
Applying Dynamic Separation of Aspects to

Distributed Systems Security

Miguel Garćıa a David Llewellyn-Jones b Francisco Ortin a

Madjid Merabti b

aUniversity of Oviedo, Asturias, Spain
bLiverpool John Moores University, Liverpool, United Kingdom

Abstract

Distributed systems are commonly required to be flexible and scalable, as the num-
ber and arrangement of the devices can easily vary. As in any system, it is necessary
to exchange information in a safe and controlled way. Security in distributed sys-
tems is a complex issue which can produce several problems such as eavesdropping,
phishing or denial of service. To overcome these problems, there are various security
measures that can be applied in different ways. Common examples are encryption
of communication, use of credentials or audit. This paper proposes the idea of using
Aspect Oriented Software Development (AOSD) to implement security mechanisms
in distributed systems. By applying dynamic separation of concerns using AOSD
it becomes possible to make corrections in the software at runtime. In this way a
distributed system is able to adapt its security measures when needed, and can vary
in size and arrangement without compromising security. These changes can be ap-
plied even when the distributed system is running, without stopping its execution.
Using the AOSD platform Dynamic and Static Aspect Weaving (DSAW) AOSD
platform, we have implemented solutions for two common but difficult problems
related to security in distributed systems: access control and data flow, and encryp-
tion of transactions. An evaluation of both implementations is presented to estimate
the possible advantages of using dynamic AOSD in the development of distributed
systems

Key words: security, distributed systems, dynamic separation of concerns, aspect
oriented software development

Email addresses: BE37378@uniovi.es (Miguel Garćıa),
D.Llewellyn-Jones@ljmu.ac.uk (David Llewellyn-Jones).
URLs: http://www.uniovi.es (Miguel Garćıa), http://www.ljmu.ac.uk

(David Llewellyn-Jones).

Preprint submitted to Elsevier 28 July 2010



1 Introduction

Technology is continually evolving better connected world, with improved
communications and featuring devices that are now smaller and more powerful
than ever. Information systems are increasingly distributed in both geograph-
ical and functional terms. Distributed systems involve the interaction between
disparate and independent entities working towards a common goal [3]. For
instance, nowadays mobile device users expect to be able to connect to the
Internet from anywhere to check email or use social networks. The creation
of ad hoc device networks in order to exchange information is also becoming
increasingly feasible, to be used in different scenarios such as at big events
(concerts, shows, competitions) or even in emergency situations.

These examples of networks must be flexible and scalable, as the number and
arrangement of the devices can easily vary. Moreover, in general, the devices
that make up these networks are heterogeneous as they may come from differ-
ent kind of services and clients. For example, in a crisis management scenario
there are different emergency services (police, fire department or army) and
clients (firemen, nurses or soldiers). This makes it difficult to apply security
measures uniformly. It is necessary to exchange information in a secure and
controlled way. In any information system, security measures are important,
but in these cases they are crucial as the transmitted information is often
highly confidential. That is why one of the main challenges concerning dis-
tributed systems is security. The complexity of this issue relies on the different
vulnerabilities existing in distributed systems. Information sources, transmis-
sions, the intermediate nodes or the final receivers are the first points that
need to be protected in any distributed system. It is necessary to analyse in
detail all the threats and the possible solutions to them. In systems with a
single device or in private networks, most of the security threats can be easily
controlled using static hardware or pre-deployed software, but this solution is
not suitable in distributed systems.

Several problems can arise, intentionally or not, in distributed systems. Ex-
amples include eavesdropping, denial of service (DoS), spoofing or repudiation
of transactions. The vast majority of measures used to prevent or solve these
problems are performed using software. Encryption, digital certificates, access
control lists or monitoring are some of the solutions used. Since there are
different techniques used in order to solve security problems, in this paper
we analyse the benefits on using the Aspect Oriented Software Development
(AOSD) [15] paradigm. This paradigm allows developers to make good use
of the Separation of Concerns (SoC) principle [14] when developing applica-
tions. If the AOSD platform employed offers dynamic aspect weaving [38], it is
possible to dynamically adapt distributed systems in order to include new se-
curity concerns when a new threat appears at runtime. Security measures can

2



be modified, inserted or removed with no need to stop the distributed system,
and without changing the software or devices of which it is comprised. Cor-
rections performed once the distributed system is running are motivated by
two main causes: new vulnerabilities (not taken into account at design time)
or performance (the software has security measures, but they are disabled for
efficiency reasons).

In this paper we use an AOSD approach to solve two common problems in dis-
tributed systems security: access control and data flow, and encryption. These
solutions are based on AOSD, using the Dynamic and Static Aspect Weaving
(DSAW) [48] platform for their implementation. DSAW is an AOSD platform
that supports static and dynamic code weaving, which among other things al-
lows the modification of application functionality at runtime. As shown below,
applying this technology it is possible to control the flow, access and encryp-
tion of data dynamically. In this way, the distributed system is able to adapt
to security measures when required, and can vary in size and arrangement
without compromising security. The results of these use cases might also be
applied to other distributed systems security problems.

The remainder of this paper is structured as follows. Section 2 describes and
analyses the main problems and possible solutions in distributed systems se-
curity. Static and Dynamic AOSD and the DSAW platform are presented
in sections 3 and 4 respectively. An aspect-oriented implementation of the
proposed solutions to the specific problems of data access and data flow and
encryption are described in Section 5. In Section 6 we evaluate the advantages
and performance costs of our proposal. Section 8 presents the conclusions and
future work.

2 Distributed Systems Security

The security of a distributed system is founded on its ability to protect it-
self. As far as security is concerned, two main questions must be taken into
account. 1) What must be protected. In general, distributed systems need to
protect the data, services and system resources being used. 2) What must be
protected from. There are several ways to attack systems, as there are dif-
ferent ways to repel these attacks. In the case of distributed systems, one of
the main threats is unauthorised users attempting to exploit vulnerabilities to
access the system. Although this is the greatest threat, other problems such
us eavesdropping or DoS are apparent as well.

The security measures of distributed systems primarily try to prevent, de-
tect and correct threats that endanger the integrity of the system. The issues
related to security in distributed systems can be divided into three general ar-

3



eas [5]: confidentiality, availability and integrity. Both security measures and
threats fall into one of these categories. To consider a distributed system as
secure, it has to be ready for possible problems in each of these categories.

2.1 Confidentiality

Confidentiality is everything that is related to accessing to information by
users (whether this access is authorised or not). Based on attempts to break
confidentiality of distributed systems, the main attacks are traffic analysis,
eavesdropping, spoofing, unauthorised access, MitM (man in the middle) and
re-injection attacks [33]. Security measures to prevent these attacks try to en-
sure that only authorised users can access data and services. In the same way,
it should be guaranteed that users with access do not constitute a new threat.
It must also be checked that a user with appropriate permissions can access
the system and not be mistakenly identified as dangerous. The main security
measures used to ensure confidentiality are: authentication, authorisation, au-
dit, data flow control/analysis and encryption.

2.1.1 Authentication

The process of ensuring that a user is who they are supposed to be is called
Authentication and it is essential in any distributed system. This process must
be conducted before allowing someone to access system resources. Typically
the user provides a password, signature or, in general, some information (a
token) that identifies them as who they claim to be. There are three main
types of authentication in distributed systems [50].

(1) Source authentication. It involves verifying that the information source
and author are the same. To verify the identity of the sender, techniques
based on Public Key Infrastructure (PKI) [12] such as digital signatures
are typically used.

(2) Content authentication. It involves verifying that the information received
is the same as the information sent. As in the previous case, keys are
often used, but in this case they are used to encode the message content,
concretely a hash code obtained from the content is encoded.

(3) Identity authentication. In this case, we must verify that someone is who
they claim to be. For identity verification, we use authentication protocols
such as Kerberos [29], for the exchange of credentials. These credentials
are often in the form of “username” and “password”.

The main attacks trying to break these types of security measure are based
on exploiting weaknesses in the protocols used, since nowadays if we use keys

4



properly, there is not enough computing power to decode them using dictio-
nary attacks, brute force or crackers.

2.1.2 Authorisation

A very common requirement for distributed systems security is the provision
of different levels of access to resources. This is known as Authorisation. Each
identified user has a level of access, based on security policies, that deny or
allow access to resources. The most widely used security mechanisms in dis-
tributed systems to ensure authorisation are [3]:

(1) Access control lists. Each user has a list of resources that can be accessed
and the operations that can be performed on them. This mechanism is
similar to that used in many operating systems.

