
 1

NOTICE: This is the author’s version of a work accepted for publication by IEEE. Changes
resulting from the publishing process, including peer review, editing, corrections,
structural formatting and other quality control mechanisms, may not be reflected in this
document. A definitive version was subsequently published in IEEE Software, Volume
21, Issue 6, November 2004.

 2

Adaptable Separation of Persistence Attributes employing
Computational Reflection

ABSTRACT

The separation of concerns principle is aimed at the ability to modularize separately those
different parts of software that are relevant to a particular concept, goal, task or purpose.
Appropriate separation of application concerns reduces software complexity, improves
comprehensibility, and facilitates concerns reuse. Considering persistence as a common application
concern, its separation from program’s main code implies that applications can be developed
without taking persistence requirements into consideration. As a result, persistence aspects may be
plugged in at a later stage. This separation offers the developer handle persistence software attributes
regardless the application functionality. We have analyzed different approaches to accomplish a
complete separation of persistent features, appreciating that computational reflection achieves an
entire transparency of persistence concerns, offering an enormous adaptability level. We present the
implementation of a research-oriented prototype that illustrates how computational reflection can be
used in future persistence systems to completely separate and adapt application persistence attributes
at runtime.

1. Introduction
Persistence capabilities are usually granted to applications by the use of explicit access to

database management systems, such as object-oriented databases or object-relational mapping
products. The usual way of building applications is tangling application functional code with explicit
SQL or OQL persistence statements. This tangling of the source code of different concerns causes
many drawbacks: legibility, maintainability and portability of the source code, lack of persistence
functionality reuse, and low adaptability of persistence attributes.

The Separation of Concerns (SoC) principle emerges in order to overcome these common
drawbacks of the software development lifecycle [1]. The objective of the SoC idea is to separate
crosscutting concerns, such as persistence, from the main application code. The code that addresses
each concern will not be spread out over different parts of the application, separating the main
application algorithms from special purpose concerns. Following this technique, persistence
requirements of any application could be plugged in a later stage into the application code, once the
business logic has been specified. The source code of the main program will stay unmodified
regardless of its persistent features.

In this article we analyze existing approaches to obtain a full separation of the persistence
concern –from dominant persistent-application development to aspect oriented programming,
including the orthogonal persistence approach. The most advanced ones, as well as the one
presented in this paper, are currently in a research stage. In the era in which software engineering
and networking capacity are becoming ubiquitous, research into new methods of software
engineering such as concern (aspect) oriented software development has appeared. This is a research
paper that shows how computational reflection is a suitable technique to be applied in the research
field of dynamic separation of orthogonal software properties, taking persistence as the main
example.

 3

2. Dominant Persistent Application Development
Nowadays, the dominant persistent data model in the enterprise remains the relational model,

represented in practice by the SQL language. Taking the Java platform as an example, the
programmer interfaces with SQL either directly or indirectly. She could use SQL directly employing
JDBC or SQLJ. On the other hand she may access persistent data through some object-relational
mapping software (e.g., Sun’s Java Blend or Sybase’s CocoBase) or by means of a framework such as
the Enterprise JavaBeans architecture.

Another approach to obtain data persistence is based on file persistent storage. Following with
Java as an example, this platform has included an object serialization technology. The eXtensible
Markup Language (XML) has recently become popular as a common framework for file formats.

When the programmer selects an object-oriented programming language, the requirement to
map to SQL or XML to make an object graph persist is an added burden both during development
and deployment, causing a considerable runtime cost to the application –e.g. requiring a parser to
translate XML documents into objects and the other way round. Besides this impedance mismatch
[2], these approaches require the programmer to write code sentences explicitly in order to make
objects persist. The main reason of this lack of transparency is that programming languages and
database management systems have historically evolved separate from one another, producing
substantial differences between their computational models. As we will show in this paper,
performing calls to a persistence system interface inside the language’s computational model will
make possible both the separation and the adaptation of application’s persistence attributes at
runtime.

