been trained with the dataset
generated by the platform, the binary files passed to the model will not include
that instrumented code. Therefore, the instrumentation module should not be
used to extract patterns that cannot be later recognized from stripped binaries.

This module traverses the Abstract Syntax Tree (AST) of the Source Program
and evaluates the Instrumentation Rules provided by the user. While traversing
the AST, if the precondition of one instrumentation rule is fulfilled, its corre-
sponding action is executed. The action will modify the AST with the instru-
mented code, producing the input to be passed to the compiler (next module in
Figure 3.1).

Figure 3.2 shows the instrumentation rule we used for the example problem
of inferring the high-level types of functions (in Section 3.2 we describe how
instrumentation rules are implemented). For all the return statements in a
program, the rule adds a dummy label before the return statement. This label
has the function identifier idfunc followed by a consecutive number, since a function
body may have different return statements. This label will be searched later in
the binary code (using the debug information) to locate the binary instructions
generated by the compiler for the high-level return statements. These binary
instructions will be used to extract the binary patterns (Section 3.1.2).

Figure 3.3 shows another example of one instrumentation rule. Recall that
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3.1. Binary pattern extractor

function individual detector(program)
individuals← []

instruction← program[0]

repeat
if is function(instruction) then

individuals← individuals + label(instruction)
instruction← next(instruction)

until not next(instruction)
return individuals

Figure 3.4: Individual detector to recognize functions.

the previous instrumentation rule was aimed at locating binary instructions be-
tween a RETURN label and a ret assembly instruction. However, C functions
returning void usually do not have an ending return statement. Therefore, the
instrumentation rule in Figure 3.3 adds both, the expected label and the return
statement.

Adding labels is an easy way to instrument code. However, more sophisti-
cated approaches can be used. For example, expressions may be translated into
dummy function invocations that are actually used as marks to be identified in
the pattern extraction phase (Section 3.1.2). Another typical approach is adding
innocuous sequences of assembly instructions (e.g., nop) to be found in the pat-
tern extraction phase. The user must be careful when selecting the instrumenta-
tion approach, checking that the instrumented code does not produce unexpected
changes to the generated binaries or the target patterns.

As shown in Figure 3.1, the Instrumentation Rules are used to translate Source
Code into Instrumented Code. The Instrumented Code is then compiled, produc-
ing the Instrumented Binary Code.

3.1.2 Binary pattern extractor

This module performs three tasks. First, it identifies the binary code fragments
or chunks representing the individuals (rows) in the generated dataset. Second,
it extracts the binary patterns (columns) detected for each individual. Binary
patterns are used as features to later classify the individuals. The third task is
to store the individuals and patterns in an Occurrence Table, which will be later
used to generate the final dataset. We now detail these three tasks.

The Individual Detector initially recognizes each individual in the binary code.
It must implement a function to collect all the individuals. Figure 3.4 shows the
Individual Detector of our example, where functions are recognized as individuals.
In the figure, is function returns whether the parameter is the first instruction
in a function by using the debug information generated by the compiler. Once
one function is detected, its label (the return type) is added to the individuals
list.

After identifying the individuals, we must extract the binary patterns we are
looking for. To this end, the user should provide a Pattern Detector comprising
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3.1. Binary pattern extractor

function RET pattern detector(instruction)
if instruction is not RETURN idfunc n then

return null

begin instruction← instruction
while not instruction is ret do

instruction← next(instruction)
return (idfunc, ( begin instruction, next(instruction)))

Figure 3.5: Pattern detector rule to recognize RET patterns.

function POST CALL pattern detector(instruction)
if instruction is call idfunc then

begin instruction← instruction
for i = 0 to MaxSize + MaxOffset do

instruction← next(instruction)
return (idfunc, (begin instruction, instruction))

return null

Figure 3.6: Pattern detector rule to recognize POST CALL patterns.

a collection of predicate functions. These functions receive one instruction of
the instrumented binary program. In case that instruction is not included in
the expected pattern, null must be returned. If the pattern is identified, a pair
containing the individual and the range of instructions in the pattern (another
pair) is returned.

Figure 3.5 presents a Pattern Detector for our example. It recognizes the re-
turn pattern added by the Instrumentator. If the instruction label is RETURN,
the Pattern Detector recognizes the pattern. The corresponding function is re-
turned as the first element of the pair. The second one is the range of instructions
comprising the pattern: the first one (the one labeled RETURN) and the next in-
struction after the following ret.

Figure 3.6 shows another pattern detector used in our example. It detects as a
pattern the instructions after one call (we call it POST CALL). In this case, the
individual associated with the pattern is not the function the instruction belongs
to, but the function called. Similarly, we have also specified a pattern with the
instructions before call (called PRE CALL), not shown in the figure. The idea
of these two patterns is that the usage of the value returned by a function (POST
CALL) and the code to push its parameters (PRE CALL) may be valuable to
infer the types in the function signature (return and parameter types).

At this point, the module has three types of extracted patterns: RET patterns,
including the assembly code of return statements; and PRE and POST CALL
patterns, representing the code before and after invoking a function. Each of
these patterns may include a significant number of contiguous binary instructions.
However, we could be interested in a small portion of contiguous instructions
inside the bigger patterns. For this reason, the Binary Extractor Pattern has been
designed to divide the patterns found into a collection of subpatterns (different
partitions of the original pattern).
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3.1. Pattern generalizator

mov edx, [ebp+var 8]

push edx

mov eax, [ebp+var C]

push eax

call func710

add esp, 8

movzx ecx, [ebp+1b 1]

push ecx

call func1195

Size: 3
Relative offset: 2

Type: POST CALL

Size: 5
Relative offset: 0

Type: PRE CALL

Size: 2
Relative offset: -2
Type: PRE CALL

Size: 3
Relative offset: 1
Type: POST CALL

Figure 3.7: Platform architecture, receiving high-level code.

The algorithm to obtain the subpatterns is parameterized by the MaxSize
and MaxOffset parameters shown in Figure 3.1. This algorithm starts with one-
instruction length subpatterns (size = 1), increasing this value up to MaxSize
contiguous instructions. Additionally, other subpatterns are extracted leaving
offset instructions between the instruction detected by the Pattern Detector and
the subpatterns. The algorithm described above (the one that increases size),
was for offset = 0. The same algorithm is applied for offset = 1 and offset =
-1 (i.e., the first instruction before and after the detected instruction, which is
not included in the subpattern). The absolute value of offset is increased up to
MaxOffset.

Figure 3.7 shows four example subpatterns: PRE CALL size = 5 and offset
= 0; PRE CALL size = 2 and offset = -2; POST CALL size = 3 and offset = 2;
and POST CALL size = 3 and offset = 1.

The last task to be undertaken by the Pattern Detector is the association
of the individuals with their patterns in the Occurrences Table. This process is
done by generating as many table rows as individuals found by the Individual
Detector (in Figure 3.4), and associating them with the rows representing each
of the subpatterns found for that individual by the Pattern Detector functions
(Figure 3.5 and Figure 3.6).

3.1.3 Pattern generalizator

Sometimes, the subpatterns found are too specific. For example, the movzx eax,

5 and movzx eax, 10 subpatterns are recognized as two different ones. However,
they represent the information for the return type problem, which is that a literal
has been moved to the accumulator register (i.e., a mov eax,literal pattern). To
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3.1. Dataset generator

function MOV generalization(instruction)
if instruction.mnemonic in [mov, movzx, movsx]

↪→ and instruction.operands[1].type = register
↪→ and instruction.operands[1].value in [eax, ax, ah, al] then
instruction.mnemonic ← mov
instruction.operands[2].value ← argany

return (instruction, next(instruction))

Figure 3.8: Pattern generalization rule of move instructions.

function function classification(program)
individuals← {}
for all stmt in program do

if stmt is typereturn idfunc ( (typearg idarg) ∗ ) then
individuals← individuals[idfunc 7→ typereturn]

return individuals

Figure 3.9: Classification rule associating each function with its return type.

this end, the objective of the Pattern Generalizator module is to allow the user
to reduce the number of subpatterns, generalizing them (Section 4.3 discusses the
generalization problem in a more detailed way).

In our platform, generalizations are expressed as Pattern Generalization Rules.
As shown in Figure 3.8, those rules are implemented as functions receiving one
instruction and returning their generalized pattern (or the current instruction
if no generalization is required) and the following instruction to be analyzed.
The example rule in Figure 3.8 generalizes the mov instructions that save into
the accumulator register any value. The second value returned indicates the
next instruction to be generalized. Its purpose is to allow the implementation of
variable-instruction-length generalizations, very useful to group patterns such as
the code used to pop the arguments after a function invocation.

The generalized patterns and their associations with the individuals are added
to the existing Occurrence Table generated by the Binary Pattern Extractor.

3.1.4 Classifier

This module is aimed at computing the value of the classifier variable (i.e., the
target or the dependent variable) for each individual. The input is a representa-
tion of the high-level program; the output is a mapping between each individual
and the corresponding value of the classifier variable. These associations are
described by the user with the Classification Rules.

Figure 3.9 shows one Classification Rule for our example. We iterate through
the statements in the program. For each function, we associate its identifier with
the returned type, which is the classifier variable in our problem (we predict the
return type of functions).
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3.1. Binary files processing
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Figure 3.10: Platform architecture to process binary code.

3.1.5 Dataset generator

Finally, the Dataset Generator builds the dataset from the Occurrence Table
(Section 3.1.3) and the individual classification (Section 3.1.4). One row per
individual, one column per subpattern (generalized or not), and another row for
the classifier variable. Cells in the dataset are Boolean values indicating the
occurrence of the subpattern for that individual. Classifier (target) cells may
have different categorical values. Table 5.1 shows an example dataset.

3.1.6 Binary files processing

As mentioned, the platform has two working modes. Many times, we do not
have the high-level source program used to generate the native code, and we are
interested in finding patterns in binary files. Different examples of this scenario
include authorship, compiler and malware detection.

In order to show this second working mode of our platform, we use the re-
search work done by Rosenblum et al. [32] as an example. They extract patterns
from stripped binary files to detect function entry points (FEP), which existing
dissemblers do not detect correctly yet [33]. Rosenblum et al. analyze consecu-
tive bytes in binary files, representing them as 3-grams of assembly instructions.
Once the 3-grams are extracted, they formulate the FEP identification problem as
structured classification using Conditional Random Fields (CRF) [17]. An initial
flat model is later enriched with the evidence that a call instruction indicates
the existence of a FEP in the callee address. The model obtained detects FEPs
more accurately than gcc, icc and cl compilers [32].

Figure 3.10 shows the changes to the platform architecture when we use it to
process binary files, and the high-level program is not available. White elements
are the same as in the previous architecture. Blue elements represent modifi-
cations of the previous working mode. All the modules related to processing
high-level programs are not present.

Although the behavior of the Binary Pattern Extractor is the same, the rules
for detecting individuals and patterns are not. The main difference is that no
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3.1. Representing non-sequential patterns

instrumented code is added since the source code is not available. Depending
on the case, debug information is not available either (i.e., stripped binaries are
used). Regarding the Classifier module, the Classification Rules must consider a
plain binary file instead of a high-level program representation.

In the example of FEP detection in binary files, this is how the platform
has been used to generate a dataset to create the CRF model. In the output
dataset, individuals (rows) are instruction offsets in the binary file; one feature
(column) will be created for each 1- 2- and 3-grams in the binary code, indicating
the occurrence of that pattern in each individual; another call offset feature is
added, associating that function invocation with the offset individual. Finally,
the classifier variable (target) is 1 if the individual is a FEP and 0 otherwise
(debug information is available).

In order to create the dataset described above, the Individual Detector creates
as many individuals as instruction offsets in the binary file. The Pattern Detector
extracts 1-, 2- and 3-grams for each offset, and a call feature for each different
function. A call feature is not associated with the offset where the pattern
is detected, but with the offset (memory address) being called (as done in Fig-
ure 3.6). Pattern Generalization is done as the normalization process described
in [32]. Finally, the Classification Rules use the debug information to set 1 to
one individual identified as a FEP and 0 otherwise.

3.1.7 Representing non-sequential patterns

In the analysis of binary applications, it is common to require the detection of
non-sequential patterns, such as subgraphs of control flow and data dependency
graphs. The detection of these subgraphs can be used for many different purposes,
such as the FEP detection problem described in the previous subsection.

Although the Binary Pattern Detector module of our platform (Figures 3.1
and 3.10) is aimed at extracting patterns made up of contiguous binary instruc-
tions, the rest of the modules can be used to represent non-sequential structures
such as graphs. This functionality is provided by the versatile way our platform
considers the sequential patterns (features), permitting the definition of different
criteria to associate these features to the corresponding individuals.

One example of this functionality is present in the decompiler scenario pre-
sented in Section 1.2. Figure 3.5 shows how RET patterns are associated with
the function (individual) where the pattern was detected. In Figure 3.5, this
association is represented by the first element in the tuple returned, which is the
function id the ret instruction belongs to. Thus, the output dataset will have 1
in the cell corresponding to that function (row or individual) and pattern (column
or feature). However, POST CALL patterns are associated with individuals in a
different way. Figure 3.6 shows how this type of feature is not associated with
the function where the pattern is detected, but with the function being called.
Therefore, a machine learning algorithm trained with the generated dataset may
associate non-sequential patterns (e.g., there must exist a RET pattern inside the
function and, in any part of the program, a POST CALL pattern invoking the
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3.2. Implementation
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Figure 3.11: Parallelization of the platform implementation.

same function) to identify the type returned by a function.

Another example of this functionality is the FEP identification problem de-
scribed in Section 3.1.6. The dataset generated by our platform can be used
to create the proposed CRF model, which uses graphs for structural prediction
and classification [17]. Those graphs are obtained from the dataset by using the
versatile association of features to individuals already discussed.

3.2 Implementation

The Instrumentator and Classifier modules have been implemented in C++ since
they use Clang [73] to process the high-level representation of C programs. The
rest of the platform has been implemented in Python. We have used the disas-
sembly services provided by IDAPython [74].

The implementation is highly parallelized, providing important performance
benefits when multi-core architectures are used. The parallelization follows a
pipeline scheme, where both data and task parallelism are used. Figure 3.11
shows the concrete approach followed. These have been the challenges tackled to
parallelize the platform implementation:

1. Data parallelization. We identify each module in a program (obj files in the
compiler used) as a different portion of data to work in parallel. These obj

files can be combined in lib or exe files to produce bigger modules. In the
example in Figure 3.11, three different modules are processed in parallel.

2. Task identification. The tasks to be parallelized are those identified as
modules in the platform architecture (Section 3.1). As shown in Figure 3.11,
an additional initialization task was defined to initialize the database and
create a temporary folder where the input files are copied.

3. Task dependency. After identifying the tasks, we define the dependencies
among them with a Directed Acyclic Graph (DAG). These dependencies
define when two tasks can run in parallel, and when a task has to wait for

21



3.3. Methodology

others to end. As shown in Figure 3.11, the instrumentation, compilation,
binary pattern extraction, generalization and classification tasks can run
in parallel. For the same piece of data, one has to wait for the previous
one to finish. The initialization (at the beginning) and dataset generation
(at the end) tasks cannot be parallelized. The last one waits for all the
classification tasks to process all the data.

4. Task implementation. Tasks should be mapped to threads or processes. The
current implementation uses the Python programming language to combine
all the different modules of the architecture (implemented in Python itself
or C++). Since most implementations of Python use the Global Interpreter
Lock (GIL) to synchronize the execution of threads [75], we implemented
tasks as processes to obtain a better runtime performance improvement
with multi-core architectures [76].

5. Concurrent workers. To adapt the level of parallelization of the platform,
we parameterize its implementation to run with different numbers of worker
processes (Section 3.3.1). A scheduler analyzes the task DAG and tells each
worker the following task to be executed. In Figure 3.11, two workers are
running in parallel. Tasks 1, 2.1 and 2.2 have already been executed; Task
3.1 and 3.2 are run by, respectively, Worker 1 and 2; and Task 2.3 is the
following one to be executed, once one worker is free.

6. Communication between tasks. The dependency between tasks shown in
Figure 3.11 indicates that the output of one task is taken as the input of
the following one. Since we implement tasks as processes, communication
between them is expensive. Therefore, we implement data communication
through a database, appropriately configured to obtain the expected run-
time performance.

7. Task synchronization. Workers should indicate when they terminate exe-
cuting one task, and the scheduler should tell them which task should be
executed next. To synchronize this process, we used a Queue object from
the multiprocessing module [77].

8. Tool parameterization. We configured the IDA disassembler to allow the
concurrent processing of the same input file. The compilation task is rep-
resented with a Python class that can be parameterized to use different
compilers, package managers, compiler options, and automating software.
The external tools used to write information in the standard output (e.g.,
the C compiler). We capture those messages and send them to a concurrent
logger, adding additional information of the processes.

3.3 Evaluation

3.3.1 Methodology

The runtime performance of our platform depends on the following variables:

– The number of independent modules of compilation (or programs). Differ-
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3.3. Increasing number of modules

ent programs, or different modules of the same program, can be processed
in parallel to create a dataset.

– The number of workers. As mentioned, the platform may run different tasks
at the same time. A task is run by a worker. Depending on the number of
real processors, the number of workers may produce an important benefit
on runtime performance.

– The number of cores. We have run our platform with different cores of
multi-core computers.

– The size of each program (or module), according to the number of individ-
uals it may contain.

– The subpattern extraction. As described in Section 3.1.2, different subpat-
terns are automatically extracted from the patterns found. The MaxSize
and MaxOffset parameters influence execution time.

– The number of patterns. Our platform recognizes patterns by means of
the Pattern Detector functions specified by the user. We analyze runtime
performance depending on the number of patterns defined.

We evaluate the influence of these variables on the runtime performance of
the platform, and how they are related to the level of parallelization. In order
to evaluate that, we fix all the variables except one and measure the runtime
performance for different values of the non-fixed variable [78]. This process is
repeated for all the variables.

We evaluate the platform with the example of predicting the return type in bi-
nary programs, using their C source code (the first working scheme of our system,
shown in Figure 3.1). We extract RET, PRE and POST CALL patterns, divide
them into different subpatterns, and perform a generalization of the subpatterns
found.

The programs used for the experiments are synthetically generated by a C
program generator called Cnerator [79] (Chapter 7). Cnerator provides us with a
rich battery of programs. It also allows the generation of particular function sig-
natures per module. Moreover, programs can be generated with different numbers
of compilation units (modules), so that we can measure different modularizations
of the very same program.