(2) Roles. The system has a number of roles, and different roles are able to
access different resources. Each user belongs to a role, and only if a role
is authorised to access a resource may the user with that role do so. This
system is widely used in database management system (DBMS). In the
case of distributed systems often there is no central server role. Instead
point to point connections are used and users need to transmit their roles
to access resources. This can be very dangerous if encrypted connections
are not used.

(3) Mandatory access control. In this case, both users and resources have an
access level. If the user level is high enough then the user can access to
the resource. This security system is commonly used in military systems
or in high security systems.

To bypass these security measures, malicious users use techniques of privilege
escalation. Users with access to the system gain greater privileges to gain
access to more restricted resources. The most common attack used to break
these measures is the buffer overrun attack. This attack consists of taking
control of a node by sending it a greater amount of information than it is
capable of processing, in order to cause an unchecked buffer to overflow. To
avoid this, some intermediate components can be introduced to divide the
information or limit the size that the source can send with respect to the
recipient [23].

2.1.3 Audit

All the aforementioned security measures are aimed at preventing possible
attacks against a system. Audit and monitoring are focused on detecting
anomalies in system security [51]. One way to achieve this is through Intrusion
Detection, which involves two tasks: monitoring activities and processing the
results to search for evidences indicating whether a system has been attacked

5



or not. Usually any access to a system or to its resources is registered like
other events that occur in the system. It is principal to log failures in access,
services and communications. This way, if many failed attempts to access the
system are registered, it may be possible to deduce that someone is trying
to access the system in an unauthorised way. Should this be established, ap-
propriate counter-measures can be taken. However, registering and storing all
of this information can penalise system performance. Registering every single
event can make the system to spend more time managing audit data than
performing functional work.

Attacks related to auditing try to obtain the information stored in the log. This
information is often critical (it can relate to users, resources, addresses, dates
or times) and it could be used by attackers to break other security measures.
Therefore, the audit records must be stored with maximum security.

2.1.4 Data flow

In distributed systems, the network topology is not pre-defined and it is com-
mon to use intermediate nodes to exchange information between sender and
receiver (an approach sometimes referred to as multi-hop routing [7]). How-
ever, this potentially introduces the problem that each intermediate node may
be able to access information passing through it, even if that information is ad-
dress to a different node. In this case, it is necessary to protect the information
from intermediate nodes by restricting their access. One common action taken
in these cases is to use different authorisation levels for nodes [27]. Besides,
a security policy with traffic restrictions can be established to prevent nodes
from receiving information that they shouldn’t have access to. The main dis-
advantage for this solution is that the topology of the network must be known
at any time, a condition that may involve an important computational cost.
Every time a node is introduced, removed or reordered, a re-analysis of the
topology and update of the security policies should be performed. Distributed
systems like CORBA solve these problems by establishing restrictions on data
flow, taking into account only the relationships between pairs of nodes, ignor-
ing their role within the larger system or structure that they are part of [22].
However, due to these restrictions there may be cuts in the flow, impeding the
movement of information from reach its destination.

The main solution to avoid these problems is to carry out an efficient network
analysis [24] and a subsequent reorganization of traffic through the nodes in
the network [52].

6



2.1.5 Encryption

The purpose of encryption of communications is to transform information
into data that is unreadable to unauthorized users. The most common way
to achieve this is through the use of complex key-based algorithms for both
encryption and decryption of messages [28]. With exiting techniques, if the key
or algorithm are unknown, it is extremely difficult to decrypt messages [49].
A brute force attack is one of the main methods used to break encryption,
although having access to a large amount of computing power and time is
required to make it effective. It is also common to use techniques to analyse
messages, looking for patterns that allow the key to be deduced.

Due to the high effectiveness of these security techniques, measures to coun-
teract these attacks are often more logical than technological. Keeping keys
safe and changing them frequently are usually the most effective measures.
The main disadvantage is that encryption is a complex process that may re-
quire some computing power and time, which in some scenarios, such as in
mobile networks, may not be possible because the computational cost of en-
cryption affects the battery consumption of the devices. In these cases, special
intermediate nodes can be used, with greater processing power, for the pur-
pose of encryption and decryption. The communication with these nodes must
be done within controlled environments, while communication between nodes
that encrypt and decrypt data can pass through hostile environments.

2.2 Availability

Availability has to do with the fact that both data and services should be
available at any time. The main threats to the data are SQL injection attacks.
These attacks attempt to execute (through services) malicious SQL statements
to corrupt the data stored in the database. Although most Database Manage-
ment Systems (DBMS) have mechanisms to prevent this type of threat, it
is still advisable to protect services against this practice [10]. On the other
hand, the main attacks against availability try to disrupt the proper working
of services by flooding them with a lot of requests. These attacks are known as
Denial of Service (DoS) attacks. Common measures used to protect against
these attacks are firewalls and load balancers [4]. If one address is making too
many requests in a short period of time, its access is blocked or it is redirected
to another machine, avoiding the saturation of the service.

An issue related to availability is fault tolerance, which attempts to guard
against problems such as power cuts, cuts in connections or hardware failures.
Due to decentralization (point-to-point connections) and the characteristics of
the devices (small mobile devices) of distributed systems, it is not always pos-

7



sible to apply the same security measures than in traditional systems: server
mirrors, uninterruptible power supplies (UPS), redundant paths or redundant
hardware. Instead, techniques of reconfiguration for distributed systems might
be used [26]. Thus, it is possible to modify the system behaviour on the nodes,
featuring failures or cuts in communications. The reconfiguration of the sys-
tem allows the “removal” of nodes with security problems, avoiding erroneous
communication lines, and continue working without them.

2.3 Integrity

In distributed systems, as in any system that exchanges data, it is necessary
to ensure that during transmission, the data reaches its destination without
being manipulated. It should be assured the information is correct, valid and
according to what the sender has sent. In this case, attacks may simply corrupt
the message through interference to make the information unreadable to the
recipient. Other more complex attacks alter the content of the messages with-
out the recipient being aware that the information has been changed (MitM).
In the same way, non-repudiation may be required, to ensure that a user can-
not deny an action that they actually performed.

The most common techniques for these purposes are message authentication
codes (MAC) (also referred to as hash values) and digital signatures based on
public key infrastructure (PKI) [3].

2.4 Software approaches to implement security measures

As we have seen before, there are a variety of vulnerabilities that can compro-
mise the security of distributed systems. But we also have diverse measures
of detection and correction of threats. In general, all the security measures
discussed above are based on adapting the system components. Taking into
account how to do the adjustments, the following classification can be estab-
lished:

• Rearranging the components. By modifying the topology of the system it is
possible to prevent or to correct problems such as restrictions on the data
flow or availability of data and services.

• Introducing new components (or removing some of the existing compo-
nents). To avoid situations such as the buffer overrun or DoS attacks, it
can be introduced firewalls or other components capable of solving these
problems.

• Enclosing one or more of the components using a wrapper. To protect com-
ponents against attacks or modify their behaviour appropriately, they can

8



be coated with new features to avoid dangerous situations such as adding
encryption to communications or adding audit capabilities.

• Reconfiguring one or more of the components. In this case the components
are reconfigured to suit the needs of the system, for example if there is a
communication cut, we change the configuration of components to divert
traffic so that availability will not be affected.

• Directly adapting the code. We directly modify the functionality of the
components to adapt to problems. For example, adding to them a digital
signature or access control information.

These adjustments can be made using different software development ap-
proaches. Due to the nature of distributed systems (heterogeneous devices,
point-to-point connections, mobile devices, etc.) it should ideally be performed
in a manner that is as flexible as possible: reusable and maintainable approach
capable of adapting distributed systems at runtime.

• Reusable and maintainable: In software developments there are security is-
sues that are orthogonal and independent to the main concern, with its
code tangled and scattered in whole application. By separating the applica-
tion functional code from these crosscutting concerns, the application source
code would not be tangled, being easy to debug, understand, maintain and
modify. Moreover, this high level of abstraction allows the system to reuse
and share single concerns.

• Dynamic. The system should be able to adapt itself at runtime based on the
dynamic environment. For example, it can use more or less security measures
depending on the confidence of the environment or the capabilities of the
component.

Under these assumptions, we propose the idea of applying Aspect Oriented
Software Development (AOSD) in distributed systems security. As we will
discuss in the following sections, with this approach it is possible to perform
some of the adjustments mentioned above in a generic way without modifying
the source code of the system and without stopping its execution, allowing
the system to change its topology, capabilities and component numbers in a
flexible and reusable way.