3. Orthogonal Persistence
A step forward in achieving transparent persistence has been the appearance of orthogonal

persistence systems in the 90s [3]. The aim of orthogonal persistence is to provide a single, uniform,
computational model for all aspects of an application that deals with long-lived data. This capability
is defined by three principles:

− Type orthogonality: All data objects should be allowed the full range of persistence,
irrespective of their type.

− Persistence independence. The form of a program is independent of the longevity of the data
it manipulates.

− Persistence by reachability. The lifetime of each object is determined by reachability from a
set of root objects.

The two first principles compose the objective of a completely transparent persistence system:
the programming language should not distinguish persistent objects from the transient ones,
regardless of its type.

The third rule specifies a mechanism to implement transparent persistence. Persistence by
reachability is focused on establishing the persistence concern in the own application’s source code.
The transitive closure of a persistent root object involves a quite transparent mechanism. However,
if we think of persistence as a common application concern that may be separated from the
program’s logic, persistence by reachability would be only a possibility in a range of
implementations. Different criteria (such as only identifying a specific set of persistent objects)
might be necessary, depending on the persistence requirements of specific programs.

There exist different examples of orthogonal persistence systems. In the Java world, PJama and
PEVM are two well-known implementations of the Object Persistence Java platform (OPJ) [3]. The
main drawback of existing implementations is that the persistence by reachability rule makes them

 4

not fulfill the first criterion of persistence independence [2]. Persistence is not taken into account as
a completely separate concern, regarding the SoC principle.

As an example, to make a collection of objects persist in PJama/OPJ, the programmer should
explicitly program the following steps in the application’s source code:

1. Take the persistent store by means of the PjavaStore.getStore() invocation.
2. Try to get the collection of objects from the persistent store (calling the getRoot method),

indicating its persistence identifier.
3. If the object does not exist in the store (an exception is thrown), it should be introduced.

Therefore, it is created in memory and included in the storage (using the newPRoot
method) specifying its unique identifier.

Once the collection has been made persistent, the rest of the application logic is transparent to
its persistence settings. However, the retrieval and storage of root objects need to be managed
explicitly in PJama/OPJ. Apart from the lack of separating the persistence concern, existing
orthogonal persistence systems do not offer adaptation of different features such as security or
concurrency.

4. Persistence in Aspect Oriented Programming
Aspect-Oriented Software Development (AOSD) is a promising discipline that follows the SoC

principle at any stage of the software lifecycle. AOSD is an evolution of the Aspect Oriented
Programming (AOP) [4]. AOP is an implementation technique that provides explicit language
support for modularizing application aspects: functionality that cuts across the system in a modular
way. It allows the developer to design a system out of orthogonal concerns and providing a single
focus point for modifications [1].

In the AOSD literature, persistence is often described as a classical candidate for aspectization
[5]. Theoretically, it should be possible to:

− Modularize persistence as an effective aspect, employing AOP techniques.
− Reutilize persistence aspects, independently of the kind of application.
− Develop programs unaware of the persistent nature of its data.

Analyzing different implementations of persistence aspects, we realize that the previous goals
are not easily achieved in real world examples. As a first example, PersAJ [6] provides a prototype to
store aspects in an object-oriented database. In order to keep the persistence model independent of
a particular AOP approach, an aspect is used to describe the persistence representation of aspects.
Its aim is to provide a model for aspect persistence, but application data and persistence code were
not separated. On the other hand, Kielze and Guerraoui [7] provided an assessment of AOP based
on separating concurrency control and failure handling code in a distributed system. However, they
investigated a case study on aspectizating transactions, only one facet of persistence. Modularization
of code dealing with storage and retrieval of application data was not dealt with in detail. Another
study has been performed trying to develop a persistence system with AspectJ (an aspect-oriented
extension to Java) [5]. Their conclusion was that the development of persistence aspects and
applications could not be done independently one of each other. Storage and update of persistent
data does not need to be accounted for, but retrieval and deletion must be explicitly considered.

