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Abstract

The flexibility offered by dynamically typed programming languages has been appro-
priately used to develop specific scenarios where dynamic adaptability is an important
issue. This has made some existing statically typed languages gradually incorporate more
dynamic features to their implementations. As a result, there are some programming lan-
guages considered hybrid dynamically and statically typed. However, these languages
do not perform static type inference on dynamically typed code, lacking those common
features provided when statically typed code is used. This lack is also present in the cor-
responding IDEs that, when dynamically typed code is used, do not provide the services
offered for static typing. We have customized an IDE for a hybrid language that statically
infers type information of dynamically typed code. By using this type information, we
show how the IDE can provide a set of appealing services that the existing approaches do
not support, such as compile-time type error detection, code completion, transition from
dynamically to statically typed code (and vice versa), and significant runtime performance
optimizations. We have evaluated the programmer’s performance improvement obtained
with our IDE, and compared it with similar approaches.

Keywords: Hybrid dynamic and static typing, IDE support, type inference, code
completion, separation of concerns, plug-in, Visual Studio

∗Corresponding author
Email addresses: ortin@lsi.uniovi.es (Francisco Ortin), francisco.moreno@alisys.net

(Francisco Moreno), anton.morant@comlab.ox.ac.uk (Anton Morant)
URL: http://www.di.uniovi.es/˜ortin (Francisco Ortin)

Preprint submitted to Journal of Visual Languages and Computing April 4, 2014



1. Introduction

Dynamic languages have turned out to be suitable for specific scenarios such as rapid
prototyping, Web development, interactive programming, dynamic aspect-oriented pro-
gramming, and any kind of runtime adaptable or adaptive software. The main benefit of
these languages is the simplicity they offer to model the dynamicity that is sometimes
required to build high context-dependent software.

Taking the Web engineering area as an example, Ruby [1] has been successfully used
together with the Ruby on Rails framework for creating database-backed Web applica-
tions [2]. This framework has confirmed the simplicity of implementing the DRY (Don’t
Repeat Yourself ) [3] and the Convention over Configuration [2] principles with this kind
of languages. Nowadays, JavaScript [4] is being widely employed to create interactive
Web applications with AJAX [5], while PHP is one of the most popular languages to de-
velop Web-based views. Python [6] is used for many different purposes, being the Zope
application server [7] and the Django Web application framework [8] two well-known
examples.

Due to the recent success of dynamic languages, other statically typed ones such as
Java and C# are gradually incorporating more dynamic features into their platforms. Tak-
ing C# as an example, the .NET platform was initially released with introspective and
low-level dynamic code generation services. Version 2.0 included dynamic methods and
the CodeDom namespace to generate the structure of high-level source code documents.
The Dynamic Language Runtime (DLR) adds to the .NET platform a set of services to fa-
cilitate the implementation of dynamic languages. A new dynamic type has been included
in C# 4.0 to support dynamically typed code. When a reference is declared as dynamic,
the compiler performs no static type checking, postponing all the type verifications until
runtime [9]. With this new characteristic, C# 4.0 offers direct access to dynamically typed
code in IronPython, IronRuby and the JavaScript code in Silverlight.

Java also seems to follow this trend. The last addition to support features commonly
provided by dynamic languages has been the Java Specification Request (JSR) 292, par-
tially included in Java 7. The JSR 292 incorporates the new invokedynamic opcode to
the Java Virtual Machine so that it can run dynamic languages with a performance level
comparable to that of Java itself [10].

The flexibility of dynamic languages is, however, counteracted by limitations derived
from the lack of static type checking. This deficiency implies two major drawbacks: no
early detection of type errors, and less opportunities for compiler optimizations. Static typ-
ing offers the programmer the detection of type errors at compile time, making it possible
to fix them immediately rather than discovering them at runtime –when the programmer’s
efforts might be aimed at some other task, or even after the program has been deployed.
Moreover, since runtime adaptability of dynamic languages is mostly implemented with
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dynamic type systems, runtime type inspection and checking commonly involve a signifi-
cant performance penalty [11].

Since both static and dynamic typing approximations offer different benefits, there
have been former works to provide both typing approaches in the same language (see Sec-
tion 5). Meijer and Drayton [12] maintain that instead of providing programmers with a
black or white choice between static or dynamic typing, it could be useful to strive for
softer type systems. Static typing allows earlier detection of programming mistakes, bet-
ter documentation, more opportunities for compiler optimizations, and increased runtime
performance. Dynamic typing languages provide a solution to a kind of computational
incompleteness inherent to statically typed languages, offering, for example, storage of
persistent data, inter-process communication, dynamic program behavior customization or
generative programming [12]. Therefore, there are situations in programming when one
would like to use dynamic types even in the presence of advanced static type systems [13].
That is, static typing where possible, dynamic typing when needed [12].

As proposed by Meijer and Drayton, we break the programmers’ black or white choice
between static or dynamic typing. We have developed a programming language called
StaDyn that provides both type systems [14]. StaDyn is an extension of C# 3.0, which
supports static and dynamic typing. StaDyn permits the straightforward development of
adaptable software and rapid prototyping, without sacrificing application robustness and
runtime performance. The programmer indicates whether high flexibility is required (dy-
namic typing) or stronger type checking (static) is preferred. It is also possible to combine
both approaches, making parts of an application more flexible, whereas the rest of the
program maintains its robustness and runtime performance.