In order to be able to change the number of cores, all the tests were carried
out on a Hyper-V virtual machine with 4 processors and 8GB of RAM, running
an updated 64-bit version of Windows 8.1. The host computer was a 3.60 GHz
Intel Core i7-4790 system with 16 GB of RAM, running an updated 64-bit ver-
sion of Windows 10. The tests were executed after system reboot, removing the
extraneous load, and waiting for the operating system to be loaded [80].

3.3.2 Increasing number of modules

In this first experiment, we increase the modules in a program from 1 to 8 and
fix the number of cores and workers to 4. For this experiment and the following
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3.3. Increasing number of cores
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Figure 3.12: Execution time for an increasing number of modules.

ones, the value of MaxSize is 4 and MaxOffset is 0. We extract RET, PRE and
POST CALL patterns.

The program to be analyzed has 10,000 functions (individuals), so we have 1
module with 10,000 functions, 2 modules with 5,000 functions, and so on, up to
8 modules with 1,250 functions. Therefore, all the configurations have the same
dataset with 10,000 functions, and the same program is processed.

Figure 3.12 shows the benefits of parallelization for an increasing number of
modules. The execution time of processing the same program drops when the
number of modules is increased until 4 modules (the number of cores and workers).
At that point, the platform processes the program 3.33 times faster than the
same program with one module (i.e., the sequential implementation). According
to Amdahl’s law, the maximum theoretical performance benefit that could be
obtained for that configuration is 4 factors [81].

For more than 4 modules, there is no significant benefit because this config-
uration has 4 cores. Figure 3.12 shows that is not a significant penalty for 8
programs when the number of programs is higher than the number of cores. The
slight worsening for 5, 6 and 7 programs is caused by the selection of 4 workers
and cores. After processing 4 programs in parallel, the processing of the fifth one
makes the rest of the workers wait for completion, causing a slight performance
drop.

3.3.3 Increasing number of workers

In this case, the number of workers goes from 1 to 8, fixing the number of cores and
modules to 4. Each module has 2,500 functions (10,000 for the whole program).

Figure 3.13 shows how execution time is reduced as the number of workers
increases. With 4 workers, the platform reaches the lowest value, 3.5 times faster
than the sequential execution. For 5 workers or more, there is no benefit because
those extra workers keep waiting for tasks to end.
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3.3. Increasing number of modules and workers
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Figure 3.13: Execution time for an increasing number of workers.
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Figure 3.14: Execution time for an increasing number of cores.

3.3.4 Increasing number of cores

In this case, we change the number of cores of the virtual machine configuration.
Fixing the configuration to 4 workers and modules, we increase the number of
cores from 1 to 4. We have not used more cores because, in the computer used
(see Section 3.3.1), the virtualization software drops its performance with 5 cores
or more. The number of individuals per module is 2,500.

We can see in Figure 3.14 how our platform takes advantage of multi-core
architectures. The computer with 4 cores runs 3.7 times faster than the one
with one single core. The benefit is close to the maximum theoretical one (4
factors) [81].

3.3.5 Increasing number of modules and workers

In this experiment, we increase two variables at the same time. It is intended to
represent a typical use case scenario. Assuming we have a multi-core computer
(4 cores in our case), it is common to set the number of workers equal to the
number of modules (or programs). The idea is trying to obtain the highest level
of parallelization with a given computer. Therefore, we increase the number of
modules and workers from 1 to 16. The number of functions is always 10,000,
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3.3. Increasing number of functions

0

500

1,000

1,500

2,000

2,500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
x

e
cu

ti
o

n
 t

im
e

 (
se

co
n

d
s)

Number of Modules and Workers

Figure 3.15: Execution time for an increasing number of modules and workers.
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Figure 3.16: Execution time for an increasing number of functions.

equally distributed over the different modules of the program.

Figure 3.15 shows how execution time keeps reducing until 4 modules and
workers (3.5 factors of benefit). From 4 to 7, differences among the values are
lower than 1%. From 8 workers and modules on, the figure displays a slight
increase in execution time due to the cost of context switching. Therefore, the
results of the experiments seem to indicate that the optimal value for workers
and modules ranges from the number of cores to twice this value.

3.3.6 Increasing number of functions

In order to see how the platform behaves for growing program sizes, this experi-
ment increases the number of functions in the program from 1,000 to 15,000. We
selected this maximum value because it was the biggest program supported by
the IDA disassembler. The number of cores and workers is fixed to 4.

In Figure 3.16, we can see how execution time shows a linear increase of runtime
performance for an increasing number of functions (i.e., the size of the programs).
The runtime performance of our platform is not spoiled when really big modules
with 15,000 functions are processed.
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3.3. Increasing types of patterns
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Figure 3.17: Execution time per function, increasing the number of functions.

Figure 3.17 presents another view of the same experiment. This figure dis-
plays the execution time performance per function, for an increasing number of
functions in the program. For small programs, there is an initialization penalty
that causes a higher execution time, when a low number of functions is processed.
When the program size grows, this initialization cost becomes negligible. From
5,000 functions on, the execution time per function converges (the standard devi-
ation is lower than 3.4%), showing that the runtime performance of the platform
does not decrease for big input programs.

3.3.7 Increasing MaxOffset and MaxSize

We now modify the values of the MaxOffset and MaxSize parameters used to ob-
tain the binary subpatterns. We used 4 modules, each one implemented with 750
functions. MaxOffset is incremented from 0 to 8, fixing MaxSize in 4. We apply
the same method to analyze the influence of MaxSize on runtime performance,
increasing its value from 1 to 8 and fixing MaxOffset to 4.

Figure 3.18 shows both variables. We can see how MaxOffset shows a linear
influence on execution time. The regression line shown in Figure 3.18 has a slope
of 51, representing the cost in seconds of increasing one unit in MaxOffset for
the given configuration. For MaxSize, the best regression obtained is quadratic
(Figure 3.18). The user should be aware of that, meaning that choosing high
values for MaxSize will involve quadratic increases of the execution times.

3.3.8 Increasing types of patterns

The last variable to be measured is the number of patterns to be recognized. The
patterns are specified with Pattern Detection functions provided by the user. In
our return function type example, we identify 3 types of patterns (RET, PRE
and POST CALL). We measure the runtime performance of the 7 possible com-
binations of these 3 patterns. Modules, workers, cores, MaxSize and MaxOffset
are fixed to 4, and each module contains 750 functions (3,000 in total).

Figure 3.19 shows the results. The three first bars show the execution time
consumed to extract each pattern individually. The three next bars display the
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3.3. Execution time for a real case scenario

Figure 3.18: Execution time for an increasing number of MaxOffset and MaxSize.

execution time for two patterns in parallel, compared to the costs of extracting
them individually. In these three scenarios, the platform obtains an average
benefit of 1.65 factors due to parallelization. When the platform extracts three
patterns in parallel, this benefit increases to 2.1 factors.

3.3.9 Execution time for a real case scenario

We have also measured execution time for the particular scenario of inferring
the return type of a function. The purpose of this section is not to present how
this problem can be solved with machine learning (detailed in Chapter 5), but
to measure the execution time required to extract the binary patterns for that
particular problem.

We extract binary code patterns before ret instructions, and before and after
function invocations. Since a great number of functions are required to build an
accurate model for this problem, we use the Cnerator stochastic source-code pro-
gram generation tool (Chapter 7). With Cnerator, we can generate any number
of random functions (and invocations to them) for all the different types in the
language. These functions are then passed to our platform to generate the output
dataset.

Since Cnerator provides us with any number of functions, we must work out
the number of functions necessary to build an accurate model. For this purpose,
we used the following method: we create 1000 functions for each C type; we
extract the binary patterns in those functions with our platform; and we train
a decision tree with the generated dataset to compute the accuracy rate using

28



3.3. Execution time for a real case scenario

Figure 3.19: Execution time when extracting different types of patterns.

10-fold stratified cross-validation. These steps are repeated in a loop, increment-
ing the number of functions in 1000 for each type. We stop when the Coefficient
of Variation (CoV) of the last 5 accuracy values is lower than 2%, representing
that the increase of functions (individuals) does not represent a significant im-
provement of the accuracy. Finally, we build the final model with the dataset
generated in the last iteration.

Following the method described above, we ended up with a dataset with
160,000 functions and 3,321 binary patterns (the size of the dataset was 998
MB). The platform generated the dataset in 2 hours 11 minutes and 56 seconds
(4 workers and CPUs). We also measured the sequential version, taking 7 hours
41 minutes and 46 seconds to generate the same dataset.

The implementation of the platform is freely available for download [82].
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Chapter 4

Method to create predictive
models for decompilation

In the previous chapter, we described a platform for the automatic extraction
of patterns in binary code. Before using this platform for a particular example
of the decompilation problem, we propose a method to create predictive models
aimed at improving the performance of existing decompilers. This is the general
approach we propose to obtain high-level semantic information from binary code,
using machine learning. As we will see, machine learning is not only used to
build predictive models but also as a feature engineering mechanism to improve
the datasets utilized to create such models.

4.1 Challenges faced

As mentioned, inferring the original source code from its compiled binaries is
an undecidable problem [1]. Moreover, the creation of predictive models to im-
prove existing decompilers involves many challenges, since such tools have been
improved throughout the years [23]. A method to create predictive models for
decompilation must tackle the following main challenges:

1. The first main challenge (Section 4.2) is the high dependency that the pre-
dictive models have on different variables, such as the compiler used, the
target operating system and microprocessor and the compiler options. If
the value of one of these variables is modified (e.g., a different compiler is
used), the binary patterns to be found in the compiled application change,
and a new predictive model should be created to classify those patterns.

2. The second main challenge (Section 4.3) is that, for a given configuration
(i.e., set of values of the previously mentioned variables), the variability of
binary code, and hence the search space, is huge. For example, the mov

eax, 5 assembly instruction is represented in x86 Windows 32-bit binary
with the following five bytes: b8 05 00 00 00. Since the second parameter
is a 4-byte int literal, the mov eax instruction may have 232 = 4.294 million
distinct instances. This value is much higher than, for instance, the number
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4.2. Influencing variable

of words to be considered in a classical Natural Language Processing (NLP)
problem (the English Wiktionary contains 520,000 entries).

3. The third main challenge (Section 4.4) is related to the language features
to be decompiled. As we will see in this dissertation, inferring the original
code of high-level language constructs (e.g., the type returned by a function,
its number of arguments, and control-flow statements) embodies sufficient
complexity to build a separate model for each language construct.

4.2 Influencing variable

Different values of the following variables commonly produce distinct binary code
when a source program is compiled:

– Compiler. The code generation module in a compiler takes the intermediate
representation of a program and produces the output (binary) code [83].
The templates used to generate the code for a particular language construct
vary from one compiler to another [84]. Therefore, the binary patterns to
be classified depend on the compiler used to produce the binaries.

– Binary file format. Binary executables are those files that could be directly
executed by the CPU. In addition to the binary representation of instruc-
tions, they contain headers and tables with relocation and fixup informa-
tion, together with various types of metadata. Although there are plenty of
binary file formats, the most common ones are Portable Executable (PE)
for Windows, Executable and Linkable Format (ELF) for many versions of
Unix, Mach-O for Mac OS and iOS, and MZ for DOS.

– Operating system. The binary code generated by a compiler commonly
depends on the target operating system.

– Word/pointer size. Although most microprocessors currently provide a 64-
bit word/pointer size, there are still many applications and operating system
distributions for 32 bits. This fact should be considered when building
predictive models to decompile binary code.

– Compiler options. Native language compilers (e.g., C, C++, Go and Rust)
provide multiple options for different purposes. The code optimization op-
tions and those aimed at specifying specific features of the generated code
(e.g., memory alignment and stack frame runtime error checking) influence
the code templates used by the compiler. On the contrary, those options
related to the compiler front-end (e.g., type system, warning messages and
semantic rules) should not be considered.

– Target microprocessor. There exist plenty of microprocessors in the market,
and some binary language compilers provide specific code templates for each
one. Although this could be considered as a particular compiler option
(previous item), its strong influence on the generated code has made us
include it as a different variable.

When one of the values of the previous variables changes, the patterns to be
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Figure 4.1: Variables that influence the decompilation predictive model.

found for the same high-level construct also change. This means that the decom-
pilation problem strongly depends on those variables. Therefore, the method we
propose to deal with this complexity creates different predictive models for each
value of the given parameters (i.e., each configuration).

Our proposal is depicted in Figure 4.1. Many high-level source code programs
are compiled with a particular compiler, options, binary file format, operating
system, word size and target microprocessor. Thanks to the instrumentation
process described in Section 3.1.1, different binary patterns are labeled with high-
level language constructs of the source code to build the dataset. A supervised
machine learning algorithm is then used to train a predictive model, which is
finally produced.

This process should be repeated for each value of the influencing variables (for
each configuration) we want our system to be able to support. As a result, differ-
ent predictive models are generated. Therefore, given a binary file to decompile,
a relevant question would be which predictive model should be used to decompile
that file.

Some values of the influencing variables may be inferred deterministically from
the binary code. These variables are the binary file format, target microprocessor
and word size [85]. For the rest of the variables, there exist probabilistic models
capable of accurately inferring the compiler used [36], the compiler options [37]
and the target operating system [86].

If we want to decompile binary code from different configurations, we should
consider that training different models would require many CPU resources. How-
ever, once the predictive models are built, the runtime resources they consume
are commonly low1, and their implementation is pretty simple [9].

4.3 Variability of binary files

As mentioned, the binary language supported by existing microprocessors has a
huge variability. Compared to word-level language models in NLP, the number

1Except for neighborhood-based algorithms such as k-nearest neighbors.
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of words used in such problems (around half a million) is much fewer than the
raw representation of binary instructions (just the mov eax, literal instruction
has more than 4.294 million distinct instances). Therefore, the automatic com-
putation of word (byte) embeddings [87] for the decompilation problem does not
seem to be feasible, due to the extremely huge number of programs that would
be required in the training process –for example, English corpora with 1 million
words are considered small [88].

Therefore, the exact representation of binary instructions cannot be directly
used as features in the dataset, because we will not have sufficient programs (indi-
viduals, instances or samples) to train the models. Thus, the approach we propose
is the generalization of binary constructs, supervised by a domain expert1. For
example, most of the mov eax, literal instructions could be generalized to the
same instance, when int is the high-level type returned by the function. How-
ever, mov eax, 0 and mov eax, 1 should not be included in that generalization,
because they are often associated with the bool return type (see Chapter 6).

The generalization process constitutes a feature engineering mechanism to
discover new and more general binary patterns (features in the dataset) that
improve model accuracy. The discovery of such generalizations is done by a
domain expert who analyzes the interpretable classification models created by a
machine learning algorithm from a dataset without generalizations.

What follows are the steps of the iterative method we follow to define new
binary pattern generalizations for a given syntax construct (e.g., inferring the
high-level type returned by a function), illustrated in Figure 4.2:

1. A dataset with the exact representation of binary instructions is created
using the platform described in Chapter 3. For example, we include the
RET, PRE and POST CALL binary patterns for each function, labeled
with the actual high-level return type.

2. An interpretable white-box classifier is created and its classification perfor-

1In this context, domain experts are people with experience in compiler construction and a
good understanding of assembly code.
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mance is measured. We use decision trees because models are interpretable,
perform well with large datasets, and handle both numerical and categori-
cal data [89]. However, any other interpretable classification algorithm can
be used.

3. The classification rules in the decision tree model are extracted. Then, the
domain expert analyzes classification rules and the binary patterns found
by the classifier. He/she checks the reason why the model successes or fails
in the classification. For example, it could be discovered that the mov eax,
literal pattern is classified as int except when the integer literal is 0 or 1,
which should be classified as bool.

(a) If new generalizations are discovered, they are included in the dataset
and the values of the cells for those new generalizations are computed.
In our example, a new generalization pattern mov eax, int literal ex-
cluding 0 and 1 is added to the dataset.

(b) If no further generalizations are discovered, the algorithm terminates.

4. A new decision tree with the whole dataset, including the new features, is
created. We compare its performance with one of the previous models.

(a) If the performance of the new classifier is higher than the last one,
then generalizations were successful and we keep the new features in
the dataset. Jump to step 3.

(b) If the classification performance decreases, the last generalization fea-
tures are not kept in the dataset. Then, the domain expert should
analyze why this occurs and propose new generalizations. Jump to
step 3.

Table 4.1 shows a selection of some generalizations identified with our method
for the decompilation of function return types (all of the generalizations are de-
tailed in Appendix B). Operand is the most basic generalization type, which
groups some types of operands, such as literals, addresses and indirections, into
the same feature. Mnemonic generalizations group instructions with similar func-
tionalities, such as mov, movzx and movsx. The last type of generalizations, Se-
quence, clusters sequences of instructions that appear multiple times in the binary
code. For instance, callee epilogue and caller epilogue are binary sequences that
appear, respectively, before returning one expression and after invoking a func-
tion.

We have seen how machine learning can be used not only to build predic-
tive models but also as part of a feature engineering process (together with a
domain expert) to improve the performance of the classifiers. For the particu-
lar case scenario of inferring the high-level return type of functions, the exact
representation of binary instructions only provided 14% accuracy. With the gen-
eralizations included following our proposed method, 78.6% accuracy is achieved
(see Chapter 5).
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Instruction sequences Generalized pattern

O
p

er
a
n

d

sub al, 1 sub al, literal
mov ecx, [ebp+var 1AC8] mov ecx, [ebp+literal]
mov ecx, [ebp+var 1AC8] mov ecx, [reg]
push offset $SG25215 push address
movsd xmm0, ds: real@43e2eb565391bf9e movsd xmm0, *address
jmp loc 22F jmp offset
mov cx, [ebp+eax*2+var 10] mov cx, [ebp+eax*literal1+literal2]
mov cx, [ebp+eax*2+var 10] mov cx, [ebp+reg*literal1+literal2]
mov cx, [ebp+eax*2+var 10] mov ecx, [reg]

M
n

em
. movzx ecx, [ebp+var A] mov ecx, [ebp+var A]

movsx ecx, global var 1234 mov ecx, global var 1234

mov [eax], edx mov [eax], edx

S
eq

u
en

ce

pop esi

callee epilogue

pop edi
mov esp, ebp
pop ebp
ret

mov esp, ebp

callee epiloguepop ebp
ret

pop ebp
callee epilogueret

call func56
caller epilogueadd esp, 4

call proc2 caller epilogue

mov eax, 0

mov chain([ebp+var 8], ebx, eax, 0)mov ebx, eax
mov [ebp+var 8], ebx

ja loc D9B6B

bool cast([ebp+var 10])
mov [ebp+var 10], 1
jmp loc D9B72
mov [ebp+var 10], 0

Table 4.1: Generalization examples made by our system. reg variables represent registers, literal
integer literals, address absolute addresses, *address absolute addresses dereferencing and offset
relative addresses.