Therefore, the existing aspect tools do not seem to be really suitable for developing persistence
aspects, following the main aim of the SoC principle. In contrast to the techniques analyzed in this
paper, we will show how reflection is a more suitable technique to transparently separate any
persistence concern.

 5

5. The nitrO Reflective System
Reflection is the capability of a computational system to reason about and act upon itself,

adjusting itself to changing conditions. Its computational domain is enhanced by its own
representation, offering its semantics and structure as computable data.

There exist different levels of reflection [8], many of them used to obtain persistent features.
Introspection is the lowest level or reflection: it permits the access to system structure, but not its
modification. Introspection is offered by many programming languages (e.g., Java, C# and, in a very
limited way, C++). The introspective runtime type information of C++ was employed in the
development of Texas Persistent Store, offering a compile-time introspective virtual memory.
Although Texas provides high performance, its persistence settings cannot be replaced or adapted at
runtime, and they are completely monolithic.

Structural reflection is the second level of reflection, where the structure of the system may be
dynamically altered. Python and Smalltalk are examples of languages that offer this kind of features.
These reflective capabilities have been used to serialize objects just before they are stored, and the
other way around.

Finally, computational reflection means dynamic customization of system structure and
semantics. An example is the modification of the message-passing mechanism and objects lifetime at
runtime, in order to update objects in a database every time their state is modified. Java has
introduced in its version 1.3 a new dynamic proxy API inside its reflection package. This API offers
a limited computational reflection service (that must be specified at compile time): the modification
of single-class method invocation. When the programmer creates an object in a specific way, Java
funnels all its method calls to an invocation handler. Applying this facility and Java introspection, the
Hibernate Object/Relational mapping library translates the use of persistent objects into the
underlying relational database model –a XML document must specify the mapping. Although
Hibernate offers an efficient persistence layer between the application and the database, it does not
reach the transparent separation of the persistence concern achieved with orthogonal persistent.

Meta-Object Protocols (MOPs) is the most extended mechanism employed to obtain runtime
computational reflection. However, they basically have two drawbacks: they offer a too limited set of
primitives to develop highly adaptable systems, and all of them use a fixed programming language.
That was the reason why we developed nitrO, a non-restrictive computational-reflective system [8].
It offers more adaptability than existing MOP systems and it is language neutral –i.e. it can be
programmed in any programming language. It was developed in the Python 2.2 programming
language.

The nitrO reflective platform was designed following the theoretical definition of reflection [8].
This definition considers that a reflective computation is a computation about the computation, i.e. a
computation that accesses the interpreter (what is call reification). Therefore, applications running
over nitrO can access its interpreter at runtime, modifying their structure and customizing their
language semantics. In this way, we have developed a generic interpreter capable of interpreting any
programming language by previously reading its specification. The generic interpreter is language-
independent: its inputs are both the user application and the language specification.

Programming languages are detailed in nitrO with language specification files, employing a top
down parsing mechanism similar to the one used by the JavaCC tool. The lexical and syntactic
features are expressed by means of context-free grammar rules; the semantics with Python code
action routines, placed at the end of each rule [8]. We have specified Python, ECMAScript and a
subset of the Java programming language. Although our first implementation requires the source
code of each application, we are currently specifying new intermediate language grammars such as
JVM bytecodes or MS.NET PE formats.

 6

At runtime, any application may access language specifications by using the whole
expressiveness of a meta-language: the Python programming language. Opposite to conventional
reflective platforms, there are no previously specified restrictions imposed by a meta-object protocol
–any feature can be adapted. Runtime changes to language specifications are automatically reflected
on the application execution, because the generic interpreter relies on the language specification
while the application is running.