3 Aspect Oriented Software Development

Aspect Oriented Software Development (AOSD) [15] is a concrete approach
to implement the principle of Separation of Concerns (SoC) [14]. AOSD facil-
itates a modularisation of different functionalities which cut across the entire
system software.

9



An aspect is defined as any piece of software that cannot be encapsulated
in a method or procedure, being scattered throughout the source code of an
application. Common examples of aspects include transaction control, memory
management, threading, persistence or logging [14].

In many cases, important functionalities in a system are not easily modu-
larised. With the classic object oriented paradigm, the code that deals with
these features is often dispersed in different parts of the application. AOSD
manages the complexity of the software development by separating the func-
tionality that is commonly tangled with the code of other features. The major
benefits of this approach are the high level of abstraction, reuse of functional-
ity, high legibility and improved software maintainability [14].

Figure 1 shows the structure of an aspect oriented program. The final appli-
cation is the result of combining several modules. On one side there are the
modules that contain the basic functionality and on the other hand the aspects
with concrete functionalities that usually cut across the system functionality.

Fig. 1. Aspect oriented program structure.

In Figure 2, the difference between an object oriented program and an aspect
oriented one is highlighted. Following the traditional paradigm, all of the code
is mixed, making it difficult to maintain, debug and even comprehend. On the
other hand, using aspect oriented development; each different functionality
can be included in a separate module, facilitating its maintainability.

Fig. 2. Traditional development vs Aspect oriented development.

10



3.1 Weaving

Once both the basic functionality (components) and aspects are developed, it
is necessary to take all the parts and form the whole program. This process is
called weaving. Traditional processes to generate a program consist of passing
the source code to a compiler, in order to obtain an executable. In AOSD all
the code must pass through the compiler and should be treated by the weaver,
to obtain the program with full functionality. This process can be performed
statically (compile time or load time) or dynamically (at runtime).

To create the program there must be a relationship between the components
and the aspects, i.e., the code of both has to interact with each other in
some way. To allow this interaction, it is necessary to establish the points at
which this interaction should occur. These points are called join-points. Join-
points are those elements of the programming language semantics which the
aspects coordinate with [15]. However, it is necessary to describe the mapping
between join-points and aspects by means of pointcuts. A pointcut is a set
of join-points plus, optionally, some of the values in the execution context of
those join-points [19].

3.1.1 Static Weaving

The majority of existing AOSD implementations are based on static weaving.
Static weaving consists on combining the aspects and components functional-
ity prior to the application execution. This combination consists in inserting
calls to advice in the components code. An advice is a method-like construct
used to define additional behavior at join-points [19]. An advice is part of an
aspect.

In AOSD, a program is developed providing a set of components implemented
in a high-level programming language together with a set of aspects. There
are two approaches to static weave components and aspects [43]: Compile-time
weaving, which inserts the code belonging to the aspects into the code with
basic functionality. The result is new source code, which is compiled generating
an executable file. Post-compile weaving, (also called binary weaving) where
components are first compiled and woven later.

This type of weaving causes little performance penalty because all the code is
combined and statically optimized before its execution. Since the application
is woven at compile time, any functionality required to be adapted at run-
time requires stopping the application, recompiling and reweaving it. For this
reason, this kind of weaving is not used in applications that require runtime
adaptation. Dynamic weaving is used instead.

11



3.1.2 Dynamic Weaving

Although it is not always necessary, there are applications that need to be
adapted at runtime in response to changes in the execution environment [38].
Examples include quality of service management in CORBA distributed sys-
tems [53] and cache systems management in web services [40]. The so-called
autonomic software is another example; they are able to repair, manage, op-
timize or recover themselves [18]. By using a dynamic weaver, it is possible to
modify the behaviour of a program at runtime. We can add, edit or remove
functionality without stopping the application.

In the case of dynamic weaving the program is compiled in the traditional
way and an executable is obtained. This program does not need to foresee
which functionalities will be adapted. When the running program needs to be
adapted, it is dynamically woven with new aspects adapting its behaviour. The
original program continues unmodified, and hence it can be reused without
the changes added in memory.

The main advantage of systems with this kind of weaving is that they sup-
port the dynamic adaptation of programs, maintaining the basic functionality
separate from the aspects throughout the entirety of the software life cycle.
Therefore, the resulting code is more adaptable and reusable, and both aspects
and basic functionality can evolve independently [34]. The main disadvan-
tage is that the dynamic adaptation commonly entails a runtime performance
cost [6].

4 Dynamic and Static Aspect Weaving: DSAW

There are several tools that allow dynamic AOSD such as AOP/ST, PROSE,
DAOP, JAC, CLAW, LOOM.NET, JAsCo or DSAW [48]. All these platforms
allow developers to dynamically (un)weave aspects at runtime. But they also
have some limitations [31]:

(1) Both dynamic and static weaving: Both kinds of weavers are supported in
order to obtain better runtime performance, dynamic adaptiveness, and
edit-and-continue interactive aspect-oriented development. Only DSAW
offers full dynamism. However JBoss, Spring and LOOM.Net partially
achieve it. In addition, the Separation of the Dynamism Concern implies
the conversion of a static aspect into a dynamic one (and vice versa)
without changing its implementation. Both JBoss and DSAW provide this
feature. LOOM.Net and the Spring framework use different approaches
for both kinds of weaving.

(2) Language neutrality. This feature implies the development of applica-

12



tions and aspects in any programming language. All the systems but
LOOM.Net, Spring.Net and DSAW only support the Java programming
language.

(3) Full dynamic weaving. Unlike many dynamic AOP approaches, unweav-
ing and reweaving during runtime should be possible, even at join-points
that were not woven before. String requires an XML file declaring advice
and runtime aspect weaving and unweaving must be explicitly stated in
the applications’ source code. JBoss needs and XML file with pointcuts
and advices that could be used at runtime. But once the application has
been launched, aspects that were not specified in this XML file could not
be woven. Although JAsCo, PROSE and DSAW offer a higher level of
dynamism than the rest of systems, both JAsCo and PROSE show a lim-
itation if re-weaving is required. If the aspect implementation is replaced
by a new one, its new functionality is not reflected at runtime when the
aspect is rewoven.

(4) Taking into account the {constructor, method}{call,execution} and
field{get, set} join-points with the before, after and around times,
AspectJ, DSAW Static and JBossAOP support all (18) and DSAW Dy-
namic almost all (16) (except {constructor}{call,execution} with
around time). However, PROSE, JAsCo, Spring Java, Spring.Net have a
small subset (3 or 4).

If what is required is a system able to adapt itself at runtime to functionalities
not foreseen at design-time (and unweave aspects at runtime), only JAsCo,
PROSE and DSAW offer this functionality.

Because of its language-neutrality, high number of join-points, and the sup-
port of both dynamic and static weaving, we selected the DSAW platform to
develop our proposal. DSAW (Dynamic and Static Aspect Weaving) [47, 31] is
an aspect oriented software development platform that supports homogeneous
static and dynamic weaving. Its main features are:

(1) Platform independence: It is designed over the .NET virtual machine
reference standard [8], without modifying or extending the semantics of
the platform. This ensures complete independence from the platform,
allowing the deployment of this system on any .NET implementation
(for example Mono, SSCLI or DotGNU).

(2) Language independence: DSAW performs the adaptation of software at
the level of the Intermediate Language (IL) of the virtual machine (exe-
cutable files and libraries). This means that at weave-time the application
source code is not necessary, and the platform provides language inde-
pendence.

(3) Weave-time independence: This platform not only allows static and dy-
namic weaving, but can also take advantage of the same implementation
of the components and aspects, independently of the scenario chosen.

13



The original application does not need to be modified in order to be in-
jected with the aspects, and no aspect needs to be modified if the time
of injection is changed from static to dynamic, or vice versa.

(4) Wide range of join-points: DSAW offers a wide and flexible set of join-
points that enable it to adapt any significant point of a given application.
Moreover, unlike most tools with both kinds of weaving, DSAW offers the
same set of join-points for the two scenarios. DSAW supports the follow-
ing join-points: method and constructor execution, method and construc-
tor calls, and field and property reads and writes. Each one allows the
specification before, after and around times.

4.1 DSAW in action

Both components and aspects can be developed in any .NET programming
language. They can even be developed by third-party entities, since it is not
necessary to have their source code. The components do not need to implement
any special interface or feature to allow aspect weaving. Figure 3 shows the
steps that occur in the development of an application in DSAW.

Fig. 3. Dynamic weaving steps.