35



4.4. Language constructs

4.4 Language constructs

When decompiling a high-level program from binary files, we must first select
the source language to be decompiled. Although any language that produces
binary code could be considered (e.g., C, C++, Go and Rust), C is commonly
the lingua franca used by most compilers [90]. Most programmers know this
language, and its abstraction level allows representing any language construct in
an understandable fashion. However, if the user wants to decompile binaries to
another high-level language, the following method could also be applied.

To decompile a specific language construct, there are some binary fragments
that should be analyzed, whereas others do not affect the language constructs
at all. For instance, the return type of a function depends on the binary code
associated with the return high-level statements and on function invocations.
However, the binary code that allocates memory for local variables does not
affect the function return type. Thus, there is a strong dependency between the
language construct to be inferred and some particular binary fragments.

In our study of the related work (Chapter 2) we saw how some predictive
methods are more efficient to reconstruct particular language constructs. Chua
et al. show how Recurrent Neural Networks (RNN) provide an accurate approach
to infer the number of parameters [10]; extremely randomized trees combined with
conditional random fields are used to discover names and types of identifiers; and
RNN with additional post-processing techniques discover some code snippets.
These works seem to indicate that is worth using potentially different models to
decompile distinct language constructs.

The following steps describe the process we propose to create a predictive
model for each different language construct:

Input: a collection of the language constructs to decompile.

Output: a collection of the predictive models.

Foreach language construct to be decompiled do

– Ask the domain expert to identify all the binary fragments that might
influence the construct to infer.

– Label all the binary fragments with the high-level language construct
identified by the expert. Create a dataset where each feature represents
the distinct binary patterns found for each fragment, using the binary
pattern extraction platform defined in Chapter 3.

– With that dataset:

∗ Apply different feature selection algorithms (e.g., recursive feature
elimination and select from model).

∗ Build interpretable white-box models (e.g., decision trees).

∗ Use different algorithms to obtain classification rules with mini-
mum support and confidence (e.g., rule ensembles [91] and FP-
Growth [92]).
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4.4. Language constructs

– The domain expert analyzes the interpretable white-box models, the
selected and discarded features, and the classification rules obtained.
With this information, he/she must identify the binary fragments that
actually influence the language. Such fragments are included as fea-
tures, and the remaining ones are no longer considered.

– Create the predictive model with the selected features, following the
incremental iterative process described in Section 4.3.

Return the different predictive models created.

This process was followed for the decompilation problem of the function return
type, for Windows PE 32-bit binaries generated by Microsoft C compiler with the
default compiler options (Chapter 5). Initially, the domain expert included all
the function body and the binary code before and after function invocation. The
process finally indicated that only 1) the binary code for the expressions after
return, and 2) the following instruction after function invocation (and caller
epilogue), actually influence on the return type. We are about to see in the
following chapter how to build predictive models from those two binary patterns.
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Chapter 5

Decompilation of function return
types

In this chapter, we apply the method proposed in Chapter 4 to decompile the
return type of all the functions in a binary program. The resulting predictive
models are evaluated and compared with the state-of-the-art decompilers. The
platform described in Chapter 3 is used to retrieve the binary patterns from
binary code. We focus our research on Windows PE 32-bit binaries generated
by Microsoft C compiler with the default compiler options. For other kinds of
binaries, the method described in Section 4.2 should be followed.

5.1 System overview

Figure 5.1 shows the architecture of our system [93]. It consists of two phases:
training and inference (prediction). In the training phase, it receives C source
code as an input and generates different machine learning models. Then, in the
inference phase, the generated models predict the high-level type returned by
functions by just receiving their binary representations.

The C source code is processed to build the datasets used to create the models.
This process is performed with the binary pattern extraction platform described
in Chapter 3. In this description, we summarize how we used our platform for
this particular case scenario.

The system starts instrumenting C source code. This step embeds annotations
in the input program to allow associating high-level constructs to their binary
representation (Section 5.1.1) [70]. After that, the instrumented source code
is compiled to obtain the binaries. A pattern extraction process analyzes the
binaries looking for the annotations, collecting the set of binary patterns related
to each function invocation and return expression. Finally, the resulting dataset
is created, where binary patterns are associated with the return type of each
function.

Table 5.1 shows the simplified structure of the datasets generated by our sys-
tem. Each row (individual, instance or sample) represents a function from the
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Generation of 
supervised machine 

learning models

Training Phase

Inference (Prediction) Phase

Source code
(high-level return types)

Figure 5.1: System architecture.

(RET) (POST CALL)
mov eax, literal caller epilogue ... Return type
callee epilogue cwde

func1 1 0 ... int

func2 0 1 ... short

... ... ... ... ...
funcn-1 0 1 ... short

funcn 0 0 ... double

Table 5.1: Example dataset generated by our system.
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5.1. Compilation

char toupper(char c) {

if (c >= 'a' && c <= 'z')

return c + 'A' - 'a';

return c;

}

char toupper(char c) {

__dummy__("__O4D__:toupper:char");

if (c >= 'a' && c <= 'z')

__RETURN1__: return c + 'A' - 'a';

__RETURN2__: return c;

}

Figure 5.2: Original C source code (left) and its instrumented version (right).

input C source code. Each column (feature or independent variable) but the last
one represents a binary pattern found by the pattern extraction process. For
example, the first pattern in Table 5.1 is the assembly code for a return expres-
sion of some functions returning an int literal. That value is moved to the eax

32-bit register, followed by the code that all functions use to return to the caller
(callee epilogue). The second feature is the binary code of a function invocation
(caller epilogue) followed by a cwde instruction. Since cwde converts the signed
integer representation from ax (16 bits) to eax (32 bits), the target class in the
dataset is set to the short high-level type (Section 5.1.3 explains how the dataset
is built).

After creating the dataset, the system trains different classifiers following the
methodology described in Section 5.2. Then, in the inference phase, we are able
to predict the high-level return types originally written in the source code by just
receiving the binaries of compiled programs. The forthcoming subsections detail
each of the modules of the architecture.

5.1.1 Instrumentation

As mentioned, much high-level information is discarded in the compilation pro-
cess. One example is the association between a high-level return statement and
its related assembler instructions. There is not a direct way to identify the binary
code generated for a return statement. For this reason, our instrumentation pro-
cess includes no-operational code around some syntactic constructs in the input C
program. The instrumented code does not change the semantics of the program
but helps us find the binary code generated for different high-level code snippets

The left-hand side of Figure 5.2 shows an example of the original C function,
and its right-hand side presents the instrumented version. The function dummy

performs no action. Its invocation is added to provide information about the name
and return type of the high-level function in the binary code.

The example in Figure 5.2 also shows the instrumentation to delimit the binary
code of the expressions returned by a function. To this end, different RETURNn

labels are added before every return statement. The end of the returned expres-
sion is delimited by the ret assembly instruction.
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Figure 5.3: A RET binary fragment/chunk

5.1.2 Compilation

The instrumented C source code is compiled to obtain the binaries. In this
case, we only use the Microsoft cl compiler to build native applications for Intel
x86 32-bit microprocessors. The compilation parameters are the default ones.
The method described in Section 4.2 should be followed if any of these variables
(compiler, file format, operating system, word size, compiler options or target
microprocessor) are changed.

5.1.3 Pattern extraction

The pattern extraction module performs three processes: extraction of binary
fragments or chunks, pattern generalization and dataset generation.

5.1.3.1 Extraction of binary fragments

The first task is to extract the binary fragments or chunks associated with every
return and function invocation statements. As we saw in Section 3.1.2, we can
use the Binary Pattern Extractor module of our platform to retrieve RET and
POST CALL patterns. Then, with the method described in Section 4.4, we found
out that PRE CALL patterns have almost no influence on the type returned by
a function1, so we do not include them in the output dataset.

For the RET patterns, we extract the binary chunks between RETURNn

labels and the next ret instruction. Since we do not know how many instructions
are sufficient to predict the return type (one high-level expression may produce
many low-level instructions), we generate different binary patterns with a growing
number of binary instructions before ret. To do that, we set MaxOffset to 0 and
MaxSize to the number of binary instructions between ret and the RETURNn

labels (Figure 5.3).

For the POST CALL patterns, we retrieve the sequences of instructions after
each function invocation. We consider the call instruction, the optional add

esp, literal instruction used to pop the invocation arguments from the stack,
and the following assembly instructions. Similar to RET patterns, we first cre-
ated different POST CALL patterns with an increasing number of instructions

1As we will see in Section 5.3.1, the PRE CALL patterns are only useful to detect struct
types, due to the code transformation that the Microsoft cl compiler implements to return
structs (Figure 5.4). However, as we will see in Chapter 6, RET and POST CALL patterns are
sufficient to detect structs.
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5.1. Prediction of high-level return types

after call and stack restoration. However, the application of the method in
Section 4.4 showed us that only the first assembly instruction after stack restora-
tion influences on the returned type. Consequently, this was the only instruction
considered in POST CALL patterns (MaxOffset = 1 and MaxSize = 2).

5.1.3.2 Pattern generalization

In Section 4.3, we discussed the huge variability of binary files. That variability
demands a generalization mechanism to use machine learning for decompilation
purposes. The algorithm described in Figure 4.2 is applied to generalize the RET
and POST CALL patterns selected by our platform. Those generalizations im-
prove the performance of the predictive models. All the generalizations discovered
for this particular decompilation problem are detailed in Appendix B.

5.1.3.3 Dataset creation

After pattern generalization, the dataset is created before training the models.
Each cell in the dataset indicates the occurrence of each pattern (column) in every
single function (row) in the program (Table 5.1). RET patterns are associated
with the function bodies, but POST CALL patterns are related to the function
being invoked. For example, if a function f is invoked in the body of a function
g, the POST CALL pattern will be associated with the row representing the
function f, not g. Notice that a single function may have different RET patterns
(one for each return statement in its body), and it commonly has multiple POST
CALL patterns (one for each invocation).

Finally, the return type (target) of each function is added to the dataset. Our
system gets that information from the string parameter passed to the dummy

function added in the instrumentation process.

5.1.3.4 Creation of predictive models

We utilize 14 different algorithms (Section 5.2.3) to create the same number
of predictive models. We compare those models to see which one is the most
appropriate one to infer the high-level return types of functions. Since our system
generates a lot of features, we apply different feature selection algorithms to
reduce the dimensionality of the dataset (Section 5.2.4). The hyperparameters
for each model are also tuned to improve their performance (Section 5.2.5).

5.1.3.5 Prediction of high-level return types

The training phase ends with the creation of the predictive models. Then, our
system is ready to infer high-level return types from binary code. To that aim, we
search for ret and call opcodes in the binaries, retrieving the binary code used
before returning from a function (ret) and after invoking it (call). Those code
fragments are matched against all the patterns (features) in the dataset, and the
result (a vector of 0 or 1 values) is passed to the models to predict the high-level
return type of the function.
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Project Functions LoC Description

arcadia 121 3,590 Implementation of Arc, a Lisp dialecta.
bgrep 5 252 Grep for binary codeb.
c ray tracer 52 1,063 Simple ray tracerc.

jansson 176 7,020
Library for encoding, decoding and manipulating JSON
data d.

libsodium 642 35,645
Library for encryption, decryption, signatures and password
hashinge.

lua 5.2.3 820 14,588 The Lua programming languagef.
masscan 496 26,316 IP port scannerg.
slre 17 564 Regular expression libraryh.

Total 2,329 89,038

a https://github.com/kimtg/arcadia
b https://github.com/elektrischermoench/bgrep
c https://web.archive.org/web/20150110171135/http://patrickomatic.com/c-ray-tracer
d https://github.com/akheron/jansson
e https://github.com/jedisct1/libsodium
f https://lua.org/download.html
g https://github.com/robertdavidgraham/masscan
h https://github.com/cesanta/slre

Table 5.2: Open-source C projects used.

In the evaluation process (Section 5.2.6), the functions used to recover the
high-level types are not utilized to train the model. Moreover, we evaluate the
performance of our system by decompiling code from programmers whose code
has never been used in the training phase (Section 5.3).

5.2 Methodology

We describe the methodology used to build and evaluate the predictive models
to infer the high-level types returned by functions.

5.2.1 Data origin

We take different C programs from open-source repositories to build our models.
Table 5.2 shows the different open-source C projects taken to create the dataset.
Although they sum 2329 functions and 89,038 lines of code, they do not represent
sufficient data to infer return types. Unfortunately, there are not many open-
source C (not C++) programs compilable with Microsoft cl compiler. Moreover,
to balance the dataset in Table 5.2, we may need to ignore some functions, so
the final number of functions would even be lower. Thus, we use Cnerator, our
stochastic C source code generator (Chapter 7), to increase the size of our dataset.

The final dataset comprises the source code of the “real” projects in Table 5.2
plus the synthetic code generated by Cnerator. On one hand, the synthetic code
provides a huge number of functions, a balanced dataset, and all the language
constructs we want to include. On the other hand, real projects increase the
probability of those patterns that real programmers often use (e.g., most C pro-
grammers use int expressions instead of bool for Boolean operations). This
combination of real and synthetic source code improves the predictive capability
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5.2. Feature selection

of our dataset.

5.2.2 Data size

Since Cnerator allows us to generate any number of functions (i.e., individuals),
we should define the appropriate number of functions to create our dataset. To
determine this number, we conduct the following experiment. We start with
a balanced dataset with 100 functions for each return type. Then, we build
different classifiers (see Section 5.2.3) and evaluate their accuracy. Next, we add
1000 more synthesized functions to the dataset, re-build the classifiers and re-
evaluate them. This process is repeated until the accuracy of classifiers converge.
To detect this convergence, we compute the coefficient of variation (CoV) of the
last ten accuracies, stopping when that coefficient is lower than 2%.

5.2.3 Classification

We use the following 14 classifiers from scikit-learn [94]: logistic regression (Lo-
gisticRegression), perceptron (Perceptron), multilayer perceptron (MLPClas-
sifier), Bernoulli näıve Bayes (BernoulliNB), Gaussian näıve Bayes (Gaussian-
NB), multinomial näıve Bayes (MultinomialNB), decision tree (DecisionTree-
Classifier), random forest (RandomForestClassifier), extremely randomized
trees (ExtraTreesClassifier), support vector machine (SVC), linear support
vector machine (LinearSVC), AdaBoost (AdaBoostClassifier), gradient boost-
ing (GradientBoostingClassifier), k-nearest neighbors (KNeighborsClassi-
fier).

In the process described in Section 5.2.2 to find the optimal size of the dataset,
we use a stratified and randomized division of the dataset (StratifiedShuffle-
Split class in scikit-learn). 80% of the instances in the dataset are used for
training and the remaining 20% for testing. Since each classifier has a differ-
ent optimal size, we choose the greatest optimal size (results are shown in Sec-
tions 5.3.1.1 and 5.3.2).

5.2.4 Feature selection

Our system generates a lot of features because, for each pattern, different gen-
eralizations are produced. Therefore, a feature selection mechanism would be
beneficial to avoid the curse of dimensionality and enhance the generalization
property of the classifiers. Therefore, after creating the datasets with the opti-
mal size, we select the appropriate features to create each model.

We use recursive feature elimination (RFECV) and selection from a model
(SelectFromModel) wrapper methods [95]. Given an external estimator that
assigns weights to features, RFECV selects the features by recursively considering
smaller sets. The feature selection process has been applied to the training dataset
(80% of the original one) using 3-fold stratified cross-validation (Stratified-
ShuffleSplit).

RFECV can only be used with algorithms that use scores. For the rest of the
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algorithms (näıve Bayes, k-nearest neighbors, multilayer perceptron and Ada-
Boost), we utilized the SelectFromModel feature selection meta-transformer.
SelectFromModel discards the features that have been rejected by some other
classifiers like tree-based ones. We used four SelectFromModel configurations:
random forest and extremely randomized trees as classifiers to select the features;
and the mean and median thresholds to filter features by their importance score.
The feature set with the best accuracy is selected for each different classification
algorithm (see the results in Sections 5.3.1.2 and 5.3.2).

5.2.5 Hyperparameter tuning

After feature selection, we tune the hyperparameters of each model. To that end,
we use GridSearchCV, which performs an exhaustive search over the specified
hyperparameter values. Similar to the feature selection process, the 80% training
set is used to validate the hyperparameters with 3-fold stratified cross-validation
(StratifiedShuffleSplit).

The final hyperparameters selected for each classifier are available at Ap-
pendix D. For the multilayer perceptron neural network, we use a single hid-
den layer with 100 units, the sigmoid activation function, Adam optimizer, and
softmax as the output function.

5.2.6 Evaluation of model performance

After feature selection and hyperparameter tuning, we create and evaluate differ-
ent models (one for each algorithm in Section 5.2.3) to predict the type returned
by functions. As mentioned, the dataset has real functions coded by program-
mers, and synthetic ones generated by Cnerator. We consider these two types of
code to define three different methods to evaluate the performance of the classi-
fiers:

1. Mixing real and synthetic functions. This is the simplest evaluation method,
where real and synthetic functions are merged in the dataset. 80% of them
are used for training and the remaining 20% for testing. These two sets
are created with stratified randomized selection. Therefore, real and syn-
thesized functions in the training and test sets are, respectively, 80% and
20%.

2. Estimate the necessary number of real functions for training. Since we have
lots of synthetic functions, we want to estimate to what extent synthetic
programs can be used to classify code written by real programmers. We
first create a model only with synthetic functions (80%) and test it with real
ones (20%). Then, we include 1% of real functions in the training dataset,
rebuild and retest the models, and see the accuracy gain. This process stops
when the CoV is lower than 1% for the last 10 accuracies. The obtained
percentage of real functions in the training set indicates how many real
functions are necessary to build accurate predictive models (32% for the
experiment in Section 5.3.1 and 48% for that in Section 5.3.2). Decision
tree was the classifier used to estimate this value.
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3. Prediction of complete real programs. This evaluation method measures
prediction for source code written by programmers whose code has not
been included in the test dataset. One real program is used to build the
test dataset, and no functions of that program are used for training. In
this case, we evaluate whether our system is able to predict return types
for unknown programming styles.

5.2.7 Selected decompilers

We compare our models with the following existing decompilers:

– IDA Decompiler [46]. This is a plugin of the commercial Hex-Rays IDA
disassembler [96]. This product is the result of the research works done
by Ilfak Guilfanov [47, 48]. This tool is the current de facto standard in
software reverse engineering.