As a simple example of a reflective application in the nitrO platform, we show a Java program
where an Author object is created (Figure 1.a). In an infinite loop, the author’s name is displayed
on the console. Every application identifies its programming language previously to its source code
(second line of Figure 1.a). When the application is about to be executed, its respective language
specification file is analyzed and translated into an object representation in memory. Then, the
generic interpreter, following the language specification, will execute the application.

Application = "Author"
Language = "Java"

class Author {
String firstName, surname;
Author(String firstName,String surname) {

this.firstName = firstName;
this.surname = surname;
}

String getFirstName() {return firstName;}
String getSurname() {return surname;}
void show(Console console) {

console.print("Author: “ +
this.getFirstName());

console.print(" " + this.getSurname());
console.println('.');

}
static void main(String[]args) {

Author author = new Author(
"Oscar", "Wilde");

Console console = new Console();
while (true)

author.show(console);
}

}

reify <#

from objs import *
authorApp = nitrO.apps['Author']
authorInterpreter = authorApp.

applicationGlobalContext['theInterpreter']
symbolTable = authorInterpreter.getSymbolTable()
authorInstance = symbolTable.getVar('author').

getInstance()
authorClass = authorInstance.getClass()

nameInstance=authorInstance.fields[authorClass]
['firstName'].instance.setValue('Edgar')

surnameInstance=authorInstance.fields[authorClass]
['surname'].instance.setValue('Poe')

authorClass.addField(Jfield
('middleName',stringClass,''))

stringObject = stringClass.newInstance()
stringObject.setValue('Alan')
authorInstance.fields[authorClass]

['middleName'] = stringObject
#>

a) Author Java program source code b) Reflective code modifying the Author program
Figure 1. Two nitrO example applications.

Another program may customize author application properties, by running reflective code. This
feature is offered by the reify statement that the generic interpreter automatically recognizes.
Regardless of the programming language, the reflective system identifies the reify statement,
obtains the Python code located inside of it, and evaluates it at the same level as the generic
interpreter. The reflective application may access both the internal structure of the authors program
and its language semantics, achieving the dynamic adaptation of the application by means of
computational reflection.

Figure 1.b shows an example of part of a reflective application that modifies the structure of
the author program. Python code inside the reify statement may access any application running in
the system, using the nitrO global object. This object is the system’s Facade. Figure 1.b shows how
we could obtain the author application, its symbol table, the author instance, and its class. Then we
modify its two attributes (firstName and surname).

Finally, the reflective application modifies the structure of the authors program: a new attribute
middleName is added to both the author class and its single object. The structures of the author
object and class have been customized. In order to keep the example compact, the reflective

 7

application does not modify the show method displaying the new middleName attribute. This can
be easily done, because statements in a method are treated as string data at the meta-level.

Applications are launched and inspected by means of the nitrO shell: a graphic window that
interprets a reduced command language based on Python. When a program is executed, nitrO
creates a new graphic window. After having executed the author program (Figure 1.a), we could
adapt it by running the reify statement of the second program shown in Figure 1.b. When this
second program is launched, the former will be dynamically adapted by the latter without changing
its source code –in our example, the description of a new author is shown in its graphic window.

A common issue to take into account in reflective systems is security. Modifying one
application’s structure from another program requires security control. Currently, there exist runtime
security models (e.g., Java security policy or .NET code-access security) that offer a rich set of
permissions to configure many policy levels, including reflection. Following versions of our system
will include the .NET code-access security system to grant reflective permissions to nitrO
applications.

6. The nitrO Persistence System
Employing the reflective capabilities of nitrO, we have developed a persistence system in order

to obtain a complete separation of the persistence concern. The system design is composed of three
main subsystems:

1. Application. This package offers the representation of every running program (its classes,
methods, objects and so on). It can be reused independently of the language selected,
whenever the language to be supported is an object-oriented one. Changing its structure at
runtime implies structural reflection of the program being executed.