The main contribution of this paper is a visual IDE that takes advantage of the specific
features of hybrid statically and dynamically typed languages, showing how the type infor-
mation gathered by the compiler can be used to provide new features plus others that are
commonly offered for statically typed code only. The StaDyn IDE separates the dynamism
concern [15] facilitating the transition from rapidly developed prototypes to final robust
and efficient applications, detects many type errors of dynamically typed code at compile
time, provides code completion for dynamically typed code, and performs significant code
optimizations.

The rest of this paper is structured as follows. In Section 2, the StaDyn IDE is de-
scribed, emphasizing the new features added to Visual Studio (VS) in order to support
specific features of hybrid dynamically and statically typed languages. Section 3 describes
the implementation technologies used to customize the IDE, and its integration with the
StaDyn compiler. In Section 4, we evaluate the programmer’s performance improvement
using our IDE, comparing it with similar approaches. Section 5 discusses related work,
and the conclusions and future work are presented in Section 6.
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2. A Visual IDE for Hybrid Statically and Dynamically Typed Languages

The proposed IDE can be applied to any object-oriented hybrid statically and dynami-
cally typed language, such as Visual Basic, Objective-C, Boo, C# 4.0, Groovy 2.0, Fantom
and Cobra. We have selected the StaDyn programming language, a hybrid static and dy-
namic typing language developed for research purposes [14]. StaDyn is an extension of
C# 3.0 [16] that enhances the behavior of its implicitly typed local references (i.e., its var
keyword). In StaDyn, the type of references can be explicitly declared, while it is also pos-
sible to use the var keyword to declare implicitly typed references. StaDyn includes this
keyword as a whole new type (it can be used to declare uninitialized local variables, fields,
method parameters and return types), whereas C# only provides its use in the declaration
of initialized local references. An informal description of the language can be consulted
in [14], while its static and dynamic semantics is detailed in [17].

In a previous prototype, we developed a first version of an IDE for the first implemen-
tation of the StaDyn language [18]. This first prototype was implemented as a plug-in for
VS 2008. The one presented in this paper provides new features for both VS 2010 and
2012, using the Managed Extensibility Framework (MEF) included in the .NET Frame-
work 4.0 (Section 3). The new functionalities of the present IDE significantly increase
the ones of the previous prototype, representing a new contribution (Section 5 details the
differences).

2.1. Basic Features
Our customization of Visual Studio provides the typical features of most programming

language IDEs. Some of these features, already supported by the previous prototype, are
the creation of StaDyn projects, the common VS editing services for StaDyn files, the same
color syntax highlighting of C#, and the typical build, rebuild, clean and start commands
(debugging is not provided yet).

Besides, some other basic services have been included in this new version, such as
brace, parenthesis and square bracket matching, code completion (called IntelliSense in
VS) in the initialization of var references, IntelliSense for built-in types and overloaded
methods, automatic code completion by pressing the space bar or the dot key, and a
new classification of the elements proposed by IntelliSense with the following tabs: All,
Keywords, Types, MembersInScope, and ClassMembers. Figure 1 shows a snapshot of
our language service in VS 2012, where one StaDyn file in a project is being edited. The
rest of figures show the IDE for VS 2010.

2.2. Type Hints of Implicitly Typed References
Dynamic (and hybrid) languages allow the declaration of references without specifying

a type (or simply declaring it as dynamic). These references can hold values of any type. In
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Figure 1: The StaDyn IDE for Visual Studio 2012.

fact, they can also hold values of different types without a common supertype but Object.
Dynamic languages easily implement this feature with a dynamic type system. In contrast,
statically typed languages force a variable declared with a type T to have the same type
T within the scope in which it is bound to a value. Even languages with powerful static
type inference (type reconstruction) such as ML [19] or Haskell [20] do not permit the
assignment of different types to the same reference.

StaDyn offers this feature with static type checking, considering the concrete type of
each reference. The StaDyn program shown in Figure 2 is an example of this capability.
The number reference is first declared to hold any type (var). This variable declaration is
an extension of the implicitly typed var references introduced in C# 3.0. In C#, var can
only be used to declare a local variable if a default value is assigned to it at declaration.
However, var variables in StaDyn can be declared without a default value, as shown in
Figure 2.
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The type of number is inferred by the compiler, and it is used by the IDE to provide
different services such as code completion (Section 2.3), showing type errors at compile
time (Section 2.7), or improving runtime performance (Section 2.9). At its declaration,
number has no type (its type variable has not been unified), then a String is assigned to
it, and it finally holds a double value.

 

Figure 2: Type hints of local variables.

Occasionally, the programmer may be interested in knowing the inferred type of a
var reference (e.g., to select the appropriate implementation of an overloaded method,
when the reference is passed as a parameter). For these cases, the IDE provides this type
information as hints. As shown in Figure 2, the inferred type (if any) is shown when the
mouse moves over a var reference.
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2.2.1. Storing Values of Different Types
Types of local variables are inferred with a modification [21] of the Hindley-Milner

type inference algorithm [22]. The Hindley-Milner type system implements a unifica-
tion algorithm to provide parametric polymorphism [23] but, unlike dynamic languages,
it forces a reference to have the same static type in its scope. To overcome this draw-
back, we have developed a version of the single static assignment (SSA) algorithm [24].
This algorithm guarantees that every reference is assigned exactly once by creating new
temporary references. Therefore, the number reference in Figure 2 is replaced with three
different references. This is the reason why the IDE shows three different types for the
number variable. The first fresh type variable is not unified, and the second and third ones
are unified to string and double, respectively.

