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Abstract

Dynamic languages are becoming increasingly popular for developing different kinds of applications such
as adaptable and adaptive software, Web development, application frameworks, game engines, interactive
programming, rapid prototyping, and dynamic aspect-oriented programming. These languages are built
on the Smalltalk idea of supporting reasoning about (and customizing) program structure, behavior and
environment at runtime. That is the reason why this trend is commonly referred to as the revival of dynamic
languages.
Dynamism obtained by dynamic typing is, however, counteracted by two main limitations: early type error
detection and runtime performance. To obtain the benefits of both dynamic and static typing, we have
designed a programming language that provides both approaches. Following the Separation of Concerns
principle, our programming language provides both dynamic and static typing. It is possible to customize
the trade-off between runtime flexibility of dynamic typing and safety, performance and robustness of static
typing. Moreover, the source code of the application stays unchanged. This paper presents an overview of
the StaDyn programming language.

Keywords: Dynamic languages, separation of concerns, static and dynamic typing, type reconstruction,
alias analysis.

1 Introduction

There is not a globally accepted definition of the term “dynamic language”. Based
on the features dynamic languages are held to have, it can be said that they are those
languages that support reasoning about and customizing their own structure, behav-
ior and environment at runtime, supporting self-modifying features and dynamic
code generation [32]. Although these are also characteristics of scripting languages
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[33] (both terms are commonly used indifferently), it is widely accepted that dy-
namic languages are an evolution of scripting languages that incorporate a number
of technical advances such as support for modularization, object orientation, GUIs,
or database access.

The main objective of dynamic languages is to model the dynamicity that is
sometimes required in building high context-dependent software, due to the mobil-
ity of both the software itself and its users. Features such as meta-programming,
reflection, mobility, dynamic reconfiguration and distribution are the domain of dy-
namic languages. This dynamism is, however, counteracted by the lack of static
type checking, implying a considerable runtime performance penalty.

Dynamic languages have recently turned out to be really suitable for develop-
ing specific kinds of applications such as Web development, application frameworks,
game engines, interactive programming, rapid prototyping, dynamic aspect-oriented
programming, and any kind of runtime adaptable or adaptive software. In the Web
engineering area, Ruby [43] has been successfully used together with the Ruby on
Rails framework for creating database-backed web applications [44]. This framework
has confirmed the simplicity of implementing the DRY (Don’t Repeat Yourself ) [21]
and the Convention over Configuration [44] principles with this kind of languages.
Nowadays, JavaScript [15] is being widely employed to create interactive web ap-
plications with AJAX (Asynchronous JavaScript And XML) [10], and PHP (PHP
Hypertext Preprocessor) is one of the most popular languages to develop Web-based
views. Python [41] is used for many different purposes, being the Zope application
server (a framework for building content management systems, intranets and cus-
tom applications) a good example [40]. Due to its small size, portability and ease
of integration, Lua [23] has gained great popularity for extending games [24]. Fi-
nally, a wide range of dynamic aspect-oriented tools has been built over dynamic
languages [38,4,43,31], being more flexible than the common static ones.

Due to the recent success of dynamic languages, usual static languages –such as
Java or .Net– are gradually incorporating more dynamic features into its platforms.
Taking Java as an example, the Reflection API became part of core Java with its re-
lease 1.1. This API offers introspection services to examine structures of object and
classes at runtime, plus object creation and method invocation –having a substan-
tial performance overhead. The Dynamic Proxy Class API was added to Java 1.3.
It allows defining a class at runtime that implements any interface, funneling all its
method calls to an InvocationHandler. In Java 1.6, the new Java Scripting API
permitted dynamic scripting programs to be executed from, and have access to, the
Java platform [25]. Finally the Java Specification Request 292 [26], expected to be
included in Java 1.7, incorporates the new invokedynamic opcode to the Java Vir-
tual Machine (JVM) in order to support the implementation of dynamically typed
object oriented languages. Since the computational model of dynamic languages
requires extending the JVM semantics, Sun Microsystems has launched the new Da
Vinci project in January 2008 [13]. This project is aimed at prototyping a num-
ber of enhancements to the JVM, so that it can run non-Java languages, especially
dynamic ones, with a performance level comparable to that of Java itself.