2. Interpreter. It is responsible for performing the contextual analysis and application
execution. The interpreter developed was a subset of Java Programming Language –the main
simplification was the elimination of primitive types, in order to simplify the implementation.
Its dynamic customization involves computational (semantics) reflection.

3. Persistence. This is the main package that offers the language neutral persistence system.
Using reflection, this subsystem gives the programmer the ability to dynamically customize
the reflective features of any application in a transparent way. Its design has been performed
taking into account that different storages, indexing mechanisms and update policies could
be used and dynamically replaced.

The system has been developed at the same level as the generic interpreter –i.e., at the meta-
level, using Python. Its code employs the reflective capabilities of the system, adapting the semantics
and structure of running programs. It can make a program persistent without changing its source
code.

6.1. Interpreter Subsystem

The nitrO system takes the specification of the Java Programming Language and automatically
generates the parse tree of the application to be executed. Then, nitrO executes (following the
Command design pattern) the semantic rule specified at the end of the first syntactic production.
This process returns the program’s Abstract Syntax Tree (AST), a simplification of its parse tree.

The interpreter takes the program’s AST and performs its interpretation. The interpretation
mechanism is based on performing different decorations of the AST, following the Visitor design
pattern. The parse method takes an AST, analyzes the node structure and calls the appropriate
visit_xxx method –there are as many visit methods as syntactic constructions in the Java
language. Following this scheme, semantic analysis, application representation, and program

 8

execution is performed. Therefore, the system may obtain computational reflection by modifying the
visit methods of the execution visitor.

6.2. Application Subsystem

This package contains the classes that represent a Java application at runtime. Classes (JClass)
are made up of fields (JField), methods (JMethod) and constructors (JConstructor); the two
last elements are grouped by JMethodGroup instances. JRef denotes a reference to an instance.

One important thing of this module is that it has been designed indicating the interface that
should be implemented to make an element persist. Implementing the Instance interface, any
object could be persistent. The methods located in this interface (makePersistent,
makeTransient, store, restore and getID) are the ones that the persistence subsystem
employs to manage object persistence. In our design, only objects are persistent because classes
(code) are directly stored in the file system.

6.2.1. Persistence ID
The creation of a unique persistence identifier (ID) of every element to be stored is a common

issue that persistence systems have to deal with. As application objects are going to survive to
program execution, references to them (their memory addresses) will not be valid. Therefore, we
must assign a unique global ID to any object.

We have designed the persistence system requiring that any persistent element should return its
ID at its getID method invocation. The JInstance implementation returns the concatenation of
the following values: the IP address, the PID of the process, the UID of the user, the TID of the
active thread, and milliseconds went by from January the 1st 1970. We have implemented a large
persistence ID trying to avoid any possible collision, taking into account that different storages and
applications might be running.

6.3. Persistence Subsystem

Figure 2 shows the persistence subsystem. The Manager class is the Facade of the module and
it has been implemented with a Singleton instance. It will offer persistence facilities to the
programmer. The behavior of the persistence system could be adapted at runtime by the selection of
specific Storage and StoragePolicy instances.

 9

DBMStorageSim pleStorage BSDDStorage SimplePolicy TimedPolicy

Storage

has_key()
retrieveObject()
doRetrieveObject()
storeObject()
doStoreObject()
commit()
terminate()

InstanceTable

addInstance()
getInstance()
deleteInstance()Manage r

getStorage ()
se tStorage()
getPolicy()
se tPolicy()
retrie veObject()
storeObject()
makePersistent()
makeTransient()
commit()
noti fyModif ied()
commitStorage()

0..n

storage s

0..n

1currentStorage 1
11

JInstance
0..n0..n

StoragePol icy

addInsta nce()
deleteI nstance()
storeInstances()
notif yModified()
commit()
terminate()

0..n

policies

0..n

1

currentP olicy

1

0..nmod ified Instances 0..n

Figure 2: Persistence subsystem class diagram.