2.2.2. References as Pointers
References can be used to create dynamic data structures. Since StaDyn provides var

as a new type to be used in object fields and method parameters, inferring the type of var
references becomes a complex task. For example, the code in Figure 3 uses a polymorphic
Node class to create a polymorphic List, which has a head field pointing to the first Node.
In the Main method, a Node whose data is a bool value is created. Then, a List object
that references to the original node is built. If we obtain the object inside the Node inside
the List, we get a bool value (data1). Then, an int field is set to the Node object inside
the List. Repeating the previous access to the object inside the Node object inside the
List, an int value is now obtained (data2). As shown in Figure 3, in this scenario the
IDE is also capable of showing hints with the types of the var references inferred by the
compiler. In this case, the invocation to the setData method of the node object implies
modifying the inferred type of the aList object. To support this functionality, we have
implemented an alias analysis algorithm that allows the IDE to know all the objects a
reference may be pointing to [25]. This algorithm makes use of inter-procedural flow
information [26], and differentiates between different calls to the same method [27].

2.3. Code Completion
The IDE also uses the type information inferred by the compiler to provide code com-

pletion (IntelliSense). IntelliSense helps the programmer speeding up the process of cod-
ing by reducing misunderstandings, typos, and other common mistakes. Figure 4 shows
the previous example where the number reference first holds a string and then a double.
It can be seen how IntelliSense provides different messages for the same reference, de-
pending on the different types inferred by the compiler. Moreover, StaDyn detects the
error in the last line of code, and the IDE underlines the erroneous statement showing the
message: ’Length’: no suitable member found. Length is not a valid member, even though
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Figure 3: Type hints of polymorphic data structures.

it was valid three lines of code before, because, in the erroneous statement, the new type
of number is double.

2.3.1. Storing Values of Multiple Types
The use of var references can lead to situations where a var variable has different

types depending on the execution flow. In the example code in Figure 5, the figure
reference may be pointing to either a Circumference or a Rectangle, depending on the
execution flow. The IDE collects concrete type information (opposite to classic abstract
type systems) [28], knowing all the possible object types a var reference may be pointing
to. Instead of declaring a reference with an abstract type that embraces all the possible
concrete values, the compiler infers the collection of all the possible concrete types.

The set of messages that can be applied to a collection of concrete types are those ac-
cepted by every type in the collection; i.e., the intersection of the message sets. Therefore,
Figure 5 shows how, for a given figure that can be a Circumference or a Rectangle,
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Figure 4: IntelliSense for implicitly typed local variables.

only the x and y fields provided by both types (and the public methods of Object) are
offered by IntelliSense.

The key language element we have used to obtain this concrete-type flow-sensitiveness
is union types [29]. Concrete types are first obtained by the above-mentioned unification
algorithm (applied in assignments and method calls). Whenever a branch is detected, a
union type is created with all the possible concrete types inferred. The type of figure in
Figure 5 is Circumference ∨ Rectangle, shown by the IDE as a hint, denoting either of
these two types [30]. A union type represents the least upper bound of the types it collects
(their most specific supertype) [31]. Therefore, the set of messages that can be applied to
a union type are those accepted by every type it collects (the intersection).

An outcome of this approach is that IntelliSense provides duck typing for var ref-
erences. Duck typing is a property of dynamic languages that means that an object is
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Figure 5: IntelliSense when a reference may hold multiple value types (the constructors of Circumference,
Rectangle and Triangle assign random values to their fields; their implementations are omitted for the
sake of brevity).

interchangeable with any other object that implements the same dynamic interface, re-
gardless of whether they have a related inheritance hierarchy or not. This is a powerful
feature offered by most dynamically typed languages. However, the StaDyn IDE offers it
with compile-time error detection, code completion, type hints, and runtime performance
optimizations. Whenever a var reference may point to a set of objects that implement a
public m method, the m message could be safely passed, and hence IntelliSense offers that
message to the programmer. These objects do not need to implement a common interface
or an (abstract) class with the m method.

In the last line of code in the Program.stadyn file (Figure 5), the x field can be
accessed because both Circumference and Rectangle provide this field. In case the
figure reference could also be pointing to a third Triangle object (as happens in Fig-
ure 7), the x field would not be offered by IntelliSense, because Triangle objects do not
provide it.

2.4. Separation of the Dynamism Concern
StaDyn is a hybrid language that allows the programmer to use statically and dynam-

ically typed references. However, the dynamism concern is not explicitly stated in the
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source code. var references can be either statically or dynamically typed, and its dy-
namism is specified in a separate XML file [14] transparently managed by the IDE. This
makes it possible to customize the trade-off between runtime flexibility of dynamic typ-
ing, and runtime performance and robustness of static typing. It is not necessary to modify
the application source code to change its dynamism. Therefore, dynamic references could
be converted into static ones and vice versa, minimizing the changes in the source code.
This feature facilitates the transition from rapid prototyping to efficient software produc-
tion [32]. It also reduces the changes in the source code, when the programmer requires
a more lenient dynamic type system for specific parts of an application. This idea follows
the Separation of Concerns principle [15] and the pluggable type system approach [33].