Any existing .Net application, regardless of the high-level programming lan-
guage that have be used to develop it can be adapted by DSAW. The Join-
Point Injector (JPI) takes the application binary code (assembly) and, prior
to its execution, performs instrumentation of the code in memory. If the weav-
ing is static, a pointcut specification file must be passed as a parameter. In
that case, the application is modified with calls to specific methods of the
appropriate aspect specified in the static pointcut specification file.

Figure 4 shows an example of a pointcut specification. In this case two point-
cuts are specified: before executes the SendMessagemethod of any class, the
AddAuthorisationLevel method of the AccessControlAndDataFlowAspect

class of the AccessControlAndDataFlow.dll assembly must be executed, and
after executes the ReceiveMessage method of any class, the VerifyAutho-

14



risationLevel method of the AccessControlAndDataFlowAspect class of
the AccessControlAndDataFlow.dll assembly must be executed too. If a
XML is not passed to perform static weaving, all of the join-points will be
available at runtime to weave dynamically.

<aspect_definitions >

<pointcut_definition id="c1">

<time>before </time>

<joinpoint_type >

<methodexecution >

<method_signature >

<return_type ><type_name >*</type_name ></return_type >

<qualified_method_name >

<qualified_class >

<namespace ><type_name >*</type_name ></namespace >

<class ><identifier_name >*</identifier_name ></class>

</qualified_class >

<name><identifier_name >SendMessage </identifier_name ></name>

</qualified_method_name >

</method_signature >

</methodexecution >

</joinpoint_type >

</pointcut_definition >

<pointcut_definition id="c2">

<time>after </time>

<joinpoint_type >

<methodexecution >

<method_signature >

<return_type ><type_name >*</type_name ></return_type >

<qualified_method_name >

<qualified_class >

<namespace ><type_name >*</type_name ></namespace >

<class ><identifier_name >*</identifier_name ></class>

</qualified_class >

<name><identifier_name >ReceiveMessage </identifier_name ></name>

</qualified_method_name >

</method_signature >

</methodexecution >

</joinpoint_type >

</pointcut_definition >

<advice_definition idTypeOfInjection="StaticInjection">

<assembly >AccessControlAndDataFlow.dll</assembly >

<type>AccessControlAndDataFlowAspect </type>

<behaviour >AddAuthorisationLevel </behaviour >

<pointcut_definitionRef idRef="c1"/>

</advice_definition >

<advice_definition idTypeOfInjection="StaticInjection">

<assembly >AccessControlAndDataFlow.dll</assembly >

<type>AccessControlAndDataFlowAspect </type>

<behaviour >VerifyAuthorisationLevel </behaviour >

<pointcut_definitionRef idRef="c2"/>

</advice_definition >

</aspect_definitions >

Fig. 4. Pointcut specification.

In case dynamic weaving is required, the JPI instruments the application with
more code. Since it cannot be known in which join-points the developer of a
dynamic aspect could be interested in, the JPI instruments the application so
that any join-point can be intercepted at runtime.

15



<aspect_definitions >

<pointcut_definition id="c1">

<time>around </time>

<joinpoint_type >

<get>

<field_type ><type_name >*</type_name ></field_type >

<qualified_field_name >

<qualified_class >

<namespace ><type_name >*</type_name ></namespace >

<class ><identifier_name >*</identifier_name ></class>

</qualified_class >

<name><identifier_name >swSender </identifier_name ></name>

</qualified_field_name >

</get>

</joinpoint_type >

</pointcut_definition >

<pointcut_definition id="c2">

<time>around </time>

<joinpoint_type >

<get>

<field_type ><type_name >*</type_name ></field_type >

<qualified_field_name >

<qualified_class >

<namespace ><type_name >*</type_name ></namespace >

<class ><identifier_name >*</identifier_name ></class>

</qualified_class >

<name><identifier_name >srReceiver </identifier_name ></name>

</qualified_field_name >

</get>

</joinpoint_type >

</pointcut_definition >

<advice_definition idTypeOfInjection="DynamicInjection">

<assembly >ChangeCommunication.dll</assembly >

<type>ChangeCommunicationAspect </type>

<behaviour >ChangeCommunication </behaviour >

<pointcut_definitionRef idRef="c1"/>

<pointcut_definitionRef idRef="c2"/>

</advice_definition >

</aspect_definitions >

Fig. 5. Pointcut specification.

At runtime, a new aspect could be required to be woven. For this purpose
it is necessary to specify the pointcut with an XML document. Figure 5 is
an example of a pointcut specification file. In this case it is specified: before
calls to the Connect method of the Chat class, the ChangePort method of
the ChangeConnectionPortAspect class of the Aspect.dll assembly must
be executed. Dynamic weaving is performed by copying the aspect and XML
pointcut description file into the application execution directory. At this time,
the code added to the application by the JPI makes the application to dynam-
ically invoke to aspect code when the execution reaches the point indicated.
In this way, the behaviour of the application is dynamically modified, because
when the execution of the application reaches the specified point the code
indicated in the pointcut will be called. To unweave the aspect, it is only
necessary to remove the file and the aspect that previously passed.

16



5 Use cases

The main objective of this work is to show how aspect oriented development
may be an aid to develop flexible security mechanisms in distributed systems.
In order to do that, we have developed in DSAW security mechanisms for two
specific scenarios: communications encryption and access control / data flow

5.1 Encryption

As mentioned in Section 2.1.5, communications encryption is a security mea-
sure which aim objective is to prevent unauthorised users understand the
information that is exchanged between the nodes of the system. This is typ-
ically done using algorithms that transform data into unreadable messages.
The problem is that the encryption process can be quite heavy, because it
is necessary to encrypt data before sending it and decrypting it by the re-
cipient. In distributed systems composed by mobile devices, this process is
rather costly and has a greater impact on battery consumption. To prevent
overloading of the devices, it is very usual to use specific nodes of the sys-
tem, with greater computing power, to encrypt and decrypt the information.
A sample scenario could be various mobile devices exchanging data through
a public insecure Wi-Fi network. If two nodes need to exchange confidential
information, they can use a more secure UMTS [11] connection. This channel,
although slower, has a higher level of security. Once the transmission of this
data finished, the mobile devices can reuse the original Wi-Fi connection.

Fig. 6. Communications with and without encryption.

Figure 6 shows the difference between the two scenarios. In the first scenario
there is a direct communication between nodes 3 and 4. In the second one,
since there is an insecure zone between these two nodes, the communication is
passed through two E/D (encrypt/decrypt) nodes. The advantage of the sec-
ond scenario is that devices are freed of this work, but a delay between sending
and receiving messages is introduced. It is necessary to send information to
these special E/D nodes, encrypt the information, exchange it between them,
decode and deliver it to the destination node. To overcome this delay, it is

17



better to use encryption only when it is necessary. When communications are
likely to be heard (if we suspect or detect that there are intruders listening to
the network), it is recommended to use encryption. But if the channel is in
a controlled and trusted environment, the encryption is not required as this
would introduce an unnecessary overhead and delay in the message transmis-
sions.

We have developed this scenario where, under these circumstances, the sys-
tem is able to dynamically change communications in a distributed system.
Thus, when information must be encrypted, transmissions are forwarded to
the nodes that encrypt and decrypt it (right part in Figure 6), and when
it is not necessary, the original communication routes are used (left side in
Figure 6). Using dynamic weaving it is possible to dynamically change the
behaviour of nodes 3 and 4. To change the communication ways, the aspect
be injected needs to establish a new connection between the source node and
a E/D node. Afterwards, it is necessary to divert the traffic through this new
connection. Finally when the aspect is unwoven, the original communication
must be re-established.

The connection with the encryption and decryption E/D nodes takes place
when the aspects are woven. At runtime, the nodes 3 and 4 are connected to
an E/D node, and these are connected to each other. In this way, as we show
in Figure 7, a new secure connection between nodes 3 and 4 is established.

Fig. 7. Encrypted communications using aspects.

Once connected, using the same aspects, the functionality of the nodes 3 and 4
is altered in order to forward the information. In this way, all traffic is diverted
through the secure connection, keeping the node unaware of that fact. Then,
when nodes 3 and 4 send information, it will go to its corresponding E/D node,
which encrypts and retransmits it to another E/D node. Once received by the
second E/D node, the data is decoded and transmitted to the destination node
using a clear communication.