This trend has also been appreciated in the .Net platform. Although this plat-
form was initially released with introspective and low-level dynamic code genera-
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tion services, version 2.0 included Dynamic Methods and the CodeDom namespace to
model and generate the structure of a high-level source code document. Finally, the
Dynamic Language Runtime (DLR), announced by Microsoft in 2007, adds to the
.Net platform a set of services to facilitate the implementation of dynamic languages
[20].

The great flexibility of dynamic languages is, however, counteracted by limita-
tions derived by the lack of static type checking. This deficiency implies two major
drawbacks: no early detection of type errors, and a considerable runtime perfor-
mance penalty. Static typing offers the programmer early detection of type errors,
making possible to fix them immediately rather than discovering them at runtime;
when the programmer’s efforts might be aimed at some other task, or even after the
program has been deployed [36]. Moreover, since runtime adaptability of dynamic
languages is implemented with dynamic type systems, runtime type detection, in-
ference and checking involves an important performance drawback.

This is the reason why the benefits of providing both typing approaches in the
same language have been previously stated. Meijer and Drayton maintained that
instead of providing programmers with a black or white choice between static or
dynamic typing, it could be useful to strive for softer type systems [28]. Static typ-
ing allow earlier detection of programming mistakes, better documentation, more
opportunities for compiler optimizations, and increased runtime performance. Dy-
namic typing languages provide a solution to a kind of computational incompleteness
inherent to statically-typed languages, offering, for example, storage of persistent
data, inter-process communication, dynamic program behavior customization, or
generative programming [1]. Hence, there are situations in programming when one
would like to use dynamic types even in the presence of advanced static type systems
[2]. That is, static typing where possible, dynamic typing when needed [28].

The main contribution of our work is to break the programmers’ black or white
choice between static or dynamic typing. Our programming language called Sta-
Dyn supports both static and dynamic typing separating the dynamism concern
[22]. This programming language permits straightforward development of adaptable
software and rapid prototyping, without sacrificing application robustness, perfor-
mance and legibility of source code. The programmer may specify those parts of
the code that need a higher adaptability (dynamic) and those that should guaran-
tee a correct behavior at runtime (static). This separation permits turning rapidly
developed prototypes into a final robust and efficient application. It is also possible
to make parts of an application flexible, maintaining the robustness of the rest of
the program.

In this paper, we describe an overview of our programming language that sup-
ports both dynamic and static typing. The rest of this paper is structured as follows.
In the next section, we provide a motivation and background of dynamic and static
languages. Section 3 describes the features of the StaDyn programming language
and a brief identification of the techniques applied. Section 4 mentions the key
implementation decisions and Section 5 discusses related work. Finally, Section 6
presents the ending conclusions and future work.
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Ortin and Garćıa Perez-Schofield

Correct Behavior

Compilable and 
Wrong Behavior

Compilable and 
Correct Behavior

Not Compilable and Correct Behavior

Not Compilable

Fig. 1. Correct programs in a static language.

Object[] v=new Object[10]; 
for (int i = 0; i < 10; i++) { 

v[i] = "String " + i; 
int length = v[i].length();  // Compilation error

} 

Fig. 2. Not compilable Java program that might behave correctly.

2 Motivation and Background

2.1 Static Typing Languages

A language is said to be safe if it produces no execution errors that go unnoticed
and later cause arbitrary behavior [9]. Static languages ensure safety of programs by
using type systems. However, these type systems do not compile some expressions
that have a correct behavior at runtime (e.g. to pass a message called m to an
object, the reference of that object must implement an interface that declares this
public method). This happens because their static type systems require ensuring
that only good expressions are typable. Figure 1 illustrates this situation.

Static typing is centered on making sure that programs behave correctly at
runtime. This is the reason why languages with static typing employ a pessimistic
policy regarding to program correctness. This pessimism causes compilation errors
in programs that have a correct dynamic behavior. Java code shown in Figure 2
illustrates this limitation.

At the same time, static languages also permit the execution of programs that
might cause the immediate stop of a running application, producing an execution
error (e.g. array index out of bounds or null pointer exception).