Figure 6 shows how var references can be changed from static to dynamic (and vice
versa) with a context menu, right-clicking on a var reference. As mentioned, a statically
typed union type accepts the intersection of all the types in the union type. However, a
more lenient behavior is provided when the reference is dynamic. In that case, it is possi-
ble to pass a message to a reference when it is accepted by at least one of the types in the
union type; i.e., it accepts the union of all the messages provided by the types in the union
type (IntelliSense in the right-hand side of Figure 6) [34]. Therefore, depending on the dy-
namism of a var reference, type checking is more restrictive (static) or lenient (dynamic),
but the dynamic semantics of the programming language is not changed (i.e., program
execution does not depend on its dynamism). As shown in Figure 6, dynamic references
are displayed in red, denoting a kind of caution because dynamic type errors might be
produced at runtime (e.g., passing the radius message to figure when it actually holds
a Rectangle).

Figure 6: Changing the dynamism concern of var references.
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2.5. Dynamic References
Another difference with the dynamic languages approach is that StaDyn performs

compile-time type checking even when dynamic references are used. Setting a reference
as dynamic does not imply that any message could be passed to it (unlike dynamic lan-
guages); static type-checking is still performed. For example, the IDE shows a compiler
error in the last line of code in Figure 7 saying that the dynamic type Circumference ∨
Rectangle ∨ Triangle has no valid Y member. This error is produced because none of
these types offers an uppercase Y public member. The IDE uses the static type information
of dynamically typed code to indicate the appropriate compile-time error. This informa-
tion is also used to offer code completion for dynamic references (as shown in Figure 7).
Unlike StaDyn, VS does not provide code completion when the programmer uses dynamic
references in the C# 4.0 hybrid language.

Figure 7: Using compile-time type information of dynamic references.
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2.6. Three Different States of Compilation
Separating the dynamism of var references facilitates changing dynamically typed

code into statically typed one, and vice versa. The StaDyn IDE takes advantage of this
feature by offering three different modes of compilation: the default one (managed dy-
namism), that takes into consideration the specific dynamism of each single reference;
the everything dynamic option, that considers every var reference as dynamic; and the
everything static one, that interprets all the var references as static.

Figure 8 shows the IDE menu that allows the programmer to select one of the three
different modes of compilation. If the programmer is building a prototype, he or she
may select the everything dynamic option, so that the compiler will interpret all the var
references in the project as dynamic (their particular dynamism is not changed, it is simply
ignored). In this case, we can see how the project icon (bottom-right window) changes
from to , and all the var references in the project are shown in red. In this state,
the subsequent compilations (Project | Build in the main menu) consider all the var
references as dynamic. Although compile-time type checking is still performed, the type
system is more lenient, being more suitable for rapid prototyping. Therefore, the program
in Figure 8 is compiled without any error; even though the figure reference was set as
static.

The generated program of Figure 8 will not produce any runtime type error because
the random number that is generated is always 1 or 2. However, if the programmer, once
the prototype has been tested, wants to generate the application with better runtime per-
formance and stronger type checking, he or she can build the project in the everything
static mode (project icon changes to ). Then, all the var references will be considered
as static, and the IDE will show them in black. In this case, a compilation error is shown
saying that x is not a valid member of Triangle. The programmer should then modify the
source code or use the hybrid dynamic and static typing approach (third mode of compila-
tion). If the hybrid option is selected, the programmer changes the dynamism of figure
to dynamic, and the compilation mode to managed dynamism (project icon switches back
to ). In this case, both the flexibility of dynamic typing and the efficiency and robustness
of static typing are being used in the very same application. For instance, figure will
be consider as dynamic (shown in red) whereas randomValue can be declared as static
(shown in black).

2.7. Compile-Time Errors of Non-Unified References
In general, implicitly typed (var) parameters cannot be unified to a single concrete

type. Since they represent any actual type of the corresponding argument, they cannot be
inferred the same way as local references or object fields [21]. This issue is shown in the
source code of Figure 9. Both the getX and the asString methods require the parameter
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Figure 8: Different modes of compilation.

to implement a specific message (x and ToString, respectively), returning its value. For
the asString method, any object could be passed as a parameter because every object
in .NET accepts the ToString message (including built-in types such as the 33 integer
literal). For the getX method, however, the parameter should be any object with an x field
or property (duck typing).

Depending on the type of the actual argument, the IDE shows a different error message.
Both rectangle and circumference can be passed to getX, whereas a Triangle or an
int cannot. As shown in Figure 9, the IDE presents two lines for each error of this kind.
The first line indicates the operation in the method body that does not fulfill the type system
rules, for a given argument: the x field is not provided (for the 33 argument). The second
line indicates the precise method argument (the 33 integer value has no x field) referring
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Figure 9: Compile-time errors of non-unified references.

to the previous error message. The two erroneous code sections are also underlined by the
IDE.

2.8. Making Explicit the Implicit References
The IDE also uses the compile-time type information inferred by the StaDyn compiler

to replace implicitly typed var declarations with explicit ones. The declare explicit option
of either the StaDyn menu (Figure 8) or the pop-up window that appears right-clicking
on a var declaration (Figure 10) allow substituting var with the explicit type inferred by
the compiler. In the example scenario shown in Figure 10, the declaration of the first
reference is replaced with the explicit string type. The declare everything explicit option
does the same for every var reference in the current file. Applying this option to the
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Program class in Figure 10, the declaration of the second reference will be replaced with
the Exception type, and wrapped and wrapper with the Wrapper class.