The disconnection takes place when the aspects are unwoven. Then, the orig-
inal communication is automatically re-established. Since the aspect does not

18



interfere when the nodes access their connection, the information will be sent
as it originally was.

public class Chat {

private TcpClient connection;

private StreamWriter swSender;

public StreamWriter SwSender{

set {swSender = value;}

get {

if(swSender == null)

swSender = new StreamWriter(connection.GetStream ());

return swSender;

}

}

private StreamReader srReceiver;

public StreamReader SrReceiver {

set {srReceiver = value ;}

get {

if(srReceiver == null)

srReceiver = new StreamReader(connection.GetStream ());

return srReceiver;

}

}

private Data ReceiveMessage () {

String received = SrReceiver.ReadLine ();

Data message = Deserialize(received);

return message;

}

private void SendMessage(Data message) {

String toSend = Serialize(message);

SwSender.WriteLine(toSend);

SwSender.Flush ();

}

}

Fig. 8. Sample of C# code for sending and receiving messages.

The code to be modified is the one that is in charge of carrying the transmis-
sions. Figure 8 shows a simple example of C# code that receives and sends
data over a network. Attribute connection is the connection used to exchange
information with another node. The swSender and srReceiver attributes are
the streams responsible for sending and receiving information through the con-
nection. SwSender and SrReceiver are the properties created to encapsulate
the access to these attributes. The authorisationLevel attribute is irrele-
vant in this scenario, it will use in the next one. The ReceiveMessage and
SendMessage methods are responsible for sending and receiving messages. To
send and receive information over a connection, data has to be serialised and
deserialised.

As discussed above, we want that whenever the connection is used for both
sending and receiving data in an unsecure environment, an aspect should
intervene and replace the connection by a more secure one. To achieve this,
two around join-points are intercepted in the SwSender and SrReceiver read
properties. Figure 5 shows the pointcut document describing these join-points.
The ChangeCommunicationmethod of the ChangeCommunicationAspect class
is woven at both join-points. Thus, when the properties are read, aspect code

19



is run instead.

public class ChangeCommunicationAspect {

private static TcpClient connection = Connect ();

private static StreamWriter swSender;

private static StreamReader srReceiver;

private static TcpClient Connect () {

TcpClient connection = new TcpClient ();

connection.Connect(IP_ED , PORT_ED);

swSender = new StreamWriter(connection.GetStream ());

srReceiver = new StreamReader(connection.GetStream ());

return connection;

}

public static object ChangeCommunication(String member ...) {

if (member.Equals("swSender")) {

return swSender;

}

if (member.Equals("srReceiver")) {

return srReceiver;

}

}

}

Fig. 9. C# code of the aspect that modifies the connection.

Figure 9 shows the code of the aspect that modifies the connection. When
the aspect is woven, a new connection with a E/D node is created (using an
predefined ip and port). The E/D nodes must be out of the insecure zone, as
shown in Figure 7. These nodes encrypt, decrypt and exchange data between
each other through the insecure zone. Once that process achieved, when the
ChangeCommunication method is invoked, the aspects verify which of the
properties is being called (this information is passed as the member parameter
to the aspect by the DSAW platform) and return the corresponding secure
stream in each case.

Therefore, if the pointcut specification document is passed to the platform, the
behaviour of the nodes is dynamically changed, as when the ReceiveMessage
and SendMessage are invoked and the properties are used to access to the
streams, the code of the aspect returns a secure connection.

With this approach, when the encryption of the communications at runtime
is necessary, it is enough to pass to DSAW the file with the pointcut defini-
tion and the aspect. Finally, when we want to stop the encryption, it is only
necessary to remove both from the platform to recover the original behaviour.

5.2 Access control/Data Flow

As we have previously stated (Section 2.1.4) distributed systems do not have
a defined network topology and is very usual that the information has to pass
through intermediate nodes to travel through the network. If any node has
rights to see the information that travels through the system, this is not a

20



problem. However, there may be nodes that have no privilege to see certain
information, causing a security problem. In that case, it is necessary to restrict
the access to the information, in order to prevent that nodes without the
appropriate permission may have access to unauthorised data. Access control
(Section 2.1.1) establishes who can access to the information at any time, and
data flow (Section 2.1) determines how information flows across the network.

Traditional mechanisms as CORBA [22], solve these problems considering only
“one-to-one” relationships, without taking into account that the devices are
part of a distributed system. This solution is effective in client-server networks
or with fixed topologies. However, in point-to-point networks or with fuzzy
topologies, the usage of these mechanisms may imply restrictions on the data
flow. If a node is not authorised to send data to another one, but the latter
is the only way to get to a third one, data transmission to the third node is
not possible, even without a specific restriction on the system to do it. Other
solutions analyse network topology in order to identify potential problems
in the distribution of the information and to establish restrictions on access
and data flow. To do this, they use security policies with different levels of
authorisation for the nodes. This kind of security policies are widely used in
military systems or catastrophes management, where the access control to
information is essential[27]. Nodes can only send information to those nodes
that have an authorisation level greater or equal to theirs, but they need to
know the authorisation levels for all nodes they are connected to. Figure 10
shows an example of this scenario.

Fig. 10. Distributed system with different authorisation levels.

Nodes 1 and 4 may send information to any other node because the confiden-
tial level is the lowest. Node 2 can only send information to node 3, since
secret is less restrictive than top secret. Finally, node 3 cannot send in-
formation to anyone because its level is the highest. The problem is that ap-
proach lack flexibility; whenever the network change its number or topology,
it is necessary to reanalyse the whole system and update the policies with the
new restrictions. As in the previous case, in diffuse topologies, this solution
may be very costly, and data flow restrictions can arise, preventing two nodes
from exchanging information. For example, nodes 1 and 4 in Figure 10 have
the same access level, but they cannot exchange information because node 3

21



cannot relay messages.

In distributed systems scenarios, these kind of solutions are difficult to im-
plement, mainly because they are very flexible networks, where the number
and topology change frequently. Therefore, flexible security mechanisms are
required. It should be allowed to control the access to the information at any
time without interfering with the flow, regardless of the number of nodes and
shape of the system.

We have used the static weaver of DSAW to implement a distributed system
with a security policy that guarantees the secure transmission of information
over changing topologies, allowing the tagging data with the authorisation lev-
els of nodes and encrypting the information. Applications are built relying on
the classical send and receive operations, and aspects intercept these messages
to include the following functionalities:

(1) Authentication to grant the user the appropriate authorisation level.
(2) Encryption of information to avoid unauthorised access to it.
(3) Data tagging to determinate how information flows across the network

and to control the access to it.

When a node sends the information, an aspect encrypts and labels it with the
authorisation level of the source node. At destination, another aspect receives
and decrypts the information and verifies whether the authorisation level of
the node is high enough to access the data. If the level suffices, the aspect
passes the data to the node; otherwise, it is discarded. With this mechanism,
the information travels encrypted and labelled with the authorisation level in
a totally transparent way to the system.

Fig. 11. Aspects controlling the access to information.

Although access is controlled, the problem in the data flow has not been
avoided. To solve it, the aspects take into account information of the source
node. When an intermediate node receives data to relay, it is sent with the
authorisation level of the source node and not with its own information. As
we show in Figure 11, with this approach all nodes can send data to any
node, regardless of the authorisation level that they hold, because the aspects
restrict the access and control the flow. The node 1 can now send data to node

22



4 through nodes 2 and 3. If an intermediate node alters the data in any way,
it will automatically have the same level of authorisation and the aspects will
restrict its dissemination.

public class AccessControlAndDataFlowAspect {

private static DataWrapper receivedData;

private int AuthorisationLevel () {

//... Method that obtains the authorisation level of the node.

}

private DataWrapper Encrypt(DataWrapper data) {

//... Method that encrypts a DataWrapper.

}

private DataWrapper Decrypt(DataWrapper data) {

//... Method that decrypts a DataWrapper.

}

public static object AddAuthorisationLevel(object ResultVal , Param[] par ,

...) {

int nodeAuthorisationLevel = AuthorisationLevel ();

Data dataToSend = (Data) par [0];

if (receivedData != null && receivedData.Data.Equals(dataToSend))

nodeAuthorisationLevel = receivedData.AuthorisationLevel;

receivedData = null;

DataWrapper dataWrapper = new DataWrapper(dataToSend ,

nodeAuthorisationLevel);

par [0] = Encrypt(dataWrapper);

return 1;

}

public static object VerifyAuthorisationLevel(object ResultVal , Param [] par ,

...) {

int nodeAuthorisationLevel = AuthorisationLevel ();

DataWrapper dataWrapper = (DataWrapper)ResultVal;

receivedData = Decrypt(dataWrapper);

if (nodeAuthoritationLevel >= receivedData.AuthoritationLevel)

ResultVal = receivedData.Data

else

ResultVal = new Data();

return 1;

}

}

Fig. 12. C# code of the aspect to tag and verifies the data.