– RetDec [55]. An open-source decompiler developed initially by Křoustek [56],
currently maintained by the AVAST company. It can be used as a stan-
dalone application or as a Hex-Rays IDA plugin. To avoid the influence of
the Hex-Rays IDA decompiler, we use the standalone version.

– Snowman [52]. Open-source decompiler based on the TyDec [50] and Smart-
Dec [51] proposals. Similar to RetDec, it can also be used as a standalone
application or as a Hex-Rays IDA plugin. We use the standalone version.

– Hopper [53]. A commercial decompiler developed by Cryptic Apps. Al-
though it is mainly focused on decompiling Objective-C, it also provides C
decompilation of any Intel x86 binary.

We also considered other alternatives that we finally did not include in our
evaluation. DCC [2] and DISC [42] decompilers do not work with modern exe-
cutables. The former is aimed at decompiling MS-DOS binaries, while the latter
only decompiles binaries generated with TurboC. Boomerang [3] and REC [45]
are no longer maintained. Lastly, we did not find the implementations of the
Phoenix [54], DREAM [58] and DREAM++ [59] decompilers.

5.2.8 Data analysis

For each classifier, we compute its performance following the three different eval-
uation methods described in Section 5.2.6. We repeat the training plus testing
process 30 times, computing the mean, standard deviation and 95% confidence
intervals of model accuracies. This allows us to compare accuracies of different
models, checking whether two evaluations are significantly different when their
two 95% confidence intervals do not overlap [97]. Figures showing model accura-
cies (Figure 5.7 and Figure 5.10) display the 95% confidence intervals as whiskers.

In a balanced multi-class classification, overall precision and recall are usu-
ally computed as the average of the metrics calculated for each class. These
aggregate metrics are called macro-precision and macro-recall [98]. Likewise,
macro-F1-score can be computed as the average of per-class F1-score [98], or as
the harmonic mean of macro-precision and macro-recall [99]. We use the first
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5.3. Grouping types by size

alternative because it is less sensitive to error type distribution [100]. For the
sake of brevity, we use precision, recall and F1-score to refer to the actual macro-
precision, macro-recall and macro-F1-score measurements.

We run all the code in a Dell PowerEdge R530 server with two Intel Xeon
E5-2620 v4 2.1 GHz microprocessors (32 cores) with 128GB DDR4 2400 MHz
RAM, running an updated version of Windows 10 for 64 bits.

5.3 Evaluation

In the assembly language, the concept of type is related to the size of values more
than to the operations that can be done with those values. For example, the
integer add instruction works with 8 (ah), 16 (ax) and 32 bits (eax), but it is not
checked whether the accumulator register is actually holding an integer. For this
reason, in this section, we evaluate two different kinds of models: those consider-
ing types by their size and representation (Section 5.3.1), and those considering
types by the operations they support—i.e., high-level C types (Section 5.3.2).

The first kind of models predicts return types when they have different size
or representation. In this way, these models separate short (2 bytes) from int

(4 bytes). They also tell the difference between int and float because, even
though their size is 4 bytes, their representations are different (integer and real).
On the contrary, char and bool are not distinguished in the first kind of models
because they both are 1-byte sized and hold integer values (C does not provide
different operations for char and bool).

After building and evaluating these type-by-size-and-representation models
(Section 5.3.1), we define additional mechanisms to distinguish among types with
similar sizes. Thus, Section 5.3.2 shows additional generalization patterns ob-
tained with the method in Section 4.3 to improve the classification of high-level
return types. With those enhancements, our models improve the differentiation
among types with the same size such as char and bool, and int and pointer1.

5.3.1 Grouping types by size

We start with the evaluation of models that group types by their size and rep-
resentation. We apply all the steps defined in the methodology (Section 5.2).
Then, we repeat the same process for models considering the C high-level types
(Section 5.3.2).

In binary code, the value returned by a function is passed to the caller via
registers. CPUs have different kinds of registers depending on their sizes and
representations (integer or a floating-point). In the particular case of Intel x86,
registers can hold integer values of 8-, 16- or 32-bit, and 32- or 64-bit floating-
point numbers.

Table 5.3 shows the target variable used in this first kind of models and their

1Note that, in assembly, there is no difference in the representation of integers, characters,
Booleans and pointers, because, for the microprocessor, all of them hold integer values.

47



5.3. Data size

Target C high-level type

INT 1 bool and char

INT 2 short

INT 4 int, long, pointer, enum and struct

INT 8 long long

REAL 4 float

REAL 8 double and long double

VOID void

Table 5.3: Relationship between the target variable (types grouped by size and representation)
and the C high-level types.

typedef struct stats stats_t;

stats_t init_stats() {

stats_t s;

/* ... function code ... */

return s;

}

void main() {

stats_t s = init_stats();

/* ... some code ... */

double mean = ((double)s.sum) /

((double)s.count);↪→

}

typedef struct stats stats_t;

stats_t * init_stats(stats_t *result)

{↪→

stats_t s;

/* ... function code ... */

*result = s;

return result;

}

void main() {

stats_t s;

stats_t *result = init_stats(&s);

/* ... some code ... */

double mean = ((double)result->sum)

/ ((double)result->count);↪→

}

Figure 5.4: The left-side code is transformed by cl into the right-side code to allow returning
structs in eax, which are actually passed to the caller as pointers.

corresponding C type. For INT 2, INT 8, REAL 4 and VOID, the class used corre-
sponds with a single high-level type. REAL 8 groups double and long double,
while INT 4 considers all the C types returned in the 32-bit eax register (structs
are actually returned as pointers).

Pointers are represented as INT 4 because the size of memory addresses in
Intel x86 is 32 bits (4 bytes). The struct type is also clustered as INT 4 because
the cl compiler transforms returned structs into pointers to structs, as depicted
in Figure 5.4. The returned pointer to struct is actually the result pointer
passed as an argument. In this way, the actual struct is a local variable created
in the scope of the caller (s variable in Figure 5.4), making easy the management
of the memory allocated for the struct. This is the reason why the actual value
returned is not a struct but a pointer (4 bytes).

The union type constructor is not listed in Table 5.3 because it has variable
size and representation. When the size of the biggest field is not bigger than 32
bits, 4 bytes are used. When it is higher than 4 bytes and lower or equal to 8, 64
bits are used. In case it is greater than 8 bytes, the compiler generates the same
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Figure 5.5: Classifiers accuracy for increasing number of functions (classifiers of types with
different size and representation).

code as for structs (Figure 5.4).

5.3.1.1 Data size

As mentioned in the methodology (Section 5.2), we use Cnerator to produce a
dataset with such a number of functions that make models accuracies to converge.
Figure 5.5 shows how classifiers accuracies grow as the dataset size increases.
Figure 5.6 presents the CoV of the last 10 values. We can see how, with 26,000
functions, the CoVs of the accuracies for all the classifiers are below 2%. Since
CoV is computed for the last 10 iterations and each iteration increases 1,000
functions, we build the dataset with 16,000 functions (and their invocations). In
addition to those 16,000 instances, we add the 2,329 functions retrieved from real
programs (Table 5.2).

5.3.1.2 Feature selection

We apply the five feature-selection methods described in Section 5.2.4 (RFECV
and SelectFromModel with random forest and extremely randomized trees, with
mean and median thresholds). Table 5.4 shows the best feature selection method
for each classifier, together with the number of features selected. The 1,019
features of the original dataset are reduced, on average, to 366. The selected
features produce statistically significant higher accuracy for Gaussian näıve Bayes
(3.22% better) and multilayer perceptron (3.52%). Moreover, the lower number
of features reduces training times and overfitting.
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Figure 5.6: Coefficient of variation of the last 10 accuracy values in Figure 5.5 (classifiers of
types with different size and representation).

Classifier Applied method (wrapped algorithm, accuracy threshold) Selected features

AdaBoost SelectFromModel(Random forest, Mean) 134
Bernoulli näıve Bayes SelectFromModel(Random forest, Median) 439
Decision tree SelectFromModel(Extremely randomized trees, Median) 419
Extr. randomized trees SelectFromModel(Extremely randomized trees, Median) 419
Gaussian näıve Bayes SelectFromModel(Extremely randomized trees, Mean) 130
Gradient boosting SelectFromModel(Extremely randomized trees, Median) 419
K-nearest neighbors SelectFromModel(Random forest, Median) 439
Lin. sup. vector machine SelectFromModel(Random forest, Median) 439
Logistic regression SelectFromModel(Random forest, Median) 439
Multilayer perceptron SelectFromModel(Extremely randomized trees, Median) 419
Multinomial näıve Bayes SelectFromModel(Random forest, Median) 439
Perceptron SelectFromModel(Random forest, Median) 439
Random forest SelectFromModel(Random forest, Mean) 134
Support vector machine SelectFromModel(Extremely randomized trees, Median) 419

Table 5.4: Best feature selection method used for each classifier (classifiers of types with different
size and representation).
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Figure 5.7: Accuracies of our classifiers and the existing decompilers, using the three differ-
ent evaluation methods described in Section 5.2.6 (classifiers of types with different size and
representation).

5.3.1.3 Hyperparameter tuning

We tune hyperparameters of the models as described in Section 5.2.5. For the
hyperparameters found, AdaBoost increased its accuracy by 7.85%. However, the
rest of the classifiers obtained accuracy gains below 2%, compared to the scikit-
learn default parameters. The final hyperparameters selected for each classifier
are available at Appendix D.

5.3.1.4 Results

Figure 5.7 shows the accuracies of the 14 trained models (left-hand side) and the
selected decompilers (right-hand side). All the systems are evaluated with the
three methods described in Section 5.2.6. It can be seen how all the classifiers
created with our dataset perform better than the existing decompilers, for all the
evaluation methods.

In Figure 5.7, we can also see that there are significant differences between the
first evaluation method and the two last ones, for all the machine learning models.
This shows how the common evaluation method that takes 80% for training and
20% for testing is too optimistic for this work. We need to feed the models
with sufficient code written by real programmers so that we are able to predict
return types with different programming styles. Existing decompilers show no
influence on the evaluation method because they use deterministic algorithms to
infer return types.

One discussion related to the second evaluation method is finding out the
number of real functions to be included in the training set, so that return types
could be inferred for unknown real code. As described in Section 5.2.6, we start
with a test set of 100% synthesized functions, and incrementally add real functions
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Figure 5.8: Accuracy of a decision tree for different percentage of real functions included in
the training dataset (classifiers of types with different size and representation). The red dot
indicates the value where the CoV of the last 10 accuracies is lower than 1%.

Accuracy Precision Recall F1-score

C
la

ss
ifi

er
s

AdaBoost 0.816 ± 1.40% 0.821 ± 1.10% 0.815 ± 0.54% 0.805 ± 1.01%
Bernoulli näıve Bayes 0.801 ± 0.51% 0.801 ± 0.43% 0.830 ± 0.35% 0.798 ± 0.42%
Decision tree 0.812 ± 1.45% 0.817 ± 1.21% 0.814 ± 0.55% 0.803 ± 1.06%
Extr. randomized trees 0.833 ± 1.39% 0.839 ± 1.22% 0.831 ± 0.50% 0.823 ± 1.04%
Gaussian näıve Bayes 0.616 ± 0.59% 0.687 ± 0.61% 0.736 ± 0.35% 0.650 ± 0.60%
Gradient boosting 0.839 ± 1.44% 0.863 ± 1.15% 0.832 ± 0.51% 0.838 ± 1.05%
K-nearest neighbors 0.785 ± 1.51% 0.798 ± 1.22% 0.805 ± 0.54% 0.783 ± 1.07%
Lin. sup. vector machine 0.801 ± 0.95% 0.827 ± 1.32% 0.823 ± 0.43% 0.806 ± 0.90%
Logistic regression 0.821 ± 1.52% 0.817 ± 1.37% 0.834 ± 0.50% 0.812 ± 1.15%
Multilayer perceptron 0.814 ± 1.37% 0.821 ± 1.24% 0.831 ± 0.46% 0.809 ± 0.94%
Multinomial näıve Bayes 0.815 ± 1.51% 0.819 ± 1.32% 0.829 ± 0.52% 0.807 ± 1.14%
Perceptron 0.821 ± 1.53% 0.856 ± 1.74% 0.815 ± 0.82% 0.818 ± 1.28%
Random forest 0.833 ± 1.37% 0.840 ± 1.15% 0.830 ± 0.49% 0.823 ± 1.00%
Support vector machine 0.774 ± 0.64% 0.807 ± 1.35% 0.809 ± 0.37% 0.782 ± 0.70%

D
ec

o
m

p
. IDA decompiler 0.583 0.495 0.413 0.415

RetDec 0.290 0.111 0.133 0.110
Snowman 0.544 0.365 0.328 0.322
Hopper 0.333 0.132 0.132 0.079

Table 5.5: Performance of the classifiers and existing decompilers using the third evaluation
method (classifiers of types with different size and representation). 95% confidence intervals
are expressed as percentages. Bold font represents the best values. If one column has multiple
cells in bold, it means that values are not significantly different.

until model accuracy converges. Figure 5.8 shows this influence of real functions
on the classifier accuracy. The red dot shows that with 32% of real functions, CoV
of model accuracy falls below 1%. We fixed that value for the second evaluation
method.

Figure 5.7 also shows that there is no statistically significant difference between
the second method and the third one (i.e., 95% confidence intervals overlap [97]).
This means that we need to include in the training dataset at least 32% of real
functions so that the trained models are able to predict return types of code
written by programmers not included in the training dataset.

Table 5.5 shows the accuracy, precision, recall and F1-score of our models
and the existing compilers, using the third evaluation method (Section 5.2.6).
Gradient boosting is the classifier with the best results: 0.839 accuracy and 0.838
F1-score. Sometimes, there are no significant differences between random forest
and extremely randomized trees. Gradient boosting accuracy and F1-score are,
respectively, 43.9% and 101.9% higher than the best decompiler (IDA).
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Predicted class
bool char short int pointer struct long long float double void

A
ct

u
a
l

cl
a
ss

bool 483 61 0 1 12 0 41 0 0 2
char 285 179 60 16 13 0 45 0 0 2
short 7 85 395 38 24 0 44 0 1 6
int 4 38 67 184 111 132 59 0 0 5
pointer 4 16 3 48 365 106 55 0 0 3
struct 0 0 0 10 6 584 0 0 0 0
long long 0 4 0 5 28 3 554 0 0 6
float 0 1 1 0 16 0 40 358 184 0
double 0 0 0 0 12 0 52 170 365 1
void 3 2 0 2 3 0 41 0 0 549

Table 5.6: Confusion matrix for the decision tree classification of high-level types, with a
balanced dataset comprising 6,000 functions.

5.3.2 Classifying with high-level types

In the previous subsection, we measured the performance of our predictive models,
considering types by their size and representation. However, the objective of a
decompiler is to infer the high-level C types, even if they share the exact size
and representation. Following the same methodology, we now conduct a new
experiment to reconstruct C types from binary code.

In this case, we consider the C built-in types bool, char, short, int, long
long, float, double and void. For the particular case of Microsoft cl and 32-
bit architecture, the long type is exactly the same as int, since the semantic
analyzer allows the very same operations and its target size and representation
are the same; the same occurs for double and long double. For this reason,
long and long double types are considered the same as, respectively, int and
double. The signed and unsigned type specifiers are not considered, as there
is no difference between their binary representations.

We also consider pointer and struct type constructors. Arrays are not
classified because C functions cannot return arrays (they actually return point-
ers) [101]. As discussed in Section 5.3.1, the union type constructor is actually
represented as one single variable with the size of the biggest field, so cl generates
no different code when the type of the biggest field is used instead of union. The
same happens with enum and int.

Our classifiers detect the struct and pointer type constructors, but not the
struct fields or the pointed type. Once we know the return type is pointer or
struct, the subtypes used to build the composite types could be obtained with
existing deterministic approaches [19, 23].

We first analyze how well the exiting pattern generalizations (Table 4.1) clas-
sify high-level return types. To that end, we conduct the following experiment.
First, we define the target variable as the high-level C types described above.
Then, we build a decision tree classifier and evaluate it with a balanced test
dataset comprising 6,000 functions. The confusion matrix obtained is shown in
Table 5.6. If we analyze the two types with 1-byte size (bool and char), we
can see that 28.8% of the instances are misclassified between bool and char. A
similar misclassification issue occurs for the 4-byte-size types int, struct and

53



5.3. Classifying with high-level types

0%

10%

20%

30%

40%

50%

60%

70%

80%

Support vector machine Linear support vector machine

Multinomial naïve Bayes Gaussian naïve Bayes

Bernoulli naïve Bayes Multilayer perceptron

Perceptron Logistic regression

Random forest Extremely randomized trees

Decision tree K-nearest neighbors

Adaboost Gradient boosting

Number of functions

A
cc

u
ra

cy

Figure 5.9: Classifiers accuracy for increasing number of functions (classifiers of high-level
types).

Classifier Applied method (wrapped algorithm, accuracy threshold) Selected features

AdaBoost SelectFromModel(Random forest, Mean) 147
Bernoulli näıve Bayes SelectFromModel(Extremely randomized trees, Median) 456
Decision tree SelectFromModel(Random forest, Median) 455
Extr. randomized trees SelectFromModel(Random forest, Median) 455
Gaussian näıve Bayes SelectFromModel(Extremely randomized trees, Median) 456
Gradient boosting SelectFromModel(Extremely randomized trees, Median) 456
K-nearest neighbors SelectFromModel(Random forest, Median) 455
Lin. sup. vector machine SelectFromModel(Random forest, Median) 455
Logistic regression SelectFromModel(Random forest, Median) 455
Multilayer perceptron SelectFromModel(Extremely randomized trees, Median) 456
Multinomial näıve Bayes SelectFromModel(Extremely randomized trees, Median) 456
Perceptron SelectFromModel(Random forest, Median) 455
Random forest SelectFromModel(Random forest, Median) 455
Support vector machine SelectFromModel(Random forest, Median) 455

Table 5.7: Best feature selection method used for each classifier (classifiers of high-level types).

pointer, mistaking 22.9% of the instances among these three types.

This experiment shows us how there is still room for improving the classifica-
tion of high-level types with similar size and representation. Aware of that, we
apply the generalization method described in Section 4.3 to include new gener-
alization patterns for differentiating among high-level types with the same size
and representation. We search for the misclassified functions in Table 5.6 and
analyze the sequences of assembly code related to the same type. Once detected,
we generalize and include them in our pattern extractor (Figure 5.1) to improve
the classifiers. Therefore, we use machine learning to detect some of the limi-
tations of the existing classifiers, analyze potential binary patterns, define new
features of the dataset, and create better models to classify the return type of
decompiled functions (Section 4.3). The new generalizations defined are detailed
in Appendix B.
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Figure 5.10: Accuracies of our classifiers and the existing decompilers, using the three different
evaluation methods described in Section 5.2.6 (classifiers of high-level types).
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Figure 5.11: Accuracy of a decision tree for different percentage of real functions included in
the training dataset (classifiers of high-level types). The red dot indicates the value where the
CoV of the last 10 accuracies is lower than 1%.