Figure 10: Converting implicitly typed references into explicitly typed ones.

As described in Section 2.3.1, there are references that may be holding different values
of unrelated types depending on the execution flow. The compiler internally represents
these values with union types, but neither StaDyn nor C# offer that type constructor to
the programmer. Therefore, the make explicit functionality is only applicable when the
compiler is able to infer a single type for a var reference; otherwise, a message is shown
to the programmer. However, for those languages that support union types explicitly (such
as Pike [35] or Whiley [36]), the IDE would be able to make the corresponding type
substitution.

2.9. Runtime Performance
Although runtime performance is not an IDE feature, it could affect the development

process, especially when dynamic typing is used (see Section 4). For this reason, we
present a summary of the runtime performances of the existing hybrid languages for the
.NET platform: StaDyn, C#, Visual Basic, Boo, Cobra and Fantom [37]. We took 58
applications that use dynamic, static and hybrid typing [37].

For fully dynamically typed code, StaDyn provides the best runtime performance. On
average, it is 2.53, 3.2, 11.68, 14.8 and 29.9 times faster than C#, Boo, VB, Fantom and
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Cobra, respectively [37]. These results show the benefit of using the type information
inferred by the compiler to optimize the generated code. For hybrid static and dynamic
typing code, StaDyn also provides the best performance: 5.1, 8.8, 16.7, 53.7 and 127 times
higher than C#, Boo, VB, Fantom and Cobra, respectively [37].

The last scenario is when all the types are explicitly declared. In this case, C# is the
language that obtains the lowest execution times, being on average 2.5% faster than Sta-
Dyn, the second fastest implementation. This result is caused by the greater number of
optimizations the production C# compiler performs in relation to our language implemen-
tation. Compared with the rest of languages, StaDyn is, on average, 24%, 48%, 243% and
335% faster than Cobra, VB, Boo, and Fantom, respectively.

Regarding memory consumption, StaDyn was the language implementation that re-
quired the lowest memory resources for all the scenarios [37].

3. Implementation

Both the programming language and the IDE described in this paper have been imple-
mented in the .NET Framework 4.5 platform, using the C# programming language. Our
compiler is a multiple-pass language processor that follows the Pipes and Filters architec-
tural pattern [38]. We have used the AntLR language processor tool to implement lexical
and syntactic analysis. ASTs have been implemented following the Composite design
pattern [39], and each pass over the AST implements the Visitor design pattern [39].

We have developed the following AST visits: two visitors for the SSA algorithm;
two visitors to load types into the type table; one visitor for symbol identification and
another one for type inference; and two visitors to generate code. The type system has been
implemented following the guidelines described in [40] and the formalization depicted
in [21].

We generate .NET intermediate language (IL) and then assemble it to produce the
binaries. At present, we use the CLR 2.0 as the unique compiler’s back-end. However,
we have designed the code generator module following the Parallel Hierarchies design
pattern [41] to add both the DLR [42] and the zRotor [43] back-ends (current work).

The VS IDE has been customized using both the Managed Extensibility Framework
(MEF) and the Managed Package Framework (MPF). The previous prototype customized
VS 2008 by implementing a collection of Visual Studio extension packages (VSPackages)
that needed to be installed in the Windows registry. However, VS 2010 and 2012 use
the MEF component framework to facilitate the customization of the VS IDE, avoiding
hard dependencies among the component parts [44]. MEF has allowed us to create editor
plug-ins for syntax highlighting, IntelliSense, type information hints, error messages, and
context menus. The editor plug-ins export (provide) and import (consume) MEF compo-
nent parts [44]. As shown in Figure 11, the editor plug-ins import some editor extension
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points exported by VS. When an event related to these extension points occurs, the plug-in
invokes the compiler to perform lexing, parsing and type inference of the current project.
The type-annotated AST is returned to the plug-in that, using the annotated AST, responds
to the event generated. Our plug-ins export this information that is in turn imported by the
VS, producing the desired customization.

MEF 
Editor 
Plug-in 

StaDyn 
Compiler 

Editor  

extension  

points 

Type-

Annotated 

AST 

.stadyn 

.dyn 

import 

export 

VS 2010 

export 

import 

Lexing, Parsing & 

Type Inference

Figure 11: Customization of the VS IDE using the Managed Extensibility Framework.

The Managed Package Framework (MPF) has been used to implement two VS exten-
sion packages (VSPackages): the StaDyn project and the StaDyn menu commands. These
two packages were extended from the previous version of the IDE [18].

4. Evaluation

We have conducted a user study to evaluate the StaDyn IDE. This evaluation is aimed at
showing how the IDE supports programmers in certain tasks, comparing our approach with
similar systems. For this purpose, we have designed two experiments (Sections 4.1 and
4.2) conducted by 10 participants, all of them graduate students in Computer Science. All
the students are experienced Java programmers, but they barely knew the rest of languages
used, including StaDyn.