To implement this solution, it is necessary to determine the join-points used
in the implementation of this distributed system. Using the DSAW platform,
we can use its static weaver to modify the values of the parameters of a
method just before of his execution and the result just after that it fin-
ish. In this way we can introduce data tagging and encrypt when we send
the information, and decrypt and verify the authorisation levels when we re-
ceive they. Following the code in Figure 8 the ideal places to do this are the
SendMessage and ReceiveMessage methods. In Figure 4 we can see the point-
cuts used to do this implementation. The AddAuthorisationLevel method
is invoked in order to encrypt and introduce data tagging. We also call the
VerifyAuthorisationLevel method, which will be responsible for decrypt-
ing and verifying that the authorisation level of the node allows it to view
data. Figure 12 shows the code of the aspect used to develop our solution. In
this aspect, using the AddAuthorisationLevel method, the data is labelled
with the authorisation level of the code just before encrypting and sending it.

23



Attention must be paid to the fact that whether an intermediate node does
not include (or change) new information, the authorisation level held will be
the one from the source node, not the one of this intermediate one.

The first step is to obtain the authorisation level of the node. Using the
AuthorisationLevel function we can obtain the authorisation level of the
node. Then, if the node has previously received some data and they are equal
to those who it goes to send (the node will relay a message) the authorisa-
tion level to use is the one of the received data. To label the data with the
authorisation level, the value of the parameter par[0] that is the message pa-
rameter of the SendMessage method (it is provided by the DSAW platform) is
changed for a wrapper composed by the data and the obtained authorisation
level. Figure 13 shows the wrapper code. The DataWrapper class inherits from
the Data class, making the SendMessage and ReceiveMessage methods run
without problem, even if its argument is changed. Finally, the dataWrapper

is encrypted.

public class DataWrapper : Data {

private AuthorisationLevel authorisationLevel;

private Data data;

public AuthorisationLevel AuthorisationLevel {

get { return authorisationLevel; }

set { authorisationLevel = value; }

}

public Data Data {

get { return data; }

set { data = value; }

}

public DataWrapper(Data data , AuthorisationLevel authorisationLevel) {

Data = data;

AuthorisationLevel = authorisationLevel;

}

}

Fig. 13. C# code of the wrapper used to introduce data tagging.

When the aspect receives the data, the VerifyAuthorisationLevel method
decrypts the data and verifies that the authorisation level of the node is suf-
ficient for accessing the received data –otherwise it discards the data. As in
the previous case, it is necessary to obtain the authorisation level of the node.
However, it is also necessary to extract the authorisation level of the data
using the ResultVal (provided as a parameter by the platform) that is the
result of the ReceiveMessage method execution. Levels are checked; if the
level is enough, the method extracts the original data from the wrapper and
returns it; otherwise, the data is discarded.

This way, we modify the behavior of the nodes, when they send and receive
messages. Before sending the data, it is labeled; and before accessing it, the
permissions for reading it are checked. Using this approach, the distributed
system can vary in number and topology without compromising safety, since
the access control and the data flow is controlled at all times, and there is no

24



need to analyse the network or update the policies. The entire process works
in a transparent way with respect to both the nodes and the system. The
functionality of the application is modularised apart from the communication
and security concerns, implemented as separate aspects.

6 Evaluation

In this section we evaluate the utilisation of DSAW to develop security mea-
sures, comparing it with a traditional object-oriented programming (OOP)
implementation. Our experimental methodology is outlined first. Afterwards,
benefits of using DSAW are stated and quantitative evaluations are performed.
Finally, we present a discussion regarding to the evaluation obtained.

6.1 Methodology

We highlight what are the benefits of dynamic separation of aspects in dis-
tributed systems security using DSAW. The benefits are those mentioned
throughout the paper (detailed in Section 6.2). Quantitative characteristics
are runtime performance and memory consumption.

Quantitative assessment can be used to contrast runtime performance and
memory consumption between the DSAW platform and traditional OOP de-
velopments. We have implemented a distributed system with the security mea-
sures of the two uses cases (Section 5) using DSAW and OOP. These imple-
mentations have been compared using the .Net Framework 2.0 build 50727 for
32 bits, over a Windows 7 x64 operating system. All tests have been carried
out on a lightly loaded 2.13GHz Intel Core 2 Duo system with 4GB of RAM.
We developed all software in C# programming language.

In order to compare DSAW with OOP, we have created the networks of the
two use cases with each implemented distributed system. In the first case
(Section 5.1), the distributed system is composed by two single nodes and two
E/D nodes. In the second one (Section 5.2), the system has three nodes. To
evaluate runtime performance, we have instrumented the code with hooks to
record the value of the processor timestamp counter. We have measured the
difference in the value between the beginning and the end of exchange a set of
messages to obtain the total execution time of each system. To suppress the
cost of native code generation by the JIT compiler, we first make a single use of
the distributed system exchanging a little set of messages between the nodes.
This first invocation is not taken into account in our evaluation. Therefore,
this assessment ignores the time required to dynamically generate native code

25



by the virtual machine JIT compiler.

All the tests have been executed utilizing the Windows 7 performance moni-
tor. We have measured the maximum size of working set memory used by the
process since it started (the PeakWorkingSet property). The working set of
a process is the number of memory pages currently visible to the process in
physical RAM memory. These pages are resident and available for an appli-
cation to use without triggering a page fault. The working set includes both
shared and private data. The shared data comprises the pages that contain
all the instructions that the process executes, including instructions from the
process modules and the system libraries.

6.2 Benefits of using DSAW

The following are the main obtained benefits of using the DSAW platform to
apply dynamic separation of aspects to distributed systems security.

(1) Higher abstraction level. Developers can be focused in concrete con-
cerns in isolation. The security measures may be developed by experts in
the domain, apart of other components of the distributed system.

(2) Reuse, maintenance and legibility. Separation of concerns attains
decoupling of different modules, allowing the distributed system to reuse
and share single security concerns. The code is not tangled and scattered
throughout the whole application. The code of each security issue is not
coupled to the rest of the code. Since the code is less complex, it is more
easier to understand and maintain.

(3) Increase of application development productivity. In addition to
previously mentioned advantages, the use of security concerns (such as
encryption or control access) might facilitate the security measures con-
struction without needing to modify the functional source code.

(4) Dynamic adaptation. It is possible to adapt distributed systems de-
pending on the runtime environment. For example, if a better perfor-
mance is needed, it is possible disable some security measure such as
encryption. If a new threat appears at runtime, it is possible to dynami-
cally adapt distributed systems in order to include new security measure
to solve it. This way, security measures always take into account the
necessities of the system.

(5) Platform and language independence. DSAW is language and plat-
form neutral. Thereby, it is possible to develop components and aspects in
any .Net language and they can be executed in any .Net implementation.
This is an interesting feature for heterogeneous distributed systems, com-
posed by elements with different operating systems and software. Secu-
rity measures may be developed in different .Net languages and deployed

26



throughout the system.
(6) Weave-time concern. With DSAW the implementation of the com-

ponents and aspects is independent of the weave-time concern. Neither
applications nor aspects are modified if the weaver needs to be changed
from static to dynamic, or vice versa. The original application and as-
pects do not need to be modified if the time of injection is changed from
static to dynamic, or vice versa. This way, the same security measure
may be established as dynamic (to be disabled or enabled at runtime) or
static (obtaining a better performance).

(7) Join-points. Unlike most tools with both kinds of weaving, DSAW offers
the same set of join-points for the two scenarios. In addition to previously
mentioned advantage, it is possible to use the same security measures.

(8) Source code. DSAW performs the adaptation at virtual machine level,
the application and aspects source code it is not necessary. Thus, it is
possible to adapt legacy distributed systems or inject security measures
developed by others.

6.3 Quantitative evaluation

To obtain an evaluation of runtime performance and memory consumption,
we have assessed the cost of using static and dynamic weaving in DSAW. For
both use cases (Section 5), we have developed an distributed system using
the traditional object-oriented programming paradigm. In both cases, using
OOP, we have extended the developed system adding the following security
measures: encryption (in the first use case), and access control and data flow
(in the second one).

In the encryption scenario, we have used dynamic weaving to inject the as-
pect in the original developed system, and in the control access and data flow
use case static weaving was used. Thus, we have compared the perform and
memory for OOP and AOSD approaches. For each scenario, we have sent and
received a set of messages between the distributed system nodes. The first call
has not been included to rule out the cost of JIT compilation. Figure 14 shows
the results of the four scenarios: Encryption {OOP vs. DSAW Dynamic} and
Access Control/Data flow {OOP vs. DSAW Static}; execution time (columns
one to five) of a set of messages expressed in milliseconds and memory con-
sumption (last column) in bytes. Memory consumption is the same regardless
of the number of messages exchanged.