Different update policies and storage systems can be employed in the platform. The Storage
and StoragePolicy abstract classes are partial implementations offered by the framework,
facilitating the addition of new elements. Storages are different ways to keep information persistently
in addition to its indexing mechanisms; policies specify the way objects should be updated into the
storage selected. Runtime selection and swap of this two variables could be performed in a
programmatically way.

We have implemented three reference storages: a dictionary (SimpleStorage); linear hash,
B+tree and variable-length record storages, offered by the Berkeley DB Library (BSDDBStorage);
and a Unix-based (n)dbm library whose objects behaves like mappings (DBMStorage).

Two different policies to update persistence objects (calling the storage commit method) have
been developed: whenever a persistent object is modified a specified number of times
(SimplePolicy), and every time a timer reaches a configurable number of seconds
(TimedPolicy). Each of these parameters can be modified at runtime depending on runtime
requirements –as well as exchanging the policy being used.

6.3.1. Instance Storing
In the storages implemented, we have used the reflective pickle Python module to serialize

objects, i.e. converting any object to a stream of bytes and vice versa. Although this module
marshals any Python object, it does not handle the issue of naming persistence objects. So, we have
defined our own system of persistent object IDs (Section 6.2.1). The process of converting
persistent object IDs to memory references is called pointer swizzling; the converse operation is
sometimes termed unswizzling.

The persistence Manager implements a lazy (un)swizzling mechanism. In the unswizzling case,
the reference translation is performed when the object is about to be stored. If the object has
references to other persistent objects, these will be also translated following the same recursive
scheme. This process is performed in parallel with object serialization.

The reverse mechanism (swizzling) is performed in two steps. The object demanded is searched
in the storage at first, using its persistence ID. In this step, the stream of bytes is retrieved and

 10

converted into a Python object. Afterwards, the reference swizzling is performed, recovering
memory links between objects.

This process is achieved by means of the InstanceTable shown in Figure 2. This table is a
Python’s weak dictionary that establishes a mapping between persistence IDs and their respective
memory references. Any time an object is set as persistent, an entry is assigned in this table.
Therefore, acting as a cache, if a persistent object is needed and it has an entry in this table, its
associated instance will be used.

Notice that this table uses weak references: if the persistent object is no more referenced, the
garbage collector might discard it. When a persistent object is reclaimed and it has not an entry on
the InstanceTable, the Manager will recover it from the storage registered.

7. A Sample Bibliography Application
We have developed an example bibliography application derived from information stored on

the DBLP server (http://dblp.uni-trier.de/). The program manages a set of bibliography items
(journals, series, conferences, books and articles), publishers, locations, authors and editors. It has
been implemented in Java and it is no persistent at all –once the application finishes, the object
collections are released.

Apart from the bibliography application, we have developed a reflective persistence controller
separating the application’s persistence concern. This second program assigns and modifies the
persistence features of the bibliography application, using reflection. It has been developed at the
meta-level (using Python code inside reify statements). By means of a graphic menu, if offers the
user the ability to make the bibliography program persistent or transient. Moreover, it permits the
modification of the persistence storage, update policy and indexing mechanism employed. The
reflective code accesses the persistence manager of the Biblio application the same way as shown
in Section 5. Then, it achieves the customization of the program’s persistence settings by invoking
methods of the persistence manager.

Figure 3 shows an example scenario where bibliography objects have been recovered from a
previous execution. The two upper windows in Figure 3 show the bibliography application
execution with its corresponding graphic menu. The first display of existing bibliography elements
shows that the collections are empty (upper left window).