4.1. First Experiment: Programmer’s Performance using the StaDyn IDE
For both experiments, we applied the GQM (Goal, Question and Metric) approach to

perform the evaluation [45]. The goal of this first experiment is to evaluate the program-
mer’s performance using the StaDyn IDE, compared with the command-line plus editor
approach.
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The procedure used for this first experiment is presented in Figure 12. The participants
are given a brief introduction (10 minutes) to the experiment goal. Then, a short lecture
(30 minutes) about the StaDyn programming language and the compiler command-line
options is presented to the students. After this lecture, the participants implement a warm-
up program in StaDyn, using their favorite editor and the command-line compiler. In this
session, they could ask any question to the instructor, learning how to apply the correct
language features and compiler options. Once the warm-up program is correctly imple-
mented, they are asked to develop a more difficult application with the same tools. For this
second program, the development time is recorded.

The second part of the experiment starts with another lecture about the features of the
StaDyn IDE (10 minutes). The participants then implement the same warm-up exercise
using the IDE. Afterwards, they develop a new different program, recording the elapsed
development time. Finally, a questionnaire is used to evaluate in which terms the IDE has
facilitated the development process.

Start
Introduction

(10 min)

StaDyn language 
lecture

(30 min)

Warm-up program 
implementation 

(cmd-line + editor)

Application 
implementation

(time is recorded)

Warm-up program 
implementation 

(IDE)

Application 
implementation 

(time is recorded)
QuestionnaireEnd

StaDyn IDE 
lecture

(10 min)

Figure 12: Procedure used for the first experiment.

For each of the two scenarios (command-line plus editor and IDE), we selected a dis-
tinct program. If the same program would have been implemented, development time
had been affected by the ordering of implementation. However, selecting two different
programs requires them to have a similar degree of complexity in order to compare their
development times. Consequently, we selected consecutive Euler problems from problem
29 to problem 34 (i.e., 29 and 30, 30 and 31, . . . , 33 and 34) [46]. The first problem was
developed with the editor plus command line option, and the second one with the IDE.
Therefore, 5 different pairs of programs were created, and each pair was developed by 2
of the 10 participants. To evaluate whether both problems have a similar degree complex-
ity, the questionnaire asks the students if they think so (Q1.2 in Table 1). Euler 25 is the
warming-up exercise used in all the experiments.

All the programs, including the warm-up one, were implemented following the next
process. First, a rapid prototyping approach was followed, where all the references in the
program must be declared as dynamically typed. Then, the prototype must be converted
into a robust and efficient program with fully statically typed code. The last step was
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ensuring that all the variables in the final program have their types explicitly declared.
In the GQM approach followed [45], different questions were elaborated to cover the

goal of evaluating the programmer’s performance using the StaDyn IDE. For each question
in the questionnaire, the students specified their level of agreement in a 5-point Likert
scale [47]: strongly disagree (1), disagree (2), neutral (3), agree (4), or strongly agree (5).
Such scale has been widely used in the evaluation of usability and preference in human-
computer interaction research [48]. Table 1 shows the questions used. The first question
(Q1.1) is aimed at covering the experiment goal. The second one (Q1.2), as mentioned,
validates the premise that the two selected programs have a similar degree of complexity.
The rest of questions are aimed at identifying which IDE features influenced on improving
the programmer’s performance.

Q1.1 The IDE has significantly improved my performance compared with the command-line plus
editor option.

Q1.2 This problem was as complex as the one implemented using the command line options.

The following features of the IDE have been useful for improving my performance:
Q1.3 Compile-time type error detection of dynamic references.
Q1.4 Code completion of dynamic references.
Q1.5 Separation of the dynamism concern.
Q1.6 The “build with everything dynamic” compilation state of the IDE.
Q1.7 The “build with everything static” compilation state of the IDE.
Q1.8 Make explicit.
Q1.9 Type hints.

Table 1: Questionnaire to evaluate the programmer’s performance using the StaDyn IDE.

4.1.1. Results
Figure 13 shows the elapsed time required by each participant to develop the two appli-

cations. Using the StaDyn IDE, all the students developed the program significantly faster
than with the command-line plus editor option. On average, development time using the
IDE was 38.3% the time employed without it.

Table 2 shows the distribution of the responses of the 10 participants to the question-
naire presented in Table 1. All the students but one strongly agreed that the StaDyn IDE
significantly improved their performance compared with the command-line plus editor op-
tion (Q1.1). All the participants agreed that the two developed programs have a similar
degree of complexity (Q1.2).

Regarding the features provided by the IDE, code completion of dynamically typed
references (Q1.4) was evaluated as the most useful feature. Type hints (Q1.9) obtained the
lowest evaluation, with a median value of agree (4) and a standard deviation of 0.67. The
rest of features were evaluated with a minimum value of 4.7.
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Figure 13: Development time (minutes) used by each participant to implement the two StaDyn programs.

Q1.1 Q1.2 Q1.3 Q1.4 Q1.5 Q1.6 Q1.7 Q1.8 Q1.9
Strongly agree 9 3 8 10 7 9 9 8 4
Agree 1 7 2 3 1 1 2 5
Neutral 1
Disagree
Strongly disagree
Average 4.9 4.3 4.8 5.0 4.7 4.9 4.9 4.8 4.3

Table 2: Distribution of the answers to the questionnaire in Table 1.