27



Fig. 14. Execution time and memory consumption.

6.3.1 Discussion

A summary of the results is displayed in Figure 15. All values are shown
relative to OOP implementation (values were divided by the values of OOP).
First major discussion could be identified. It is related to the cost of weaving.
In the dynamic weaving case, aspects involved a 59.2% and 55.96% cost of
runtime performance and memory consumption respectively. For the control
access/data flow scenario, we used static weaving. In this case, the runtime
performance penalty was 4.12% and the increase of memory consumption was
1.41%. In both scenarios, performance costs did not depend on the number of
messages sent and received. The standard derivation was 6,72% for the static
scenario and 2,82% for the dynamic one.

Fig. 15. Execution time and memory consumption relative to OOP.

In order to analyse the runtime performance penalty, we used a profiler ob-
taining the results shown in the Table 16. The first column is the percentage
of the total execution time of the OOP implementation. The second one shows
the performance increase of the AOSD approach relative to the OOP one. We
measure the following parts of SendMessage and ReceiveMessage methods,
because it is where the distributed system is adapted. 1) JPI: this value has
been obtained by adding the execution time of all methods of the DSAW
platform. 2) Method call: is the execution time required to call the send
and receive method. 3) Method execution: is the time required to execute the
code into the send and receive methods. This value is obtained by subtracting
the whole execution time of the method call and the previous execution time
value.

In the encryption scenario, the JPI imply a 43.4% of the total cost. The
dynamic execution call to the ChangeCommunication produces 53,79% of the

28



Fig. 16. Detailed runtime performance penalty.

penalty. In both send and receive, this is the part where the greatest increases
occur (20,7% y 11,14%). As this is a dynamic scenario, DSAW uses reflective
techniques to call the method of the aspect [31]. In the OOP implementation,
it takes almost no time because it is only necessary to access the SwSender and
SrReceiver properties. Finally, the increase of the method execution of the
aspects regarding the original application execution time represents around
1% of the total cost.

The second table of the figure details the access control and data flow scenario.
In this case, the JPI increases are only 0.56% for both sending and receiving.
The AddAuthorisationLevel and VerifyAuthorisationLevel method call
represent 58.3% of the total penalty, although the increases are 1,73% and
0,67% respectively. As in previous case, the performance penalty in the aspect
execution is only 1%. Finally, we have added the Serialize and Deserialize

methods to the analysis because there are significant increases, 1,27% and
0,33% respectively. These penalties represent around 40% of the total cost,
and they are motivated because in the AOSD implementation is necessary to
serialise and deserialise DataWrapper objects instead of Data ones.

In the dynamic scenario, the JPI and method calls are 97,19% of the total
cost. The evaluations with static weaving are 85,5%. However, the dynamic
penalty is significantly higher than the static: 57,53% versus 3,52%.

Regarding memory consumption, in the static weaving scenario it is around
1%. However, in the dynamic case the increase is 55.96 %. The DSAW dynamic
weaver injects a join-points table to activate the join-points in the application
that causes this memory increase [31].

29



7 Related Work

7.1 Existing AOSD Platforms

In the last years, AOSD significantly evolved. Nowadays, it is frequent to
use aspects in order to implement concerns such as logging, tracing, secu-
rity checks, testing or persistence [39]. AspectJ [20] is considered the most
widely used platform for aspect-oriented programming in Java. An example
use is carrying out efficient profiling of programs, allowing to evaluate issues
such as heap usage, object lifetime, wasted time or time-spent to improve the
performance of applications [32]. Other application areas are transaction man-
agement and persistence [41]. JBoss AOP [16] and Spring AOP [17] are other
Java frameworks for AOP, which are used in the context of the JBoss applica-
tion server and Spring application framework, respectively. The PROSE [37],
JAsCo [42] and DAOP [34] platforms, using its dynamic features, are used for
application adaptation at runtime [30, 35, 45]. LOOM.NET is based on design
by contract using any .Net language [21].

7.2 AOSD in Security Issues

There are various studies and works that implement and introduce security
mechanisms using AOSD. In [46] an extension of the C programming lan-
guage to support aspects is proposed. This extension allows the definition of
security policies apart of the application code. Subsequently, the policies are
transformed into code, which is woven together with the main application. Us-
ing this approach, automatic security checks can be done, including protection
against buffer overflow, logging or encrypted connection. When new threats
are detected, the security policies are updated with the most suitable mea-
sures. Although this work is presented as an extension of the C programming
language, the authors state that it might be applied to other languages.

AspectJ has also been used in application security issues. In [13] a generic
and reusable library to introduce security mechanisms in Java developments is
presented. However, there seems to be some lacks in AspectJ that are needed to
enforce security issues successfully [2]. For example, AspectJ does not provide
pointcuts to local variables defined inside methods. Security debuggers may
need to track the values of local variables inside methods. With such new
pointcuts, it will be easy to write advice before or after the use of these
variables to expose their values.

In the network area, there are works that propose the utilisation of aspects to
solve security issues. In [25] the authors present a language framework called

30



D. This framework untangles the implementation of synchronization schemes
and remote data transfers from the implementation of the components using
aspects. And in [44] a reflective architecture is proposed. This architecture
allows making dynamic reconfiguration of non-functional requirements such
as real-time, reliability, availability and security. For each non-functional re-
quirement a specific AOP language is defined.

As far as the authors are aware, PROSE is the only dynamic AOSD platform
used for security issues [36]. This platform was proposed to make dynamic
adaptation of software architectures, where functionality is a dynamic property
and applications can be adapted depending on the runtime environment. This
way, it is possible to integrate specific concerns (e.g. access control) in software
for existing distributed systems such as spontaneous networks [9]. But, this is
only a preliminary work that it is not detailed.

8 Conclusions

This paper analyses how dynamic and static AOSD can be used to solve
common security issues of distributed systems. Distributed systems have vul-
nerabilities that jeopardise their safety. We have developed a classification of
security issues that can arise in distributed systems. The majority of listed
problems can be solved by adapting the system components. In this paper
we propose the use of Aspect Oriented Software Development to implement
these adaptations. Flexible security mechanisms in distributed systems can be
implemented with AOSD, obtaining higher maintainability, reusability and dy-
namic adaptability –aspects can be (un)woven without stopping the system.
Thus, distributed systems can vary in number and topology without compro-
mising safety. We have used the DSAW platform to implement two scenarios
of applying AOSD to security issues of distributed systems: one scenario of
communications encryption and another one of access control and data flow.
Both solutions are introduced to the system in a transparently way, and they
are able to solve the problems without interfering with the system. Depending
on the needs of the system, the solutions may be introduced or removed at
runtime.

The assessment of runtime performance has shown that real applications de-
veloped in DSAW have entailed a performance cost of 4.12% and 59.2%, re-
spectively comparing static and dynamic weaving with the traditional object-
oriented development.

The immediately future work will be focused on using this approach into other
real distributed system security use cases, and in more long-term to apply this
techniques to a “systems-of-systems” [1].

31



Current documentation and implementation of this work can be freely down-
loaded from its Web page at http://www.reflection.uniovi.es/dowload/
2010/ietsw

9 Acknowledgments

This work has been funded by the Department of Science and Technology
(Spain) under the National Program for Research, Development and Innova-
tion; project TIN2008-00276 entitled Improving Performance and Robustness
of Dynamic Languages to develop Efficient, Scalable and Reliable Software.

References

[1] R.L. Ackoff. Towards a system of systems concepts. Management Science,
17(11):661–671, 1971.

[2] D. AlHadidi, N. Belblidia, and M. Debbabi. Security crosscutting con-
cerns and AspectJ. In Proceedings of the 2006 International Conference
on Privacy, Security and Trust: Bridge the Gap Between PST Technolo-
gies and Business Services, October.

[3] A. Belapurkar, A. Chakrabarti, H. Ponnapalli, N. Varadarajan, S. Pad-
manabhuni, and S. Sundarrajan. Distributed Systems Security: Issues,
Processes and Solutions. Wiley, 2009.

[4] J. Bellardo and S. Savage. 802.11 denial-of-service attacks: Real vulner-
abilities and practical solutions. In Proceedings of the 12th conference on
USENIX Security Symposium-Volume 12, page 2. USENIX Association,
2003.

[5] M. Bishop. Introduction to computer security. Addison-Wesley Profes-
sional, 2004.