2.2 Dynamic Typing Languages

The approach of dynamic languages is totally different. Instead of making sure that
all correct expressions will be able to be executed, they make all syntactic correct
programs compilable (Figure 3). This is a too optimistic approach that causes a
lot of runtime errors that might have been detected at compile time. Dynamic lan-
guages do not apply any type checking at compile type, permitting too much wrong
runtime behavior. They compile programs that might be identified as erroneous
statically. The Visual Basic .Net source code in Figure 4 is an example of this too
optimistic approach.
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Ortin and Garćıa Perez-Schofield

Correct Behavior

Compilable and 
Wrong Behavior

Compilable and 
Correct Behavior

Not Compilable

Fig. 3. Correct programs in a dynamic language.

Public Module MyModule
Sub Main()

Dim myObject
Dim length As Integer
myObject = New Object ()
length = myObject.length()  ' No compilation error

End Sub
End Module

Fig. 4. Compilable Visual Basic program that behaves incorrectly.

2.3 Benefiting from both Approaches

The StaDyn programming language performs type inference at compile type, mini-
mizing the compilable and wrong behavior region of dynamic languages (Figure 3)
and the not compilable and correct behavior area of static languages (Figure 1).
Consequently, StaDyn detects the compilation error of the dynamic program shown
in Figure 4 (that Visual Basic does not detect) and compiles the correct static code
in Figure 2 (that Java does not compile) –using the StaDyn syntax.

For both dynamic and static approaches, we use the same programming lan-
guage, letting the programmer move form an optimistic, flexible and rapid devel-
opment (dynamic) to a more robust and efficient (static) one. This can be done
using the same source code, changing the compiler settings. We separate the con-
cern of flexibility, robustness and performance, from functional requirements of the
application.

3 The StaDyn Programming Language

In this section we describe the features of the StaDyn programming language, with-
out detailing the techniques employed. Language features and a brief description of
the techniques used are presented. Implementation issues are described in Section 4.

The StaDyn programming language is based on C# 3.0 [12]. Particularly, we
extend the behavior of the new implicitly typed local references. In StaDyn, type of
references can be explicitly declared, and it is also possible to use the var keyword to
declare implicitly typed references. StaDyn permits the use of this kind of references
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using System;
class Test {

public static void Main() {
Console.Write("Your age, please: ");
var age = Console.In.ReadLine();
Console.WriteLine("You are " + age + " years old.");
age = Convert.ToInt32(age);
Console.WriteLine(age.GetType());
age++;
Console.WriteLine("Happy birthday, you are " +

age + " years old now.");
int length = age.Length; // * Compilation error

}
}

Fig. 5. A reference with different types in the same scope.

wherever a type is used, whereas C# 3.0 only provides its use as local references.
Therefore, var references in StaDyn are much more powerful that implicitly typed
local variables in C# 3.0.

3.1 Multiple Types in the Same Scope

Static typing commonly forces a variable of type T to have the same type T within
the scope in which it is bound to a value. Even languages with static type inference
(type reconstruction) such as ML [30] or Haskell [19] do not permit the assignment
of different types to the same polymorphic reference in the same scope.

This unique type assignment is not the common behavior in dynamic languages.
These languages provide the use of one reference to hold different types in the same
scope. This is easily implemented at runtime by a dynamic type system. However,
our language should perform static type checking taking into account the concrete
type of the reference. The StaDyn program shown in Figure 5 is an example of this
capability.

The age reference in Figure 5 has different types in the same scope. Initially
it is set to be a string, but later an integer is assigned to it. Correct static type
inference is finally shown with the compilation error detected in the last line of
code. Moreover, the best possible runtime performance is obtained because we do
not need to use reflection to discover types at runtime.

To obtain this behavior we have developed a parametric polymorphism type
system that provides type reconstruction when a var reference is used. We have
implemented the Hindley-Milner type inference algorithm to infer types of local
variables [29]. This algorithm has been modified to perform type reconstruction of
var parameters and attributes (fields) –described in Section 3.4.