4.2. Second Experiment: Programmer’s Performance using Similar IDEs
The goal of this second experiment is to evaluate the programmer’s performance using

other IDEs for hybrid static and dynamic typing languages. In particular, we evaluate
whether the features provided by each IDE are effective for reducing development time of
dynamically and statically typed code, plus the transition from the former to the latter.

We restricted our evaluation to the existing IDEs of hybrid languages for the .NET

framework to facilitate the comparison among them [37]. The IDE selected for each lan-
guage was that recommended by the language developers. Visual Studio 2012 was used
for C# –Visual Basic was not included in the experiment, because this IDE provides the
same features for both languages. SharpDevelop 4.4 was used for Boo, Xamarin Studio
4.2.3 (former MonoDevelop) for Cobra, and the F4 1.0.2 Eclipse-based IDE for Fantom.

The procedure is based on performing the same experiment for the 5 different IDEs.
As done with the StaDyn IDE, we start with a lecture about the features of the visual envi-
ronment to be evaluated (10 minutes). The students first implement the warm-up exercise
(Euler 25) to get used to the IDE. Then, they develop a new program and the elapsed
development time is recorded. Finally, a questionnaire is answered by the participants to
evaluate the IDE. This procedure is applied for all the languages. The questionnaire for
the StaDyn IDE is passed just after the first experiment (Section 4.1).

In the previous experiment, each participant implemented two consecutive programs
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from Euler 29 to 34. In this second experiment, we use the four remaining programs so
that each student implements a different program in a different IDE (and language). Each
2 of the 10 participants conducted the same experiment. As in the first experiment, they
followed the process of first creating a rapid prototype, and then converting it into a robust
explicitly typed application.

Table 3 shows the questionnaire used for this second experiment. The 5-point Likert
scale questions, together with the elapsed development time, are aimed at evaluating the
programmer’s performance using similar IDEs for hybrid static and dynamic typing lan-
guages. Q2.1 validates whether the 6 selected programs have a similar degree of complex-
ity. The objective of questions Q2.2 and Q2.4 is evaluating whether each IDE was useful
in reducing the development time of dynamic and static typing scenarios; Q2.3 is focused
on the transition from the former scenario to the latter. The question Q2.5 evaluates the
lack of features provided by the IDEs, and Q2.6 indicates whether runtime performance
of dynamically typed code influenced on the elapsed development time.

Q2.1 This problem was as complex as those implemented in the other IDEs.
The IDE provides features that have helped me to

Q2.2 Reduce the development time of the dynamically typed program.
Q2.3 Perform the transition from dynamically to statically typed code.
Q2.4 Reduce the development time of the statically typed application.

Q2.5 The lack of features provided by the IDE has somehow influenced the development time.
Q2.6 The low runtime performance of the dynamically typed code has increased the development

time.

Table 3: Questionnaire to evaluate the programmer’s performance using each IDE.

4.2.1. Results
Figure 14 shows the average development time using each IDE. Values are grouped

by program (i.e., Euler problem) to reflect any possible influence of the problem on the
elapsed development times. The development times using the StaDyn IDE have been
the lowest for all the programs. On average, the participants employed 33.48%, 75.6%,
90.25% and 92.27% more development time when they used the IDEs for C#, Boo, Cobra
and Fantom, respectively.

To assess the similarity among the complexity degree of the problems, we added the
Q2.1 question to the questionnaire shown in Table 3. Figure 15 shows the answers of the
participants to this question, considering each problem. They identified Euler 31 as the
problem with the lowest degree of complexity similarity. This may be the cause of its
higher average development time in Figure 14. However, the average value is close to
agree (3.7), third quartile is 4.5, and first quartile is neutral (3). For the rest of programs,
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Figure 14: Average development time (minutes) used to implement the 6 selected programs in each IDE.

the students agreed that the problems have a similar degree of complexity (average is above
4, and third quartile is at least agree).
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Figure 15: Average responses to Q2.1 (questionnaire in Table 3) grouped by programs; whiskers show first
and third quartile.

Figure 16 shows the answers to the rest of questions (questionnaire in Table 3). Q2.2
is aimed at evaluating whether the IDE helps the programmer to reduce development time
when creating dynamically typed code. The only IDE that received a positive answer was
StaDyn (4.25). All the participants strongly agreed that the StaDyn IDE facilitates the
transition from dynamic to static typing (Q2.3); the rest of IDEs obtained a maximum
average evaluation of 1.25 for this question. For statically typed code (Q2.4), the partici-
pants agreed that all the IDEs are useful for reducing development time (4 was the smallest
average value, obtained by F4 / Fantom).

Q2.5 states that the of lack features provided by each IDE has somehow influenced on
the development times. The average value for the StaDyn IDE was 1.5, between strongly
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disagree and disagree. For Visual Studio, the average answer was higher than neutral
(3.5). The participants agreed that the rest of IDEs lack some features, influencing the
time they used to develop their programs.

The last question (Q2.6) is related to the language implementation rather than to the
IDE. It asks the participants whether the lower runtime performance of dynamically typed
code increased the development times. The participants answered that StaDyn did not
cause this development time increase (1.5). On average, they agreed that the lower perfor-
mance of Fantom’s dynamic typing implementation raised the elapsed development time.
The rest of languages obtained an average value between neutral and agree.
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Figure 16: Average answers to the questionnaire shown in Table 3; whiskers show first and third quartile.