[6] K. Böllert. On weaving aspects. In Proceedings of the Workshop on
Object-Oriented Technology, page 302. Springer-Verlag, 1999.

[7] J. Broch, D.A. Maltz, D.B. Johnson, Y.C. Hu, and J. Jetcheva. A perfor-
mance comparison of multi-hop wireless ad hoc network routing protocols.
In Proceedings of the 4th annual ACM/IEEE international conference on
Mobile computing and networking, page 97. ACM, 1998.

[8] T.C. Ecma. TG3. Common Language Infrastructure (CLI). Standard
ECMA-335, 2005.

[9] L.M. Feeney, B. Ahlgren, A. Westerlund, et al. Spontaneous networking:
an application oriented approach to ad hoc networking. IEEE Commu-
nications Magazine, 39(6):176–181, 2001.

[10] WG Halfond, J. Viegas, and A. Orso. A classification of SQL-injection

32



attacks and countermeasures. In Intl Symp. on Secure Software Engi-
neering. Citeseer.

[11] H. Holma, A. Toskala, et al. WCDMA for UMTS: Radio access for third
generation mobile communications. Citeseer, 2000.

[12] R. Housley, W. Ford, and W. Polk. D. Solo,” Internet X. 509 Public Key
Infrastructure Certificate and CRL Profile, 1999.

[13] M. Huang, C. Wang, and L. Zhang. Toward a reusable and generic secu-
rity aspect library. AOSD: AOSDSEC, 4, 2004.

[14] W. Hürsch and C.V. Lopes. Separation of concerns. Northeastern Uni-
versity, February, 1995.

[15] J. Irwin, G. Kickzales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes,
and J. Loingtier. Aspect-oriented programming. Proceedings of ECOOP,
IEEE, Finland, pages 220–242, 1997.

[16] Jboss AOP homepage. JBoss Community.
http://labs.jboss.com/jbossaop/.

[17] R. Johnson, J. Hoeller, A. Arendsen, C. Sampaleanu, D. Davison,
D. Kopylenko, T. Risberg, M. Pollack, and R. Harro. Spring–Java/J2EE
Application Framework. Reference Documentation, Version, 1(7).

[18] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Com-
puter, 36(1):41–50, 2003.

[19] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold. An overview of AspectJ. ECOOP 2001Object-Oriented Program-
ming, pages 327–354, 2001.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold. Getting started with AspectJ. Communications of the ACM,
44(10):59–65, 2001.

[21] K. Köhne, W. Schult, and A. Polze. Design by contract in .NET using
aspect oriented programming. 2008.

[22] U. Lang and R. Schreiner. Developing secure distributed systems with
CORBA. Artech House Publishers, 2002.

[23] D. Llewellyn-Jones, M. Merabti, Q. Shi, and B. Askwith. Buffer overrun
prevention through component composition analysis. In Computer Soft-
ware and Applications Conference, 2005. COMPSAC 2005. 29th Annual
International, pages 156–163, 2005.

[24] D. Llewellyn-Jones, M. Merabti, Q. Shi, and B. Askwith. Analysis and
Detection of Access Violations in Componentised Systems. In 2nd Con-
ference on Advances in Computer Security and Forensics (ACSF 2007),
Liverpool, UK, pages 12–13. Citeseer, 2007.

[25] CV Lopes and G. Kiczales. D: A language framework for distributed
computing. Xerox PARC, TR SPL97-010 P, 9710047.

[26] H. Moiin and A. Pruscino. Data integrity and availability in a distributed
computer system, February 20 2001. US Patent 6,192,483.

[27] National Computer Security Center NCSC. Trusted network interpreta-
tion environments guideline, 1990.

[28] R.M. Needham and M.D. Schroeder. Using encryption for authentication

33



in large networks of computers. Communications of the ACM, 21(12):999,
1978.

[29] B.C. Neuman and T. Ts’o. Kerberos: An authentication service for com-
puter networks. IEEE Communications Magazine, 32(9):33–38, 1994.

[30] A. Nicoara and G. Alonso. Making Applications Persistent at Run-time.
In IEEE 23rd International Conference on Data Engineering, 2007. ICDE
2007, pages 1368–1372, 2007.

[31] F Ortin, L Vinuesa, and J.M. Felix. The DSAWAspect-Oriented Software
Development Platform. International Journal of Software Engineering
and Knowledge Engineering, To be published.

[32] D.J. Pearce, M. Webster, R. Berry, and P.H.J. Kelly. Profiling with as-
pectj. Software: Practice and Experience, 37(7):747–777, 2007.

[33] C.P. Pfleeger and S.L. Pfleeger. Security in computing. Prentice Hall,
2003.

[34] M. Pinto, M. Amor, L. Fuentes, and JM Troya. Run-time coordination
of components: Design patterns vs. componentaspect based platforms. In
ASoC workshop (Advanced Separation of Concerns), pages 18–22. Cite-
seer, 2001.

[35] M. Pinto, D. Jiménez, and L. Fuentes. Developing dynamic and adaptable
applications with CAM/DAOP: A virtual office application. In Genera-
tive Programming and Component Engineering, pages 438–441. Springer,
2005.

[36] A. Popovici, T. Gross, and G. Alonso. Aop support for mobile systems.
Paper at the OOPSLA, 1.

[37] A. Popovici, T. Gross, and G. Alonso. Dynamic homogenous AOP with
PROSE. Switerland, Department of Computer Science, ETH Zürich,
2001.

[38] Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic weav-
ing for aspect-oriented programming. In In Proceedings of the 1st In-
ternational Conference on Aspect-Oriented Software Development, pages
141–147. ACM Press, 2002.

[39] VO Safonov and DA Grigoryev. Aspect .NET: aspect-oriented program-
ming for Microsoft .NET in practice. NET Developers Journal, 7, 2005.

[40] M. Ségura-Devillechaise, J.M. Menaud, G. Muller, and J.L. Lawall. Web
cache prefetching as an aspect: towards a dynamic-weaving based so-
lution. In Proceedings of the 2nd international conference on Aspect-
oriented software development, page 119. ACM, 2003.

[41] S. Soares, E. Laureano, and P. Borba. Implementing distribution and
persistence aspects with AspectJ. In Proceedings of the 17th ACM SIG-
PLAN conference on Object-oriented programming, systems, languages,
and applications, pages 174–190. ACM, 2002.

[42] D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo: an aspect-oriented
approach tailored for component based software development. In Pro-
ceedings of the 2nd international conference on Aspect-oriented software
development, pages 21–29. ACM, 2003.

34



[43] A.J. Team. The AspectJ 5 development kit developers notebook (2004).
[44] E. Truyen, B.N. Jørgensen, and W. Joosen. Customization of component-

based Object Request Brokers through dynamic reconfiguration. In Tech-
nology of Object-Oriented Languages and Systems–TOOLS, volume 33,
pages 181–194. Citeseer.

[45] W. Vanderperren, D. Suvée, B. Verheecke, M.A. Cibrán, and V. Jonckers.
Adaptive programming in JAsCo. In Proceedings of the 4th international
conference on Aspect-oriented software development, pages 75–86. ACM,
2005.

[46] J. Viega, JT Bloch, and P. Chandra. Applying aspect-oriented program-
ming to security. Cutter IT Journal, 14(2):31–39, 2001.

[47] L. Vinuesa and F. Ortin. A Dynamic Aspect Weaver over the. NET
Platform. Metainformatics, pages 197–212, 2004.

[48] Luis Vinuesa, Francisco Ort́ın, José M. Félix, and Fernando Álvarez.
Dsaw - a dynamic and static aspect weaving platform. In ICSOFT
(PL/DPS/KE), pages 55–62. INSTICC Press, 2008.

[49] Prof Steve Wilbur and D Cn. Distributed systems security, 2000.
[50] T.Y.C. Woo and S.S. Lam. Authentication for distributed systems. Com-

puter, 25(1):39–52, 1992.
[51] Y. Zhang and W. Lee. Intrusion detection in wireless ad-hoc networks.

In Proceedings of the 6th annual international conference on Mobile com-
puting and networking, page 283. ACM, 2000.

[52] Z. Zhao and W. Li. Dynamic reconfiguration of distributed data flow sys-
tems. In Computer Software and Applications Conference, 2007. COMP-
SAC 2007. 31st Annual International, volume 2, 2007.

[53] J.A. Zinky, D.E. Bakken, and R.E. Schantz. Architectural support for
quality of service for CORBA objects. Theory and Practice of Object
Systems, 3(1):55–73, 1997.

35