Using the nitrO shell, the Persistence Controller program is launched (two lower windows in
Figure 3), managing the persistence features of the bibliography system. Selecting the Restore State
option of the persistence controller, the main application indirectly retrieves a set of persistent
objects from a previous execution. Then, if the user asks for existing bibliography items, the list of
elements in Figure 3 is shown. In addition, we can make the application persistent with the
controller, obtaining a transparent synchronization between the program’s data and the persistent
storage. Note that the bibliography application has no specific code to manage the retrieval and
storage of data; that task is performed by the persistent system. Figure 3 also shows how storages
(lower right window) and updating policies can be dynamically changed.

 11

Figure 3: The bibliography application and its separate persistence controller execution.

The example presented shows how a user may adapt application features at runtime, without
modifying the application's source code in a single statement. We have achieved a separation of the
persistence concern, employing reflective techniques. The persistence system is also adaptive: it
could be customized in a programmatical way, depending on variables such as system load,
persistence level, the number of connected users, or even the structure of running applications.

The complete separation of application logic from persistence concerns brings new possibilities
to develop different kinds of persistence applications. Persistence facilities could be offered to the
user in different ways: as a graphical browser, as a domain-specific programming environment, or as
a complete transparent orthogonal persistence system. For instance, following the orthogonal
persistence point of view, new optional items describing the application persistent attributes
(storage, indexing mechanism and update policy) could be specified in addition to the initial
indications of programming language and application identifier, offering a fully transparent
orthogonal persistence.

8. Runtime Performance
The main disadvantage of dynamic application adaptation is runtime performance. The basic

performance limitation of our reflective platform is caused by the interpretation of every
programming language. Nowadays, many interpreted languages are commercially employed –e.g.
Java, Python or C#– due to optimization techniques such as just-in-time (JIT) compilation or
adaptable native-code generation. In the following versions of the nitrO platform, these code
generation techniques will be used to optimize the generic-interpreter implementation. As we always
translate any language into Python code, a way of speeding up application execution is using the
interface of a Python JIT-compiler implementation.

9. Conclusions
This research paper presents a prototype implementation illustrating how computational

reflection represents a suitable technique to achieve dynamic and transparent adaptation of

 12

application’s persistence attributes, following the SoC principle. The use of reflection to obtain
transparent management of persistent features has increased over time. We have shown how the
highest level of reflection could be applied in future systems to obtain transparent and dynamically
adaptive persistence. Since computational reflection offers the runtime customization of language
semantics, it allows the combination of programming language and database management systems
into one single computational model.

The Python platform, the persistence system, and the example code presented are available at
http://www.di.uniovi.es/reflection/lab.

10. References
[1] W.L. Hürsch and C.V. Lopes: Separation of Concerns, Technical Report UN-CCS-95-03, Northeastern
University, 1995.

[2] J. B. García Perez-Schofield, E. García, Tim Cooper, M. Pérez-Cota. Managing schema evolution in a container-
based persistent system. Software, Practice & Expererience 32(14), 2002.

[3] M. Atkinson, L. Daynès, M. Jordan, T. Printezis and S. Spence: ‘An Orthogonally Persistent Java’, SIGMOD
Record 25(4), 1996.

[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.M. Loingtier and J. Irwin: ‘Aspect Oriented
Programming’, European Conference on Object-Oriented Programming (ECOOP), Springer-Verlag LNCS 1241,
1997.

[5] A. Rashid, R. Chitchyan: ‘Persistence as an Aspect’, International Conference on Aspect-Oriented Software
Development, 2003.

[6] A. Rashid: ‘On to Aspect Persistence’, GCSE Symposium, Springer-Verlag LNCS 2177, 2000.

[7] J. Kielze and R. Guerraoui: ‘AOP: Does it Make Sense? The Case of Concurrency and Failures’, European
Conference on Object-Oriented Programming (ECOOP), Springer-Verlag LNCS 2374, 2002.

[8] F. Ortin and J.M. Cueva: ‘Implementing a Real Computational-Environment Jump in order to Develop a
Runtime-Adaptable Reflective Platform‘. ACM SIGPLAN Notices (37)8, 2002.