5. Related Work

In this section, we analyze the existing approaches related to ours, considering the
existing IDEs for hybrid static and dynamic typing languages. A detailed analysis of the
programming languages plus some other theoretical approaches are discussed in [17].

Boo is an object-oriented programming language for the CLI with Python inspired
syntax [49]. In Boo, a reference may be implicitly declared making the compiler infer
its type (references could only have one unique type in the same scope), but fields and
parameters cannot be declared without specifying their type. The Boo compiler provides
the ducky option that interprets the Object type as if it was duck, i.e. dynamically typed.
This approach follows the idea of separating the dynamism concern, but does not reduce
the number of changes to be done in the source code. SharpDevelop, Boo Explorer and
the BooLangStudio plug-in for VS 2008 are the existing IDEs for the Boo programming
language. Their features include syntax highlighting, building and debugging services,
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and basic IntelliSense capabilities for statically typed references only. SharpDevelop also
provides services for converting C# to Boo, three refactoring operations, and some code
templates to help the programmer get started.

The Fantom programming language generates both JVM and .NET code, offering dy-
namic and static typing [50]. Instead of adding a new type, dynamic typing is provided
with the -> dynamic invocation operator. Unlike the dot operator, the dynamic invocation
operator does not perform compile-time checking. Fantom does not follow the separation
of concerns principle. The existing IDEs for Fantom are F4 (an Eclipse-based IDE), Net-
beans FantomIDE (either as a plug-in or as a standalone IDE), and the Fantom bundle for
TextMate. F4, the most advanced one, provides code completion for statically typed code,
debugging, search for code elements, and useful navigating services. F4 does not provide
code completion when the dynamic invocation operator (->) is being used.

Cobra is another hybrid typing programming language with different IDEs [51]. The
Cobra approach is similar to C# 4.0, offering a dynamic type for dynamic typing. The
language is compiled to .NET assemblies. Different IDEs are provided: Xamarin Studio
(MonoDevelop), Visual Cobra (an extension of VS 2010), a plug-in for SharpDevelop,
and Naja (written in Cobra). All of them offer editing, compiling, and syntax highlighting.
Xamarin, the IDE recommended by the Cobra developers, provides interactive debugging,
tooltips, and some support for code completion. This last feature is not supported for
dynamic references, and the dynamism concern is not separated.

Objective-C is a programming language that supports both static and dynamic typing,
and it is commonly natively compiled [52]. In Objective-C, variables declared with the id
type are dynamically typed, postponing type checking until runtime. No type information
is gathered by the compiler. Apart from advanced editors such as Textmate and BBEdit,
Xcode and JetBrains AppCode are two full-featured IDEs for Objective-C. Both include
debugging, code navigation, and code completion for statically typed code. When the
id dynamic type is used, autocomplete only shows the messages provided by any object
(NSObject).

As we have previously mentioned, Visual Studio offers dynamic typing for both C#
and VB. However, they do not infer any type information for dynamic references. As a
result, IntelliSense is not provided for these variables (dynamic in C# and implicitly typed
variables in VB).

The IDE described in this paper is an evolution of an initial prototype [18]. The first
prototype only provided some features for local variables when a single type was inferred
in its scope1. In this new stable version, code completion, type hints, and the modification

1The programming language supported var fields and parameters, but the IDE did not provide these
services for those references.
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of the dynamism of implicitly typed references are provided for var fields, parameters,
and return types, and for local variables with multiple types in the same scope. The three
different states of compilation described in Section 2.6 were not provided by the previous
version (the previous version allowed compilation with every var reference as static or dy-
namic, but that state was not saved for the following compilations, and the color of the var
references and IntelliSense did not change accordingly). IntelliSense was not activated au-
tomatically; and the appropriate keywords, types, identifiers in scope, and class members
were not provided either. The current version also introduces new minor features such as
brace, parenthesis and square bracket matching, code completion for built-in types, over-
loaded methods and expressions with multiple dots, and hints for every var expression (not
only declarations). For implicitly typed parameters, error messages show both the method
body and the specific argument in each erroneous method invocation. The last version is
released as 2 different implementations for VS 2010 and 2012, and it is more maintainable
and scalable due to the benefits of using the MEF component framework [44]. Finally,
this IDE incorporates the last version of the StaDyn programming language [37], which
includes support of value types, properties, implicitly typed static fields, autoboxing and
unboxing of var fields, and full support of the + overloaded operator.

6. Conclusions

Gathering type information of dynamically typed code at compile time is a valuable
mechanism to improve the features of the programming language IDEs, offering services
commonly provided when statically typed code is being processed (such as code comple-
tion and early detection of type errors). Moreover, if the programming language is hybrid
dynamically and statically typed, specific services aimed at facilitating the transition from
dynamically to statically typed code (and vice versa) can also be provided. The Separa-
tion of Concerns principle facilitates the implementation of these services. The proposed
features have been implemented as part of a production IDE for a research hybrid program-
ming language, obtaining significant benefits on the programmer’s performance compared
to its counterparts.

Future work will be adding debugging capabilities to our extension of Visual Studio.
The current implementation of the StaDyn programming language, the binaries and source
code of the visual IDE (both the VS 2010 and 2012 implementations), and the benchmark
and source code examples presented in this paper are freely available at

http://www.reflection.uniovi.es/stadyn/download/2014/jvisualang
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