A new dataset is created with all the new generalization features in Appendix B
to classify the ten different high-level types mentioned. We compute the optimal
size of the dataset with the algorithm described in Section 5.2.2. The result-
ing dataset has 18,000 synthetic functions (Figure 5.9) plus the 2,339 functions
implemented by real programmers. Following the methodology described in Sec-
tion 5.2, we run different feature selection algorithms, obtaining the features in
Table 5.7. The existing 1,036 features were reduced, on average, to 433. We then
tune the hyperparameters of the models, achieving similar values to the previous
experiment (their values can be consulted in Appendix D).

5.3.2.1 Results

Figure 5.10 compares the accuracies of the new models and the selected decom-
pilers (detailed data is depicted in Table 5.8). All the models outperform the
existing decompilers. As in the previous case, the first evaluation method has
significant differences with the two last ones (which obtain similar results). For
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5.3. Results

Accuracy Precision Recall F1-score

C
la

ss
ifi

er
s

AdaBoost 0.740 ± 0.49% 0.764 ± 0.92% 0.741 ± 0.42% 0.741 ± 0.65%
Bernoulli näıve Bayes 0.783 ± 0.29% 0.822 ± 0.33% 0.785 ± 0.31% 0.792 ± 0.31%
Decision tree 0.750 ± 0.47% 0.772 ± 0.85% 0.753 ± 0.47% 0.751 ± 0.59%
Extr. randomized trees 0.771 ± 0.42% 0.793 ± 0.82% 0.774 ± 0.45% 0.772 ± 0.56%
Gaussian näıve Bayes 0.595 ± 0.67% 0.671 ± 0.88% 0.692 ± 0.35% 0.619 ± 0.51%
Gradient boosting 0.786 ± 0.31% 0.820 ± 0.29% 0.783 ± 0.31% 0.791 ± 0.30%
K-nearest neighbors 0.745 ± 0.40% 0.759 ± 0.78% 0.749 ± 0.41% 0.743 ± 0.57%
Lin. sup. vector machine 0.779 ± 0.42% 0.803 ± 0.81% 0.782 ± 0.34% 0.780 ± 0.59%
Logistic regression 0.780 ± 0.36% 0.802 ± 0.58% 0.785 ± 0.36% 0.785 ± 0.37%
Multilayer perceptron 0.783 ± 0.36% 0.815 ± 0.65% 0.784 ± 0.37% 0.788 ± 0.43%
Multinomial näıve Bayes 0.781 ± 0.28% 0.818 ± 0.29% 0.785 ± 0.31% 0.789 ± 0.30%
Perceptron 0.745 ± 1.35% 0.789 ± 1.20% 0.747 ± 1.18% 0.749 ± 1.23%
Random forest 0.771 ± 0.43% 0.796 ± 0.75% 0.773 ± 0.46% 0.773 ± 0.52%
Support vector machine 0.774 ± 0.35% 0.816 ± 0.34% 0.779 ± 0.33% 0.784 ± 0.32%

D
ec

o
m

p
. IDA decompiler 0.40 0.33 0.34 0.30

RetDec 0.15 0.06 0.10 0.06
Snowman 0.29 0.22 0.26 0.21
Hopper 0.14 0.08 0.09 0.03

Table 5.8: Performance of the classifiers and existing decompilers using the third evaluation
method (classifiers of types with different size and representation). 95% confidence intervals
are expressed as percentages. Bold font represents the best values. If one column has multiple
cells in bold, it means that values are not significantly different.

Predicted class
bool char short int pointer struct long long float double void

A
ct

u
a
l

cl
a
ss

bool 491 49 0 8 10 0 39 0 0 3
char 231 212 64 20 23 0 45 0 0 5
short 6 76 379 45 36 0 49 0 0 9
int 6 44 72 279 111 21 59 0 0 8
pointer 12 8 0 35 419 72 47 0 0 7
struct 0 0 0 1 12 587 0 0 0 0
long long 5 8 0 6 28 4 543 0 1 5
float 0 0 0 0 11 0 48 355 184 2
double 0 0 0 0 12 0 44 177 365 2
void 4 1 1 1 4 0 48 0 0 541

Table 5.9: Confusion matrix of the model in Table 5.6, including the generalizations of Ap-
pendix B.

the second method, we found that at least 48% of the real functions must be
included in the training dataset to obtain accuracy convergence (Figure 5.11).
With this percentage of real functions, our models are able to predict functions
of programmers whose code is not included in the training set (i.e., there are no
significant differences between the second and third evaluation method).

Table 5.8 shows how gradient boosting obtains the best performance: 0.786
accuracy and 0.791 F1-score for the third evaluation method. Comparing these
values with the existing decompilers, the performance of gradient boosting is
from 96.5% (accuracy) to 163.6% (F1-score) higher than the decompiler with the
highest performance (IDA). Therefore, the gradient boosting vs IDA benefit is
increased by 90.1% when predicting high-level C types.

Table 5.9 shows the new values of the confusion matrix presented in Table 5.6,
running the same experiment with the new generalizations. The performance
gains obtained when classifying types with the same size and representation are
summarized in Table 5.10. We obtain a 10.5% average F1-score gain for 1-byte-
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5.3. Results

Accuracy gain Precision gain Recall gain F1-score gain

I
N
T
1 bool 0.84% 5.85% 1.66% 3.98%

char 1.01% 14.86% 18.44% 17.01%
I
N
T
4 int 1.81% 16.70% 51.63% 37.76%

pointer 0.58% 1.69% 14.79% 7.90%
struct 2.56% 21.23% 0.51% 11.55%

Table 5.10: Performance gains obtained for high-level type classification, when the generaliza-
tions in Appendix B are included in the dataset.

size types and 19.1% for types of 4 bytes, due to the additional generalizations
detailed in Appendix B.
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Chapter 6

Binary patterns found

We have implemented a platform for the automatic extraction of binary patterns
(Chapter 3). We have also defined a method to generalize and use those patterns
for decompilation (Chapter 4). Then, we have applied them for the particular
purpose of predicting the high-level C type returned by functions (Chapter 5).
Furthermore, the datasets created can be used to discover and document binary
patterns to be included in existing decompilers. In this chapter, thus, we mine
the dataset to document binary patterns associated with high-level return types.
That documentation can be helpful to improve the implementation of current
decompilers.

6.1 Association rules

We discover binary patterns with association rules that correlate RET and POST
CALL patterns with return types of function. Since the dataset has a high number
of features, we first select the most important features with the five feature-
selection algorithms described in Section 5.2.4. We choose the intersection of the
feature sets selected by those algorithms. Then, we run the Apriori algorithm for
association rule mining [102], saving the rules whose consequent is a return type.

In this chapter, we only analyze the rules with 100% confidence. The confi-
dence of an association rule measures how frequently the rule consequent holds
when the antecedent is true. In this way, the association rules retrieved represent
a mechanism to document those RET and POST CALL binary patterns that are
unambiguously associated with a high-level return type.
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6.1. Association rules

Antecedents Consequent Support

1

(RET)

bool 0.00059

mov al, literal
callee epilogue

(POST CALL)
caller epilogue
movzx edx, al

where: literal ∈ {0, 1}

2

(RET)

char 0.00536
mov al, literal
callee epilogue

where: literal ∈ {0, 1}

3

(RET)

char 0.00207

binary op eax arg1
callee epilogue

(POST CALL)
caller epilogue
mov arg2, al

where: binary op ∈ {imul, sub, add, sar, sal, shr, shl, xor, or, and}
arg1 ∈ {reg, [reg], *address, literal}
mov ∈ {mov, movzx}
arg2 ∈ {reg, [reg], *address}

4

(RET)

char 0.00030

idiv arg1
callee epilogue

(POST CALL)
caller epilogue
mov arg2, al

where: arg1 ∈ {reg, [reg], *address}
mov ∈ {mov, movzx}
arg2 ∈ {reg, [reg], *address}

5

(RET)

char 0.00049

unary op eax

callee epilogue

(POST CALL)
caller epilogue
mov arg, al

where: unary op ∈ {not, neg}
mov ∈ {mov, movzx}
arg ∈ {reg, [reg], *address}

6
(POST CALL)

short 0.01190caller epilogue
cwde

7

(POST CALL)

short 0.02455

caller epilogue
mov arg, ax

where: mov ∈ {mov, movzx, movsx}
arg ∈ {eax, ecx, edx, cx, si, [reg], *address}

8

(RET)

short 0.00871

mov ax, arg
callee epilogue

where: mov ∈ {mov, movzx, movsx}
arg ∈ {dx, al, cx, cl, [reg], *address}

(continues)
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6.1. Association rules

Antecedents Consequent Support

9

(RET)

int 0.01594

cond jmp offset1
mov [reg1], literal1
jmp offset2
mov [reg1], literal2
mov eax, [reg1]
callee epilogue

where: cond jmp ∈ {jo, jno, js, jns, je, jz, jne, jnz, jb, jnae, jc,
↪→ jnb, jae, jnc, jbe, jna, ja, jnbe, jl, jnge, jge, jnl, jle,
↪→ jng, jg, jnle, jp, jpe, jnp, jpo, jcxz, jecxz}
literal1, literal2 ∈ {0, 1}
literal1 6= literal2
offset1 6= offset2

10

(RET)

int 0.00103

div ecx

mov eax, edx
callee epilogue

where: div ∈ {div, idiv}

11

(RET)

int 0.00221

mov eax, literal
callee epilogue

(POST CALL)
caller epilogue
mov arg, eax

where: arg ∈ {[reg], *address}

12

(RET)

pointer 0.00949
binary op eax, address
callee epilogue

where: binary op ∈ {mov, movzx, movsx, add, sub}

13
(RET)

pointer 0.01304lea eax, [reg]
callee epilogue

14
(RET)

struct 0.06321mov eax, [ebp+8]
callee epilogue

15
(RET)

long long 0.04442cdq

callee epilogue

16

(RET)

long long 0.01063

mov edx, arg
callee epilogue

where: arg ∈ {reg, [reg], *address, literal}

17

(RET)

float 0.03817

fstp [reg]
fld [reg]
callee epilogue

where: opcode(fstp)[0] = 0xD9
opcode(fld)[0] = 0xD9

18

(POST CALL)

float 0.01545

caller epilogue
fstp arg

where: opcode(fstp)[0] = 0xD9
arg ∈ {[reg], *address}

(continues)
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6.1. Association rules

Antecedents Consequent Support

19

(RET)

double 0.06783

fld arg
callee epilogue

where: opcode(fld)[0] = 0xDD
arg ∈ {[reg], *address}

20

(RET)

void 0.00817

mov arg1 arg2
callee epilogue

where: arg1 ∈ {[reg], *address}
arg2 ∈ {reg, [reg], *address, literal}

Table 6.1: Example association rules obtained from the dataset. reg variables represent regis-
ters, literal integer literals, address absolute addresses, *address absolute addresses dereferences
and offset relative addresses.

Table 6.1 shows some of the rules obtained with at most two antecedents. The
rest of them are detailed in Appendix A. The support of each rule is the relative
frequency of instances covered by a rule. Rules with very low support are not
included in Table 6.1.

The cdecl calling convention [103] returns 32-bit values through eax; ax is
used for 16-bit values, and al for 8-bits. 64-bit integers are returned via edx

and eax registers. The 32- and 64-bit real values are returned through st0. The
main problem is to determine whether such registers are actually returning their
values to the caller, or they just hold temporary values of previous computations.
Another important problem, as mentioned, is to classify the high-level types with
equal size and representation.

Rules 1-5 return the value with al, so they classify bool and char types.
The ax register in rules 6-8 is used to return short. Rules 9-14 analyze eax

for 4-byte-size types. Rules 15 and 16 check edx to infer long long, and rules
17-19 use st0 to return float and double. The last rule checks that the value
copied before returning from the function call is not moved to a register (but to
a memory address), classifying the function type as void.

Some functions return literal values, such as true or 32. The value of those
literals is used by some patterns to infer the return type. For example, rule 2
classifies as char the 1-byte type returned when the returned literal is neither
0 nor 1 (low-level representation of false and true). The opposite is not true;
when 0 or 1 is returned, it could be a character (‘\0’ character is widely used
in C). For this reason, rule 1 adds a POST CALL check after the invocation. If
0 or 1 is returned and it is moved to edx with zero extension using movzx (i.e.,
high bits are set to zero, without sign), the type is bool; for chars, movsx is
used instead (copy with sign). Likewise, rule 12 uses address literals to classify
pointers.

Our system also detects operations that can only be applied to certain types.
For example, division (div and idiv) can be applied to neither pointer nor
struct. Therefore, rule 10 infers a 4-byte type to int, when division operations
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6.1. Association rules

Textual Opcodes
representation Float Double

fstp regfp D9 ?? ?? DD ?? ??

fld regfp D9 ?? ?? DD ?? ??

Table 6.2: Binary encodings of fld and fstp instructions.

are applied to it. Rule 13 classifies as pointer any 4-byte type where a lea

instruction is used, since lea loads a memory address into the target register
(eax).

Another classification mechanism used by our models is based on the binary
representation of assembly instructions. For example, the fstp and fld assembly
instructions for real numbers share the start of the binary opcode1 (Table 6.2).
When they operate with 32-bit floating-point numbers, the opcode starts with
0xD9. However, their opcode starts with 0xDD when applied to 64-bit operands.
This difference is used by rules 17-19 to tell the difference between float and
double.

The classifiers generated with our dataset also detect binary patterns of the
code generation templates implemented by compilers [83]. For example, rule 9
detects the code generation template used by cl to return the result of a com-
parison as an int. Of course, these kinds of templates are compiler dependent,
so the compiler used should be discovered before using them [36] as indicated in
Section 4.2.

Rule 14 is another rule for a particular code generation template. As described
in Section 5.3.1, cl performs a code transformation to return struct types (Fig-
ure 5.4). The struct is passed as an argument, and its memory address is actually
returned as a pointer. This code transformation generates a particular sequence
of assembly instructions that our models use to identify structs among types of
4-bytes size.

Although the assembly instructions used to return a value (RET patterns) are
very important to infer return types, the binary code used after the invocation
(POST CALL patterns) is also valuable. For example, rules 6 and 7 identify as
short type the usage of ax just after an invocation. Another example is rule 18,
which stores the returned floating-point value from the mathematical coprocessor
stack.

Finally, our system is also able to combine RET and POST CALL patterns to
infer return types. Since these kinds of rules are more specific, they commonly
have low support and high confidence. For example, the best rule found to
classify bool with one RET pattern provides 76% confidence; whereas rule 1
provides 100% confidence by adding a POST CALL pattern with lower support.
These types of rules commonly classify types among others with similar size and
representation, such as rules 1, 3 and 4 (1 byte), and rule 11 (4 bytes).

1Opcode stands for operation code. It is the portion of the numeric representation of an
assembly instruction that specifies the operation to be performed.
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6.1. Association rules

All the association rules with at most three antecedents, minimum confidence
of 95%, and support greater than 0.02% are detailed in Appendix A.
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Chapter 7

Controlled stochastic generation
of standard C source code

Big code works use the source code of millions of programs available in open
source-code repositories to build different types of tools [104]. However, obtain-
ing portable C code is not an easy task, since most applications use particular
libraries or operating system. In addition, there also exist many different variants
of the C language, which include language extensions and modifications. There-
fore, different ANSI/ISO standardizations of C are defined to facilitate the devel-
opment of portable software [14]. Even so, it is still difficult to find applications
written in 100% standard C source code. Most of them have particular depen-
dencies of non-portable code. This is an issue when building predictive models
from source code since a large number of programs is usually required [105].

For these reasons, we implement Cnerator, a Python application for the con-
trolled stochastic generation of standard C source code. Cnerator provides the
generation of large amounts of standard ANSI/ISO C source code [14], ready
to be compiled by any standard language implementation. Cnerator is highly
customizable to generate all the syntactic constructs of the C language, neces-
sary to build accurate predictive models with machine learning algorithms. The
stochastic generation of source code programs has also been used to detect bugs
in existing compilers [60]. Another potential use of Cnerator is testing whether
a compiler implements the ANSI/ISO standard specification correctly.

7.1 Software framework

In this section, we first describe the main functionalities of Cnerator. Then, we
present its architecture and a brief description of each module.

7.1.1 Software functionalities

These are the main functionalities provided by Cnerator:

1. ANSI/ISO standard C. All the source code generated by Cnerator follows
the ISO/IEC 9899:2018 (C17) standard specification [14].
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7.1. Architecture
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Figure 7.1: Architecture of Cnerator.

2. Probabilistic randomness. C language constructs are randomly generated,
following different probability distributions specified by the user. For exam-
ple, it is possible to describe the probability of each kind of statement and
expression construct, the number of statements in a function, and the types
of their arguments and return values. To this aim, the user can specify fixed
probabilities of each element, or use different probability distributions, such
as normal, uniform, and direct and inverse proportional.

3. Compilable code. The generated code strictly follows the syntax grammar,
type system, and semantic rules of the C programming language. In this
way, the generated code has been checked to be compilable by any standard
compiler implementation.

4. Highly customizable. Many features of the programs to be generated are
customizable. Some examples include the types of each language construct,
array dimensions and sizes, struct fields, maximum depth of expression and
statement trees, number of function parameters and statements, global and
local variables, structures of control flow statements, and type promotions,
among others –see the detailed documentation Appendix C.

5. Large amounts of code. Cnerator is designed to allow generating large
amounts of C source code. A parameter indicates the number of indepen-
dent compilation units to be created for the output application, so that
each unit could be treated as an independently compilable module. This
feature, together with the probabilistic randomness, make Cnerator an ideal
tool to build predictive models, because the input programs used to train
such models comprise abundant and varied code patterns.

7.1.2 Architecture

Figure 7.1 presents the architecture of Cnerator. When executing the tool, three
types of optional arguments may be passed: command-line arguments, JSON
specification files and Python post-processing traversals. If no parameter is passed,
Cnerator creates a random output program, using the default probability values
(Appendix C). The generated program consists of a group of compilation units
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7.1. Architecture

{ 

   "function_basic_stmt_prob": { 
      "assignment": 0.3, 
      "invocation": 0.4, 
      "augmented_assignment": 0.15, 
      "incdec": 0.1, 
      "expression_stmt": 0.05 
   }, 

   "array_literal_initialization_prob": { 
      "True": 0.1, "False": 0.9 
   }, 

   "primitive_types_prob": { 
      "__prob_distribution__": "equal_prob", 
      "__values__": [ 
         "ast.Bool", 
         "ast.SignedChar", 
         "ast.UnsignedChar", 
         "ast.SignedShortInt", 
         … 

      ] 
   }, 

   "param_number_prob": { 
      "__prob_distribution__":                 

       ↪                 "proportional_prob", 
      "__values__": { 
         "0": 1, "1": 2, "2": 3, 
         "3": 3, "4": 2, "5": 1 

      } 

   }, 

   "number_stmts_main_prob": { 
      "__prob_distribution__": "normal_prob", 
      "__mean__": 10, 
      "__stdev__": 3 
   }, 

   … 

} 

{ 

  "function_returning_void": { 
    "total": 1000, 
    "condition": "lambda f:                    

     ↪       isinstance(f.return_type,        

     ↪                  ast.Void)" 
  }, 
  "function_returning_bool": { 
    "total": 1000, 
    "condition": "lambda f:                    

     ↪       isinstance(f.return_type,                 

     ↪                  ast.Bool)" 
  }, 
 

  … 

 

  "function_with_if_else": { 
    "total": 1, 
    "condition": "lambda f:                    

     ↪ any(stmt for stmt in f.children         

     ↪    if isinstance(stmt, cnerator.ast.If)

     ↪        and any(stmt.else_statements))" 
  } 
} 

 

Figure 7.2: Two example JSON files used to customize program generation with Cnerator. The
left-hand side shows a sample probability specification file, and the right-hand side specifies an
example of controlled function generation.

(a pair of .h and .c files) that can be compiled independently, even though they
commonly depend on other compilation units.

As command-line arguments, the user may pass parameters such as the number
of output compilation units, probability values of syntactic constructs, and the
output directory and file names, among others (all the parameters are detailed in
Appendix C). The Parameter Processing module takes all the parameters passed
by the user and customizes the behavior of Cnerator accordingly.

Cnerator accepts two types of JSON configuration files as parameters (exam-
ples are presented in Section 7.2). The first one allows specifying the probabil-
ity values and probability distributions of multiple C syntactic constructs. The
Probabilities module stores the default probability distributions of all the syntax
constructs and provides different helper functions to facilitate its specification.
As shown in Figure 7.2 (explained in Section 7.2), JSON probability specification
files permit the use of those helper functions to modify the default probability
distributions.

The second type of JSON input allows the user to control the number and
characteristics of all the functions to be generated. For example, we can en-
force Cnerator to generate a program with as many functions as built-in types
in the language, and make each function return an expression of each built-in
type. The Controlled Function Generation module interprets the JSON file to
drive the process of program generation. To this aim, it asks the main Program
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7.2. Illustrative example

01: from singledispatch import singledispatch 
02: from cnerator import ast 
03:  
04: def _instrument_statements(statements: List[ast.ASTNode]) -> List[ast.ASTNode]: 
05:     """Includes a unique label before any return statement""" 
06:     instrumented_stmts = [] 
07:     for stmt in statements:                          # iterates through the statements 
08:         if isinstance(stmt, ast.Return):             # if the statement is return… 
09:             label_ast = ast.Label(generate_label())  # creates a new AST node for the label 
10:             instrumented_stmts.append(label_ast)     # and places the label before the return 
11:         visit(stmt)                                  # traverses the statement 
12:         instrumented_stmts.append(stmt)              # appends return after the label 
13:     return instrumented_stmts 
14:  
15: @visit.register(ast.Function) 
16: def _(function: ast.Function): 
17:     """Traverses a function definition to add a unique label before each return statement""" 
18:     function.stmts = _instrument_statements(function.stmts) 
19:  
20: @visit.register(ast.Do) 
21: @visit.register(ast.While) 
22: @visit.register(ast.For) 
23: @visit.register(ast.Block) 
24: def _(node): 
25:     """Traverses a control flow statement to add a unique label before each return statement""" 
26:     node.statements = _instrument_statements(node.statements) 
27:  
28: _return_label_counter = 0 
29:  
30: def generate_label() -> str: 
31:     """Generates a new unique label string""" 
32:     global _return_label_counter 
33:     _return_label_counter += 1 
34:     return f"__RETURN{_return_label_counter}__" 

     … 

Figure 7.3: Python code excerpt of an AST post-processing example.

Generation module to generate random functions, and discards those not fulfill-
ing the requirements specified in the JSON file. If no function generation file
is provided, Program Generation just produces a random program following the
existing probability distributions.

The third type of argument is an ordered collection of Python post-processing
specification files. When the user wants the output program to fulfill some require-
ments not guaranteed by the stochastic generation process, these post-processing
files can be used to modify the generated code in order to meet such requirements.
By following an introspective implementation of the Visitor design pattern [106],
the user can specify the traversal of the program representation produced by
Cnerator (an example is presented in Section 7.2). We use the single-dispatch

Python package [107] to traverse program representations.

The Program Representation module is mainly an in-memory representation
of Abstract Syntax Trees (AST) [108]. Cnerator produces ASTs modeling the
generated program before generating the output code. The AST data structure
implements the Interpreter design pattern [109] to convert a program represen-
tation into a set of output compilation units.
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7.3. Implementation and empirical results

7.2 Illustrative example

In this section, we show how Cnerator was used to generate the synthetic code
used in Chapter 5 to build the decompilation models. Figure 7.2 shows an excerpt
of two of the JSON files used to customize Cnerator. The one on the left over-
writes some default probabilities. The first entry (function basic stmt prob)
defines the probability of building basic statements (i.e., statements not contain-
ing other statements, unlike for and switch), and the second one states that 10%
array definitions should initialize their values. These two examples specify fixed
probabilities that must sum zero. The three remaining entries use uniform/equal,
proportional and normal distributions to specify, respectively, the usage of prim-
itive types, and the number of function parameters and statements in the main
function.

The right-hand JSON file in Figure 7.2 shows the controlled function-generation
method used to build the decompilation models. The two first entries are ex-
amples of how we made Cnerator generate 1000 functions returning each type
provided by standard C1. The condition in the lambda expression checks that the
returned type is the expected one. The last entry shows a different example, not
used in the decompiler scenario, where the user demands Cnerator to generate a
function containing an if statement with an else clause.

Figure 7.3 shows an example Python post-process specification file. The code
traverses the representation (AST) of the generated program and adds a unique
label before each return statement. The purpose of this instrumentation is to
identify in the compiled code the binary patterns used for each high-level return
statement (Section 5.1.1). Those binary code patterns are later labeled with
the high-level return type to build predictive models with supervised machine
learning (Chapters 3 and 5).

The instrument statements function takes a list of statements (represented
as AST nodes) and adds a unique label –prefixed with RETURN (line 09)– before
each return statement. That function is later used in the traversal of function
definitions (line 18), and do, while, for and block statements (line 26) –if
and switch control flow statements follow the same template. The code in Fig-
ure 7.3 is an instance of an introspective implementation of the Visitor design
pattern [106]. The visit annotations indicate the AST node to be traversed,
and default tree traversal is performed with reflection [110].

7.3 Implementation and empirical results

We compare Cnerator with the random C code generators discussed in Section 2.5.
We select the following evaluation criteria related to the generation of large
amounts of standard C code to train machine learning models (Section 7.1.1).
It is worth noting that the comparison is not aimed at identifying the best tool,
but at analyzing their appropriateness to generate abundant and varied source
code.

1Only void and bool are shown for the sake of brevity.
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Criterion Csmith ldrgen YARPGen Orange Quest Cnerator

1 a d a d a a

2 r d d d d a

3 r r d d d a

4 d d d d d a

5 a r a a a d

6 r d r d d a

7 d d d d d a

Table 7.1: Qualitative comparison of random C code generators (a = yes, d = no, and r = par-
tially).

Number of
functions Seconds SLOC

10 0.335 1,078
50 0.433 4,159

100 0.696 13,184
500 2.907 73,935

1,000 4.269 139,756
2,500 12.601 342,669
5,000 30.062 717,562

10,000 74.771 1,345,993
20,000 312.237 2,692,157

Table 7.2: Increasing sizes of C programs generated by Cnerator. SLOC stands for source lines
of code and counts non-empty lines of source code, excluding comments.

1. Generation of standard ANSI/ISO C code, which can be compiled by any
standard compiler implementation.

2. It can be specified the probability of each language construct.

3. The tool can be customized to describe properties fulfilled by the different
language constructs (e.g., types returned by functions, array dimensions,
maximum depth of expression and statement trees, or number of function
parameters and statements).

4. Generation of a configurable number of independent compilation units.

5. Avoidance of dynamic undefined and unspecified behaviors.

6. Generation of code for all the language constructs.

7. Generation of large numbers of functions (and their invocations).

The results of the comparison are detailed in Table 7.1. All the tools but
ldrgen and Orange generate standard C code. Csmith is the only system, besides
Cnerator, that allows setting the probability of some language constructs (inline
functions, array accessing loop, and built-in function invocation for Csmith; much
more for Cnerator). Csmith supports the customization of some basic properties
of the generated code (criterion 3), such as the maximum depth of blocks, pointer
indirections, array dimensions and expression complexity. ldrgen allows the
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7.3. Implementation and empirical results

specification of the maximum number of statements per block, expression depth,
functions, function arguments, and statement nesting depth. Cnerator is the
only system that allows the generation of any number of independent compilation
units.

The feature of avoiding dynamic undefined and unspecified behaviors (crite-
rion 5) shows a different pattern. All the tools but Cnerator provide this feature
because their objective, unlike ours, is detecting bugs in compilers (Section 2.5).
On the contrary, Cnerator is the only tool that generates all the language con-
structs (criterion 6), because the generated code is used to train machine learning
models that perform better when the code has more variability. Both Csmith and
YARPGen provide a lot of language constructs, but do not support others1.

In order to evaluate the capability of generating large amounts of source code
(criterion 7), we measure the tools that allow specifying the number of functions
in a program (Csmith, ldrgen and Cnerator) and ask them to generate programs
with an increasing number of functions. Both Csmith and ldrgen show a runtime
memory error when they are asked to generate 100 functions, in an Intel Core i7
2.5 GHz computer with 16 GB RAM running Ubuntu 20.04.2.0 LTS. The results
for Cnerator are detailed in Table 7.2. Cnerator generates the 20,000 functions
for the example in Section 7.2 in 5.2 minutes, producing more than 2 million
non-empty source lines of code (SLOC).

These results show how the differences between Cnerator and the rest of the
random C generators are caused by the purpose they are designed for. All the
tools but Cnerator are aimed at testing compiler implementations, and that is
why, for those tools, the avoidance of dynamic undefined behaviors is so impor-
tant. However, this feature makes code generation to be more difficult, even
requiring the implementation of backtracking algorithms [66]. Moreover, this
complexity limits the number of language constructs to be generated, and the
production of programs with large amounts of source code. On the contrary,
those two last features are very important to Cnerator, designed to train ma-
chine learning models. It also provides some other features necessary for its aim,
such as the specification of language construct probabilities and a high degree of
customization.

1Csmith does not generate assignments as statements, array-typed struct fields, strings,
dynamic memory allocation, floating-point types, unions, recursion, and function pointers.
YARPGen does not produce function calls, ++ and -- operators, pointer arithmetic opera-
tions, assignments as expressions, non-integer local variables, and has some restrictions when
generating floating-point values and loops.
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Chapter 8

Conclusions

We have seen how machine learning can be used to decompile high-level source
code from binaries, providing a significant improvement of the state-of-the-art
decompilers. Supervised machine learning is useful not only to build predictive
models by processing large amounts of binaries, but also as a feature engineering
tool to generalize binary patterns.

An efficient platform for the automatic extraction of patterns in binary code
has been designed and implemented. This platform allows the user to declar-
atively obtain different kinds of patterns from massive binary codebases. The
high-level language constructs are associated with the binary code, compiled,
extracted, and labeled to construct the dataset used for building the predictive
models. To speedup binary pattern extraction, the implementation is highly par-
allelized, following a pipeline approach with both data and task parallelization.
We obtain a speedup of 3.5 factors in a 4-core computer, when the maximum
theoretical benefit is of 4 factors.

We propose a method to create predictive models for decompilation. First,
we identify all the variables that influence the decompilation models: compiler
used, binary file format, operating system, word size, compiler options, and target
microprocessor. Our method describes how to face the high dependency of these
variables on the decompilation process. Second, we define a pattern generalization
process to improve the performance of machine-learning models and to deal with
the huge variability of binary code. Third, we describe a method that, using
machine learning, assists in the creation of decompilation models for different
language constructs.

It is difficult to obtain a huge database of standard C source code to be com-
piled by any compiler, because most projects have strong dependencies on a par-
ticular operating system or language extension. For this reason, we designed and
implemented Cnerator, an application for the controlled stochastic generation
of standard C source code. It provides the capacity of creating large amounts
of standard ANSI/ISO C source code, ready to be compiled by any standard
language implementation. Cnerator is highly customizable to generate all the
syntactic constructs of the C language, necessary to build accurate predictive
models with machine learning algorithms.
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We take the platform to extract binary patterns, the Cnerator tool to generate
a collection of C source code programs, some “real” open-source projects, and
apply the proposed method to the decompilation problem of inferring the high-
level type returned by functions. The predictive models created with this process
obtain a 79.1% F1-score, while the best existing decompiler provides a 30% F1-
score. This value is measured with source code of programmers not included in
the training dataset. The combination of “real” and synthetic code makes our
models be able to predict type information of unseen programming styles.

Finally, we discuss and document the binary patterns found to classify return
types. The classification rules combine binary patterns extracted from return
expressions inside the function bodies and the binary code used just after the
invocations to those functions. They focus on how data are passed from the
function to the caller, and how they are later used. The binary patterns found
not only distinguish among different sizes and representations of data, but also
among types with the same binary size and representation. These patterns could
be included in existing decompilers to improve their accuracy for inferring return
types.
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Chapter 9

Future work

The work presented in this dissertation opens new future lines of research that
we plan to work on. What follows is a brief description of such works.

9.1 Automatic detection of influencing variables

As we have seen in Section 4.2, the predictive models aimed at improving de-
compilation show a strong dependency on different variables, such as compiler
options, binary file formats, and target operating system and microprocessor.
Accordingly, we propose training different models for different combinations of
these influencing variables. Therefore, the problem would be how to detect the
particular values of such variables from binary files, when they include no debug-
ging information.

As mentioned in Chapter 4, some of these influencing variables, such as binary
file format, target microprocessor, and word size can be inferred deterministi-
cally [85]. For the rest of the variables, there exist some attempts to create models
to detect the compiler used [36], the particular compilation options [37], and the
target operating system [86]. We plan to analyze these techniques, improve them
in case it is necessary, and integrate them into our system to allow the coexistence
of different models that allow decompilation for different combinations of those
influencing variables.

9.2 Decompilation of other native languages

Chapter 4 describes a method to decompile any language construct, and Chapter 5
applies it to reconstruct the high-level type returned by functions. We plan to use
the same method for other language constructs. First, we can start by inferring
types in other contexts. A good candidate could be function parameters. The
idea is to extract patterns before function invocation and inside the body of the
invoked function. A def/use analysis would relate each binary pattern with its
corresponding parameter to create the dataset. A similar approach could be used
to recover the types of local and global variables.
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9.4. Graph neural networks

Another case scenario where the method in Chapter 4 can be used is the
decompilation of control flow statements. The models should be able to tell the
difference between iterative (while, for and do) and conditional control flow
statements (if and switch).

Finally, we could use our approach to improve the readability of the high-
level code generated by the decompiler. For example, the name of variables is
completely lost when the compiler generates binary code. However, depending
on the use of each variable, it is useful to choose an informative name for each
variable [6]. Those names could be learned from massive codebases, using the
identifiers employed by most programmers. This would not recover the original
identifier used by the programmer, but it will improve the readability of the
generated code.

9.3 Inference of other language constructs

As most decompilers, we have chosen C as the output programming language for
decompilation. Its “medium-level” of abstraction, together with its widespread
usage, makes it to be the lingua franca for most decompilers (Section 4.4). How-
ever, it could be very interesting to apply the method detailed in Chapter 4 to
decompile other native languages.

One language to be considered is C++, as it is a superset of C. To extend the
work presented in Chapter 5, dynamic binding invocations of virtual methods
must be detected and decompiled [50, 51, 111]. Such invocations are translated
into binary indirect calls (e.g., call dword ptr [eax]) that use the content of
a register to locate the invoked function at runtime. This information must be
processed to create the dataset.

Pascal, Go and Rust do not stick to the C ABI (Application Binary Interface),
so their compilers do not use the same code generation patterns as C compilers.
We would like to see to what extend the method proposed in Chapter 4 is could
be applied for this kind of languages. New binary patterns and generalizations
would need to be searched.

9.4 Graph neural networks

Recurrent neural networks (RNN) are a type of artificial neural network that
processes sequential or time-series data [15]. This kind of topology has been
successfully used to predict some high-level constructs from a sequence of binary
instructions, including the number and types of function parameters [10] and some
code snippets [12]. RNNs process a sequence of inputs to compute a hidden state
for each particular sequence, which is later used to perform some predictions.
When combined with language models, they have successfully used to perform
statistical machine translation with encoder-decoder topologies [112].

The classical definition of RNN describes a one-dimensional sequence of in-
puts. However, there are problems where those sequences require to have mul-
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Figure 9.1: Graph neural network for inferring the high-level type returned by functions.

tiple dimensions. In such cases, graph neural networks (GNN) provide those
multi-dimensional inputs by accepting graph structures as inputs [113]. GNNs
support node-, edge-, and graph-level classification [114]. One hyperparameter is
the depth of neighbors considered to compute the hidden state of a given node.

Figure 9.1 shows how we plan to classify function return types with GNNs.
The node to classify is the function itself (its return type), which is connected
with all the RET (return expressions) and POST CALL (invocations) binary
patterns described in Chapter 3 of this dissertation. These patterns represent a
graph-based structure connected to the function node. Moreover, the different
sequences of binary instructions for each pattern (inst rectangles in Figure 9.1)
represent a valuable one-dimensional sequence input to compute the hidden state
of invocation and return nodes in the graph. With all this information, we think
we can create deep learning predictive models with high accuracy, using massive
inputs produced by Cnerator.

9.5 Addition of patterns to existing decompilers

In Chapter 6 and Appendix A we list some rules that associate RET and POST
CALL binary patterns with the return type of functions. These rules distinguish
not only between different sizes and representations of data but also among types
with the same binary size and representation. All this new knowledge discovered
in this dissertation could be included in the implementation of existing decom-
pilers.

An IDA decompiler plugin could be implemented with the IDAPython API [74]
or the IDA SDK [115]. That plugin would read a binary file and apply those
rules to improve the information inferred by the decompiler. Hopper can be ex-
tended through its SDK and it also provides a Python interface. Finally, the
Snowman [52] and RetDec [55] decompilers are open-source projects, so the pull
request service in their GitHub repositories could be used to include new decom-
pilation rules.
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9.6 Adding additional knowledge with inductive

logic programming

Inductive Logic Programming (ILP) is sometimes referred to as the intersec-
tion between inductive machine learning and logic programming [116]. Machine
learning is used to infer hypotheses from observations, synthesizing new knowl-
edge from experience. Such knowledge is represented as first-order logic, coded
as a logic program.

One of the distinguishing features of ILP compared to traditional machine-
learning algorithms is that ILP can use background knowledge for the learning
process. In the particular problem of decompilation, this characteristic seems
to be very promising because it allows improving our proposed method with
alternative sources of information. First, decompilation experts can express their
knowledge for decompiling a syntax construct with first-order logic. Second, we
can provide to the ILP algorithm other sources of information extracted from
the static analysis of the assembly code such as symbolic execution or any other
deterministic approach [19, 21, 22, 23].

Unfortunately, the expressiveness increase of ILP is commonly associated with
higher computational requirements, because the search space is significantly higher
than traditional approaches (hypotheses are expressed with predicates instead of
with propositions). Some performance experiments have indicated that ILP does
not seem to scale well with big datasets [117].
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Appendix A

Association rules found

This appendix shows a complete set of valid association rules that correlate RET
and POST CALL patterns (Section 5.1.3.1) with the high-level return type of
functions (Section 5.3.2). The rules analyzed in Chapter 6 are a condensed version
of some of these rules.

To select the association rules, we filter the most important features with the
5 feature-selection algorithms described in Section 5.2.4. Later, we choose the
intersection of all the feature sets. After that, we create a set of 26,239 association
rules using the Apriori algorithm [102]. Finally, we select those rules with a
minimum confidence of 95%, a minimum support of 0.0002 and 3 antecedents at
most. The 6 possible formats are the following ones:

– {RET} ⇒ {returned type}

– {POST CALL} ⇒ {returned type}

– {RET, POST CALL} ⇒ {returned type}

– {POST CALL, POST CALL} ⇒ {returned type}

– {RET, POST CALL, POST CALL} ⇒ {returned type}

– {POST CALL, POST CALL, POST CALL} ⇒ {returned type}

In the following tables, reg variables represent registers, literal integer literals,
address absolute addresses, *address absolute addresses dereferences and offset
relative addresses.
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Appendix A. Association rules found

A.1 Class bool

Antecedents Consequent Confidence Support

(RET)

bool 1 0.00113

return bool cast al, [regbp]
callee epilogue

(POST CALL)
caller epilogue
movzx ecx, al

(POST CALL)
caller epilogue
movzx edx, al

(RET)

bool 1 0.00059

return bool literal al

callee epilogue
(POST CALL)

caller epilogue
movzx edx, al

(RET)

bool 1 0.00059

return bool cast al, [regbp]
callee epilogue

(POST CALL)
caller epilogue
mov address, al

(POST CALL)
caller epilogue
movzx eax, al

(POST CALL)

bool 1 0.00049

caller epilogue
mov [regbp], al

(POST CALL)
caller epilogue
movzx eax, al

(POST CALL)
caller epilogue
movzx edx, al

(POST CALL)

bool 1 0.00039

caller epilogue
mov address, al

(POST CALL)
caller epilogue
movzx eax, al

(POST CALL)
caller epilogue
movzx ecx, al

(POST CALL)

bool 1 0.00039

caller epilogue
mov address, al

(POST CALL)
caller epilogue
movzx eax, al

(POST CALL)
caller epilogue
movzx edx, al

(RET)

bool 1 0.00030

xor al, al

callee epilogue
(POST CALL)

caller epilogue
mov [regbp], al

continues
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Antecedents Consequent Confidence Support

(POST CALL)

bool 0.964 0.00133

caller epilogue
mov address, al

(POST CALL)
caller epilogue
movzx eax, al

(RET)

bool 0.95 0.00093

return bool cast al, [regbp]
callee epilogue

(POST CALL)
caller epilogue
movzx eax, al

(POST CALL)
caller epilogue
movzx edx, al

A.2 Class char

Antecedents Consequent Confidence Support

(RET)
char 1 0.00536assign char literal

callee epilogue

(RET)
char 1 0.00074return int math op al, ecx

callee epilogue

A.3 Class short

Antecedents Consequent Confidence Support

(RET)
short 1 0.01864return bool cast ax, [regbp]

callee epilogue

(POST CALL)
short 1 0.01190caller epilogue

cwde

(POST CALL)
short 1 0.00644caller epilogue

movsx ecx, ax

(POST CALL)
short 1 0.00418caller epilogue

movzx eax, ax

(POST CALL)
short 1 0.00408caller epilogue

movzx ecx, ax

(POST CALL)
short 1 0.00384caller epilogue

movzx edx, ax

(POST CALL)
short 1 0.00330caller epilogue

mov [regbp], ax

continues
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Antecedents Consequent Confidence Support

(POST CALL)
short 1 0.00271caller epilogue

mov address, ax

(RET)
short 1 0.00207movzx ax, [regbp]

callee epilogue

(RET)
short 1 0.00182mov ax, [regbp]

callee epilogue

(RET)
short 1 0.00157mov ax, [regax]

callee epilogue

(RET)
short 1 0.00138mov ax, [regdx]

callee epilogue

(RET)
short 1 0.00123return int math op ax, ecx

callee epilogue

(RET)
short 1 0.00108mov ax, [regcx]

callee epilogue

(RET)
short 1 0.00079mov ax, address

callee epilogue

A.4 Class int

Antecedents Consequent Confidence Support

(RET)
int 1 0.01594return bool cast eax, [regbp]

callee epilogue

(RET)

int 1 0.00212

mov eax, literal
callee epilogue

(POST CALL)
caller epilogue
push eax

(RET)

int 1 0.00157

mov eax, literal
callee epilogue

(POST CALL)
caller epilogue
mov [regbp], eax

(RET)
int 1 0.00103return int math op eax, ecx

callee epilogue

(RET)

int 1 0.00064

mov eax, literal
callee epilogue

(POST CALL)
caller epilogue
mov address, eax

continues
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Antecedents Consequent Confidence Support

(RET)

int 1 0.00049

xor eax, eax

callee epilogue
(POST CALL)

caller epilogue
mov address, eax

(RET)

int 1 0.00030

movsx eax, [regbp]
callee epilogue

(POST CALL)
caller epilogue
push eax

(RET)

int 1 0.00030

or eax, literal
callee epilogue

(POST CALL)
caller epilogue
mov [regbp], eax

(RET)

int 1 0.00030

mov eax, literal
callee epilogue

(POST CALL)
caller epilogue
mov [regbp], eax

(POST CALL)
caller epilogue
push eax

(RET)

int 1 0.00025

idiv ecx

callee epilogue
(POST CALL)

caller epilogue
push eax

(RET)
int 0.96 0.00118movsx eax, [regbp]

callee epilogue

A.5 Class pointer

Antecedents Consequent Confidence Support

(RET)
pointer 1 0.00590mov eax, offset

callee epilogue

(RET)
pointer 1 0.00359add eax, offset

callee epilogue

(RET)
pointer 1 0.00231gen mov chain eax, [regbp], offset

callee epilogue

(RET)
pointer 1 0.00207lea eax, [regbp+regax]

callee epilogue

(RET)
pointer 1 0.00172lea eax, [regbp+regcx]

callee epilogue

continues
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Antecedents Consequent Confidence Support

(RET)
pointer 1 0.00157return add assign int to ptr eax, [regbp], ecx, [regbp]

callee epilogue

(RET)
pointer 1 0.00152lea eax, [regbp+regdx]

callee epilogue

(RET)

pointer 1 0.00148

lea eax, [regbp]
callee epilogue

(POST CALL)
caller epilogue
push eax

(RET)
pointer 1 0.00089return add assign int to ptr eax, [regbp], eax, [regbp]

callee epilogue

(RET)
pointer 1 0.00064add int to ptr eax, offset

callee epilogue

(RET)

pointer 1 0.00030

mov eax, [regcx]
callee epilogue

(POST CALL)
caller epilogue
mov address, eax

(RET)

pointer 1 0.00030

mov eax, [regax]
callee epilogue

(POST CALL)
caller epilogue
mov address, eax

(RET)

pointer 1 0.00025

mov eax, [regbp]
callee epilogue

(POST CALL)
caller epilogue
mov address, eax

(POST CALL)
caller epilogue
push eax

(RET)
pointer 0.992 0.00585lea eax, [regbp]

callee epilogue

(RET)

pointer 0.962 0.00246

add eax, literal
callee epilogue

(POST CALL)
caller epilogue
push eax

(RET)

pointer 0.958 0.00113

mov eax, address
callee epilogue

(POST CALL)
caller epilogue
push eax
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A.6 Class struct

Antecedents Consequent Confidence Support

(RET)
struct 1 0.06321mov eax, [ebp+8]

callee epilogue

A.7 Class long long

Antecedents Consequent Confidence Support

(RET)
long long 1 0.04442cdq

callee epilogue

(RET)
long long 1 0.00128mov edx, [regdx]

callee epilogue

(POST CALL)

long long 1 0.00074

caller epilogue
mov address, eax

(POST CALL)
caller epilogue
push edx

(RET)
long long 1 0.00059mov edx, [regbp+regcx]

callee epilogue

(RET)
long long 1 0.00059mov edx, address

callee epilogue

(POST CALL)
long long 0.99 0.00984caller epilogue

push edx

(RET)
long long 0.98 0.00236mov edx, [regcx]

callee epilogue

A.8 Class float

Antecedents Consequent Confidence Support

(RET)
float 1 0.03807assign int cast to float [regbp], [regbp], [regbp]

callee epilogue

(POST CALL)
float 1 0.00836caller epilogue

fstp dword [regsp]

(RET)
float 1 0.00089fld dword [regbp+regdx]

callee epilogue

(RET)
float 0.99 0.00954fld dword address

callee epilogue

continues
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Antecedents Consequent Confidence Support

(RET)
float 0.983 0.00280fld dword [regax]

callee epilogue

(RET)
float 0.952 0.00197fld dword [regdx]

callee epilogue

A.9 Class double

Antecedents Consequent Confidence Support

(RET)
double 1 0.03566assign int cast to double [regbp], [regbp], [regbp]

callee epilogue

(RET)
double 1 0.01033fld qword address

callee epilogue

(RET)
double 1 0.00930return assign double [regbp], xmm0

callee epilogue

(RET)
double 1 0.00266fld qword [regbp]

callee epilogue

(RET)
double 1 0.00207fld qword [regdx]

callee epilogue

(RET)
double 1 0.00192fld qword [regax]

callee epilogue

(RET)
double 1 0.00177fld qword [regcx]

callee epilogue

(RET)
double 1 0.00074fld qword [regbp+regax]

callee epilogue

(RET)
double 1 0.00069fld qword [regbp+regcx]

callee epilogue

A.10 Class void

Antecedents Consequent Confidence Support

(RET)
void 1 0.00349mov [regbp], literal

callee epilogue

(RET)
void 1 0.00285mov address, literal

callee epilogue

(RET)
void 1 0.00182mov [regax], ecx

callee epilogue
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Appendix B

Binary pattern generalizations

This appendix shows a complete list of the generalizations used in Chapter 5 to
create the predictive models after applying the method in Chapter 4.

In the following table, reg variables represent registers, literal integer literals,
address absolute addresses, *address absolute addresses dereferences and offset
relative addresses. Variables between normal-font brackets ([]) represent optional
arguments, while typewriter-font brackets ([]) are the assembly brackets denoting
register-based dereferences.

Assembly pattern Feature (Generalization)

pop reg1

callee epilog()

...
pop regn
pop ebp

ret

where: reg1, ..., regn /∈ {ebp}∑n
i=1

∑n
j=i regi 6= regj

pop reg1

callee epilog()

...
pop regn
mov esp, ebp

pop ebp

ret

where: reg1, ..., regn /∈ {ebp}∑n
i=1

∑n
j=i regi 6= regj

pop reg1

callee epilog()

...
pop regn
mov ecx, [ebp+var 4]

xor ecx, ebp

call @ security check cookie@4

mov esp, ebp

pop ebp

ret

where: reg1, ..., regn /∈ {ebp}∑n
i=1

∑n
j=i regi 6= regj

continues
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Assembly pattern Feature (Generalization)

pop reg1

callee epilog()

...
pop regn
mov esp, ebp

pop ebp

mov esp, ebx

pop ebx

ret

where: reg1, ..., regn /∈ {ebp, ebx}∑n
i=1

∑n
j=i regi 6= regj

pop reg1

callee epilog()

...
pop regn
mov ecx, [ebp+var 4]

xor ecx, ebp

call @ security check cookie@4

mov esp, ebp

pop ebp

mov esp, ebx

pop ebx

ret

where: reg1, ..., regn /∈ {ebp, ebx}∑n
i=1

∑n
j=i regi 6= regj

call offset caller epilog()

call offset
caller epilog()

add esp, literal

cond jmp offset1

bool cast(reg1)

mov [reg1], literal1
jmp offset2
mov [reg1], literal2

where: cond jmp ∈ {jo, jno, js, jns, je, jz, jne, jnz, jb, jnae, jc,
↪→ jnb, jae, jnc, jbe, jna, ja, jnbe, jl, jnge, jge, jnl, jle,
↪→ jng, jg, jnle, jp, jpe, jnp, jpo, jcxz, jecxz}
literal1, literal2 ∈ {0, 1}
literal1 6= literal2
offset1 6= offset2

mov arg2, arg1

gen mov chain(argn, ..., arg1)

mov arg3, arg2
...
mov argn, argn-1

where: mov ∈ {mov, movzx, movsx}
arg1 ∈ {reg, [reg], *address, literal}
arg2, ..., argn ∈ {reg, [reg], *address}

mov arg2, arg1

mov chain(argn, ..., arg1)

mov arg3, arg2
...
mov argn, argn-1

where: arg1 ∈ {reg, [reg], *address, literal}
arg2, ..., argn ∈ {reg, [reg], *address}

movss arg2, arg1

mov float chain(argn, ..., arg1)

movss arg3, arg2
...
movss argn, argn-1

where: arg1, ..., argn ∈ {reg, [reg], *address}
continues
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Assembly pattern Feature (Generalization)

movsd arg2, arg1

mov double chain(argn, ..., arg1)

movsd arg3, arg2
...
movsd argn, argn-1

where: arg1, ..., argn ∈ {reg, [reg], *address}

bool cast(reg1)

return bool cast(regax, regn, ..., reg1)
mov chain(regax, regn, ..., reg1)
callee epilogue

where: regax ∈ {eax, ax, al, ah}

mov chain(regax, regn, ..., reg1, literal)

return bool literal(regax, regn, ..., reg1)
callee epilogue

where: regax ∈ {eax, ax, al, ah}
literal ∈ {0, 1}

gen mov chain(reg2, reg1)
inc int(reg1)add reg2, 1

mov chain(reg1, reg2)

gen mov chain(reg2, reg1)
dec int(reg1)sub reg2, 1

mov chain(reg1, reg2)

gen mov chain(reg2, reg1)

inc ptr(reg1)
add reg2, literal
mov chain(reg1, reg2)

where: literal > 1

gen mov chain(reg2, reg1)

dec ptr(reg1)
sub reg2, literal
mov chain(reg1, reg2)

where: literal > 1

shl reg2, literal
sub int to ptr(reg1, *address, reg2)mov chain(reg1, *address)

sub reg1, reg2

call allmul

sub int to ptr(reg, *address)mov chain(reg, *address)
sub reg, eax

call allmul
add int to ptr(*address)

add eax, *address

sub int to ptr(reg1, *address, [reg2])

return sub int to ptr(regax, reg1,

↪→ *address, [reg2])

mov chain(regax, reg1)
callee epilogue

where: regax ∈ {eax, ax, al, ah}

sub int to ptr(reg1, *address, [reg2])

return sub assign int to ptr(regax, arg1,

↪→ reg1, *address, [reg2])

gen mov chain(regax, arg1, reg1)
callee epilogue

where: regax ∈ {eax, ax, al, ah}
arg1 ∈ {reg, [reg], *address}

add int to ptr(reg1, *address)

return add assign int to ptr(regax, arg1,

↪→ reg1, *address)

gen mov chain(regax, arg1, reg1)
callee epilogue

where: regax ∈ {eax, ax, al, ah}
arg1 ∈ {reg, [reg], *address}

continues
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Assembly pattern Feature (Generalization)

lea reg1, *address

return add assign int to ptr(regax, arg1,

↪→ reg1, *address)

gen mov chain(regax, arg1, reg1)
callee epilogue

where: regax ∈ {eax, ax, al, ah}
arg1 ∈ {reg, [reg], *address}

math op arg1

return int math op(arg1)
callee epilogue

where: math op ∈ {div, idiv}
arg1 ∈ {reg, [reg], *address}

math op arg1

return int math op(regax, arg1)

mov chain(regax, regrem)
callee epilogue

where: math op ∈ {div, idiv}
arg1 ∈ {reg, [reg], *address}
regax ∈ {eax, ax, al}
regrem ∈ {edx, dx, ah}

math op arg1 arg2

return int math op(regax, arg1, arg2)

mov chain(argax, reg1)
callee epilogue

where: math op ∈ {imul, sub, add, sar, sal, shr, shl, xor, or, and}
arg1 ∈ {reg, [reg], *address}
arg2 ∈ {reg, [reg], *address, literal}
regax ∈ {eax, ax, al, ah}

math op arg2

return int math op assign(regax, arg1,

↪→ arg2)

mov chain(regax, arg1)
callee epilogue

where: math op ∈ {div, idiv}
arg1 ∈ {reg, [reg], *address}
arg2 ∈ {reg, [reg], *address}
regax ∈ {eax, ax, al, ah}

math op arg2

return int math op assign(regax, arg1,

↪→ arg2)

mov chain(regax, arg1, regrem)
callee epilogue

where: math op ∈ {div, idiv}
arg1 ∈ {reg, [reg], *address}
arg2 ∈ {reg, [reg], *address}
regrem ∈ {edx, dx, ah}

math op arg2 arg3

return int math op assign(regax, arg1,

↪→ arg2, arg3)

mov chain(regax, arg1, arg2)
callee epilogue

where: math op ∈ {imul, sub, add, sar, sal, shr, shl, xor, or, and}
arg1 ∈ {reg, [reg], *address}
arg2 ∈ {reg, [reg], *address}
arg3 ∈ {reg, [reg], *address, literal}
regax ∈ {eax, ax, al, ah}

fstp arg

fstp dword(arg)
where: opcode(fstp)[0] = 0xD9

arg ∈ {[reg], *address}

fstp arg

fstp qword(arg)
where: opcode(fstp)[0] = 0xDD

arg ∈ {[reg], *address}
continues
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fld arg

fld dword(arg)
where: opcode(fld)[0] = 0xD9

arg ∈ {[reg], *address}

fld arg

fld qword(arg)
where: opcode(fld)[0] = 0xDD

arg ∈ {[reg], *address}

fild arg1

assign int cast to float(arg3, arg2,

↪→ arg1)

fstp dword(arg2)
fld dword(arg3)

where: arg1 ∈ {[reg], *address}
arg2 ∈ {[reg], *address}
arg3 ∈ {[reg], *address}

fild arg1

assign int cast to double(arg3, arg2,

↪→ arg1)

fstp qword(arg2)
fld qword(arg3)

where: arg1 ∈ {[reg], *address}
arg2 ∈ {[reg], *address}
arg3 ∈ {[reg], *address}

mov float chain(argn, ..., arg1)

return assign float(argn, ..., arg1)
fld dword(argn)

where: arg1, ..., argn-1 ∈ {reg, [reg], *address}
argn ∈ {[reg], *address}

mov double chain(argn, ..., arg1)

return assign double(argn, ..., arg1)
fld qword(argn)

where: arg1, ..., argn-1 ∈ {reg, [reg], *address}
argn ∈ {[reg], *address}

mov al, literal
assign char literal()

where: literal > 1
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Cnerator user manual

Cnerator is a C source code generation tool [79]. It can be used to generate large
amounts of standard ANSI/ISO C source code, ready to be compiled by any stan-
dard language implementation. Cnerator is highly customizable to generate all
the syntactic constructs of the C language, necessary to build accurate predictive
models with machine learning algorithms.

C.1 Installation

You need a Python 3.7+ standard implementation. The only additional package
to install is numpy:

pip install numpy

C.2 Usage

Then, you may just run Cnerator with no arguments to generate a random C
program in the out directory:

python cnerator.py

There are plenty of options to customize Cnerator. To specify the probability
of a particular language construct, you can use the -p or --probs option. The
following command sets to 20% the probability of generating a function invocation
when a new expression is required:

python cnerator.py -p "call_prob = {True: 0.2, False: 0.8}"

If more sophisticated probabilities are required, you can specify them in a
JSON file and pass it as a parameter (see Section C.5 to know the JSON file
format).

The following line passes an example JSON file in the json/probabilities

folder where different probability distributions are specified for some syntactic
constructs:

python cnerator.py -P json/probabilities/example_probs.json
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Cnerator also allows the user to control the number and characteristics of all
the functions to be generated. A JSON file is used for that purpose (Section C.6).
The following command makes Cnerator generate one function for each high-level
return type in the C programming language:

python cnerator.py -f json/functions/1-function-each-type.json

Sometimes, the user needs the output program to fulfill some requirements not
guaranteed by the stochastic generation process. To this aim, Cnerator allows
the specification of an ordered collection of Python post-process specification
files. These post-processing files can modify the generated code to satisfy those
requirements.

The following execution generates a random program and then executes two
visitors: one to rename func functions to proc (and their invocations) when
they return void; and another one to add a RETURNn label before each return
statement:

python cnerator.py -V visitors.func_to_proc:visitors.return_instrumentation

To see all the options, just run the -h or --help options.

C.3 Command line arguments

These are the command line arguments provided by Cnerator (all of them are
optional):

• -o NAME or --output NAME: NAME indicates the output file name, without
the file extension. The default value is main.

• -O PATH or --output dir PATH: PATH is the output directory where the C
source code is placed. If the directory does not exist, it is created. The
default value is out.

• -n NUMBER or --nfiles NUMBER: Generates the output program in NUMBER

compilation units. Each compilation unit is a pair of .c and .h files. A com-
pilation unit can be compiled independently, even though they commonly
depend on other compilation units. The default value is 2.

• -r RECURSION LIMIT or --recursion RECURSION LIMIT: Defines the max-
imum number of Python recursive invocations. This parameter may be
modified when massive codebases are being modified, checking that the run-
time environment provides sufficient memory. The default value is 50000.

• -v or --verbose: Enables the verbose mode to show runtime messages. By
default, the verbose mode is disabled.

• -d or --debug: Generates debug information, comprising call graphs and
struct structures in .dot files. By default, the debug option is disabled.

• -p PROBS or --probs PROBS: PROBS represents a semicolon-separated list of
probabilities and their values for different syntactic constructs. An example
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use is "call prob={True:0.2,False:0.8}; param number prob={0:0.2,
↪→ 1:0.3,2:0.3,3:0.2}".

• -P PROBSFILE or --probsfile PROBSFILE: PROBSFILE is a JSON file spec-
ifying some probabilities for different language constructs. Different exam-
ples are provided in the json/probabilities directory. The structure of
PROBSFILE JSON files is described in Section C.5.

• -f FUNCTIONS or --functions FUNCTIONS: FUNCTIONS is a JSON file spec-
ifying conditions of the functions to be created by Cnerator. The user can
express properties that the generated functions will fulfill. Different exam-
ple files are provided in the json/functions directory.

• -V VISITORS or --visitors VISITORS: An ordered colon-separated list of
visitors to adapt, process or modify the program representation generated
by Cnerator. Once the visitors are run, Cnerator takes the final program
representation and generates the final C source code. An example value of
VISITORS is visitors.func to proc:visitors.return instrumentation.
The visitors directory provides different examples of visitor implementa-
tions. A brief description of how to implement of such visitors is presented
in Section C.7.

• -h or --help: Shows a description of the command line arguments, includ-
ing the default values.

C.4 Syntactic constructs

As mentioned, Cnerator allows defining the probabilities of different syntactic
constructs of the C programming language. What follows is a description of all
the constructs and their unique identifiers, when the -p or -P options are used:

• primitive types prob: probabilities among primitive types (default: equal
probability for all the types).

• assignment types prob: assignment type (default: equal probability for
all the types).

• augmented assignment types prob: augmented assignment type (+=, -=,
*=, etc.) (default: equal probability for primitive types).

• all types prob: type probability when any type may occur in a syntax
construction (default: equal probability for any type).

• array size: size of the arrays to be created (default: 1-10).

• reuse struct prob: when a struct is needed, probability of using and ex-
isting one rather than creating a new one (default: 90%).

• enhance existing struct prob: when a struct is needed, probability of
extending an existing one with the demanded field rather than creating a
new one (default: 70%).
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• array literal initialization prob: array initialization upon definition
(default: 10%).

• struct literal initialization prob: struct initialization upon defini-
tion (default: 10%).

• exp depth prob: expression depth (default: equal probabilities for [0-2]).

• return exp depth prob: expression depth for the particular expressions to
be returned by functions (default: equal probabilities for [0-2]).

• call prob: probability that a new expression is a function invocation (de-
fault: 20%).

• basic expression prob: basic expressions (default: same probability among
literal, local variable, global variable, and param variable).

• param number prob: number of parameters (default: 10% for 1, 20% for
[1,4] and 5% for [5,6]).

• param types prob: types of the parameters (default: all types are equally
likely).

• stmt invocation prob: invocation statements to functions or procedures
(default: function=88%, procedure=12%).

• return types prob: function return types (default: all types are equally
likely).

• int emulate bool: probability of generating a bool return (0 or 1) when
an int type is expected (default: 20%).

• new global var prob: probability of creating a new global variable when
one of the expected types already exists (default: 1%).

• new local var prob: probability of creating a new local variable when one
of the expected types already exists (default: 1%).

• reuse func prob: probability of reusing an existing function of the ex-
pected type (default: 99%).

• reuse proc prob: probability of reusing an existing procedure of the ex-
pected type (default: 99%).

• global or local as basic lvalue prob: When a basic l-value needs to
be generated, this is the probability of using a global variable; otherwise, a
local variable is used (default: 50%).

• basic or compound stmt prob: probability of generating a basic (no block)
or compound statement (default: basic=70%, compound=30%).

• function basic stmt prob: each kind of basic (no block) statement in
functions (default: assignment=60%, invocation=20%, increment / decre-
ment=20%, augmented assignment=10%).
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• function compound stmt prob: each kind of compound statement (with
blocks) in functions (equal probability for Block, If, Switch, Do, While,
For).

• stmt depth prob: statement depth (default: equal probabilities for [0-2]).

• procedure basic stmt prob: each kind of basic (no block) statement in
functions (default: assignment=60%, invocation=20%, increment / decre-
ment=20%, augmented assignment=10%).

• procedure compound stmt prob: each kind of compound statement (with
blocks) in functions (equal probability for Block, If, Switch, Do, While,
For).

• number stmts main prob: number of statements in the main function (de-
fault: equal probabilities between 5 and 10).

• number stmts func prob: number of statements in functions (default: 20%
for [1,4] and 10% for [5, 6]).

• number stmts block: number of statements in blocks (default: 1/3 for 1,
2 and 3).

• else body prob: probability of generating an else body for an if state-
ment (default: 50%).

• number cases prob: number of cases in switch statements (default: equal
probabilities between 1 and 4).

• cases type prob: type of the cases clauses in switch statements (default:
equal probabilities between types promotable to int, excluding bool).

• default switch prob: probability of generating a default case in a switch

statement (default: 80%).

• break case prob: probability of having a break statement at the end of a
case block (default: 70%).

• return at end if else bodies prob: probability of having a return at
the end of an if / else blocks (default: 15%).

• return at end case prob: probability of having a return at the end of
the cases clauses in a switch statement (default: 15%).

• implicit promotion bool: if an expression is expected, the probability
to generate it with another type promotable to the expected one (default:
30%).

• promotions prob: promotions between types (default: all the conversions
are equally likely).
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C.5 Probability specification files

Probability specification files are JSON documents that the user can use to define
the probability of different syntactic constructs (Section C.4). The following
JSON file shows an example:

{

"function_basic_stmt_prob": {

"assignment": 0.3,

"invocation": 0.4,

"augmented_assignment": 0.15,

"incdec": 0.1,

"expression_stmt": 0.05

},

"array_literal_initialization_prob": {

"True": 0.1, "False": 0.9

},

"primitive_types_prob": {

"__prob_distribution__": "equal_prob",

"__values__": [

"ast.Bool",

"ast.SignedChar",

"ast.UnsignedChar",

"ast.SignedShortInt"

]

},

"param_number_prob": {

"__prob_distribution__": "proportional_prob",

"__values__": {

"0": 1, "1": 2, "2": 3,

"3": 3, "4": 2, "5": 1

}

},

"number_stmts_main_prob": {

"__prob_distribution__": "normal_prob",

"__mean__": 10,

"__stdev__": 3

}

}

The first entry (function basic stmt prob) defines the probability of build-
ing basic statements (i.e., statements not containing other statements, unlike
for and switch), and the second one (array literal initialization prob)
states when an array definition should initialize their values. These two exam-
ples specify fixed probabilities that must sum zero. The three remaining en-
tries describe uniform/equal, proportional and normal distributions to define,
respectively, the usage of primitive types (primitive types prob), the number
of function parameters (param number prob) and statements in the main function
(number stmts main prob).

C.6 Function generation files

Cnerator provides the capability of specifying features to be fulfilled by the gen-
erated functions. The following JSON file shows an example use of such capacity:
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{

"function_returning_void": {

"total": 1000,

"condition": "lambda f: isinstance(f.return_type, ast.Void)"

},

"function_returning_bool": {

"total": 1000,

"condition": "lambda f: isinstance(f.return_type, ast.Bool)"

},

"function_with_if_else": {

"total": 1,

"condition": "lambda f: any(stmt for stmt in f.children

if isinstance(stmt, ast.If) and any(stmt.else_statements))"

}

}

The first two entries (function returning void and function returning -

bool) enforce Cnerator to generate 1000 functions returning void and the same
number of functions returning bool. The only condition in the lambda ex-
pressions checks that the returned type is the expected one. The last entry
(function with if else) shows a different example, where the user demands
Cnerator to generate a function containing an if statement with an else clause.

C.7 Post-processing specification files

Cnerator provides a mechanism to process/modify program representation before
the final source code generalization. The following code shows an example Python
post-process specification file:

from functools import singledispatch

from cnerator import ast

def _instrument_statements(statements: List[ast.ASTNode]) -> List[ast.ASTNode]:

"""Includes a unique label before any return statement"""

instrumented_stmts = []

for stmt in statements: # iterates through the statements

if isinstance(stmt, ast.Return): # if the statement is return...

label = ast.Label(generate_label()) # creates new AST node for the label

instrumented_stmts.append(label) # and places the label before return

visit(stmt) # traverses the statement

instrumented_stmts.append(stmt) # appends return after the label

return instrumented_stmts

@visit.register(ast.Function)

def _(function: ast.Function):

"""Traverses a function definition to add a unique label before

each return statement"""

function.stmts = _instrument_statements(function.stmts)

@visit.register(ast.Do)

@visit.register(ast.While)

@visit.register(ast.For)

@visit.register(ast.Block)

def _(node):

"""Traverses a control flow statement to add a unique
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label before each return statement"""

node.statements = _instrument_statements(node.statements)

_return_label_counter = 0

def generate_label() -> str:

"""Generates a new unique label string"""

global _return_label_counter

_return_label_counter += 1

return f"__RETURN{_return_label_counter}__"

...

The previous code traverses the representation of the generated program (i.e.,
its Abstract Syntax Tree (AST)), and adds a unique label before each return

statement. The instrument statements function takes a list of statements
(represented as AST nodes) and adds a unique label—prefixed with RETURN—
before each return statement. This is later used in the traversal of function
definitions (ast.Function), and do, while, for and block statements—if and
switch control flow statements follow the same template. This instrumentation
technique was used to associate fragments of binary code with their corresponding
high-level return statements.

The previous code is an instance of an introspective implementation of the
Visitor design pattern. The visit annotations indicate the AST node to be
traversed.
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Hyperparameters

In Chapter 5 we detail how to create predictive models for the decompilation of
function return types. We use different machine-learning algorithms implemented
by scikit-learn. For each algorithm, we tune the hyperparameters of each model.
To that end, we use GridSearchCV, which performs an exhaustive search over the
specified hyperparameter values. The 80% training set is used to validate the hy-
perparameters with 3-fold stratified cross-validation (StratifiedShuffleSplit).

These are the hyperparameters used for each algorithm:

– AdaBoost: n estimators = 500, base estimator = DecisionTreeClass-

ifier(), learning rate = 1.2, algorithm = "SAMME".

– Bernoulli näıve Bayes: binarize = None, alpha = 0.2, fit prior = True.

– Decision tree: max features = sqrt, min samples split = 7, criterion
= gini, splitter = best.

– Extremely randomized trees: warm start = True, n jobs = -1, n estima-

tors = 100, min samples split = 10, criterion = gini, max features

= log2.

– Gradient boosting: warm start = True, loss = deviance, max leaf nodes

= None, learning rate = 0.2, min samples leaf = 1, n estimators

= 100, subsample = 1, min weight fraction leaf = 0.0, criterion

= friedman mse, min impurity split = 1e-07, max features = sqrt,
min samples split = 7, max depth = 5.

– K-nearest neighbors: n neighbors = 8, metric = manhattan, n jobs =
-1, weights = distance, algorithm = brute.

– Linear support vector machine: loss = squared hinge, C = 1, tol = 1,
penalty = l2, multi class = crammer singer, dual = True, class weight

= balanced.

– Logistic regression: penalty = l2, C = 25, tol = 0.0001, dual = False,
solver = liblinear.
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– Multilayer perceptron: shuffle = True, solver = adam, activation =
logistic, hidden layer sizes = (100, ), tol = 0.0001, alpha = 0.01.

– Multinomial näıve Bayes: alpha = 0.35, fit prior = True.

– Perceptron: penalty = l1, alpha = 1e-09, n jobs = -1, eta0 = 10.0,
n iter = 11.

– Random forest: warm start = True, n jobs = -1, n estimators = 100,
min samples split = 8, criterion = gini, max features = log2.

– Support vector machine: kernel = sigmoid, C = 100.0, probability

= False, shrinking = True, decision function shape = ovo, tol =
0.1, cache size = 1024, coef0 = 0.0, gamma = 0.01, class weight =
balanced.
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Publications

The research work of this PhD dissertation has been submitted for publication
in the following journals:

– Javier Escalada, Francisco Ortin, Ted Scully. An Efficient Platform for the
Automatic Extraction of Patterns in Native Code. Scientific Programming,
volume 2017, pp. 1-17, March 2017, doi: 10.1155/2017/3273891, JCR Im-
pact Factor 1.344 (Q2).

– Francisco Ortin, Javier Escalada. Cnerator: a Python application for the
controlled stochastic generation of standard C source code. SoftwareX (ar-
ticle accepted, waiting for publication), JCR Impact Factor 0.945 (Q4)1.

– Javier Escalada, Ted Scully, Francisco Ortin. A machine learning-based sys-
tem to improve the type information inferred by decompilers. International
Journal of Intelligent Systems (article under review), arXiv:2101.08116,
JCR Impact Factor 10.312 (Q1).

– Francisco Ortin, Javier Escalada, Oscar Rodriguez-Prieto. Big Code: New
Opportunities for Improving Software Construction. Journal of Software,
volume 11, issue 11, pp. 1083-1088, November 2016, doi: 10.17706/jsw.11.-
11.1083-1088, SciMago Impact Factor 0.708 (Q3).

– Javier Escalada, Francisco Ortin. An Adaptable Infrastructure to Generate
Training Datasets for Decompilation issues. Advances in Intelligent Sys-
tems and Computing (New Perspectives in Information Systems and Tech-
nologies), pages 85–94, 2014, doi: 10.1007/978-3-319-05948-8 9, SciMago
Impact Factor 0.634 (Q3). Selected paper from the World Conference on
Information Systems and Technologies (WorldCIST), Madeira (Portugal),
April 2014, Core C.

1This journal has already been indexed in the Journal Citation Reports, but its first impact
factor will be published in June 2021. This information is available at https://mjl.clarivate.
com/home
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