The unification algorithm provides parametric polymorphism, but it forces a
reference to have the same static type in the scope it has been declared. To overcome
this drawback we have developed a version of the SSA (Single Static Assignment)
algorithm [11]. Since type inference Since type inference must be performed after the
SSA algorithm, we have implemented this algorithm as an AST (Abstract Syntax
Tree) transformation. The implementation of this algorithm follows the Visitor
design pattern [17].
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using System;
class Test {

public static void Main() {
Console.Write("Your age, please: ");
var age0 = Console.In.ReadLine();
Console.WriteLine("You are " + age0 + " years old.");
age1 = Convert.ToInt32(age0);
Console.WriteLine(age1.GetType());
age2 = age1 + 1;
Console.WriteLine("Happy birthday, you are " + 

age2 + " years old now.");
int length = age2.Length; // * Compilation error

}
}}

Fig. 6. Corresponding program before the SSA transformation.

var exception;
if (new Random().NextDouble()<0.5)

exception = new ApplicationException("An application exception.");
else

exception = new SystemException("A system exception");
Console.WriteLine(exception.Message);

Fig. 7. Static duck typing.

Figure 6 shows the corresponding program of applying the AST transformation
to the source code in Figure 5. The AST represented by the source code in Figure 6
is the actual input to the unification algorithm.

3.2 Duck Typing

The static type system of StaDyn is flow-sensitive. This means that it takes into
account the flow context of each var reference. It gathers concrete type information
(opposite to classic abstract type systems) [37] knowing all the possible types a var
reference may have. Instead of declaring a reference with an abstract type that
embraces all the possible concrete values, a var reference infers the union of all
its possible concrete type. Notice that different types depending on flow context
could be inferred for the same reference by means of the type inference mechanism
described in previous point.

Following this scheme, the StaDyn programming language offers duck typing at
compile type. Duck typing (if it walks like a duck and quacks like a duck, it must
be a duck) [43] means that an object is interchangeable with any other object that
implements the same dynamic interface, regardless of whether the objects have a
related inheritance hierarchy or not. This is a powerful feature offered by dynamic
languages.

The benefit provided by StaDyn is not only that it supports duck typing, but
that this feature is provided statically. Whenever a var reference may point to a
set of objects that implement a public m method, it can be safely invoked. These
objects need not to implement a common interface or class with the m method. Since
this analysis is performed at compile time, the programmer benefits from both early
type error detection and runtime performance.
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var exception;
Random random = new Random();
switch (random.Next(1,4)) {
case 1: 

exception = new ApplicationException("An application exception.");
break;

case 2:
exception = new SystemException("A system exception");
break;

case 3:
exception = "This is not an exception";
break;break;

}
Console.WriteLine(exception.ToString());
Console.WriteLine(exception.Message); // * Compilation error?

Fig. 8. Pessimistic behavior of static references.

Source code in Figure 7 shows this feature. The reference exception may point
to an ApplicationException or to a SystemException object. Both objects have
the Message property and, therefore, it is safe to use this property. It is not nec-
essary to define a common interface or class to pass this message. Since type
inference system is flow-sensitive and uses concrete types, the programmer obtains
a safe duck-typing system.

Union types are the key technique we have used to obtain this concrete-type flow-
sensitiveness [35]. Concrete types are obtained by the abovementioned unification
algorithm. Whenever a branch is detected, a union type is created with all the
possible concrete types inferred. Type checking of union types depends on the
dynamism concern, which is explained in the following section.

3.3 Separation of the Dynamism Concern

StaDyn permits the use of both static and dynamic var references. Depending
of this concern, type checking and type inference is more pessimistic (static) or
optimistic (dynamic). Since the dynamism concern is not explicitly stated in the
source code, StaDyn promotes the conversion of dynamic references into static ones,
and vice versa.

Source code in Figure 8 adds another alternative in the assignment of the
exception reference. The ToString message is correct because it is offered by
the three possible objects created. However, the Message property depends on
the level of dynamism the programmer requires. By default, the compiler uses the
everythingStatic option, and the following error message is shown:

Error ErrorManagement.UnknownMemberError (Semantic error). ’Message’: no
suitable member found.

However, we can be very optimistic and set all the var references in the program
as dynamic. In this case, the compiler accepts a message if there is one possibility
in which that program behaves correctly. The executable file is generated if we
compile the program in Figure 8 with the everythingDynamic option.

Actually, we do not need to set all the var references in the program as dynamic.
It is possible to specify the dynamism of each single reference by means of a XML
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<?xml version="1.0" encoding="utf-8"?>
<application name="sample3">

<namespace name="GettingStarted">
<class name="Test">

<method name="Main">
<dynvar name="exception" />

</method>
</class>

</namespace>
</application>

Fig. 9. Setting dynamic the exception reference.

var reference;
if (new Random().NextDouble() < 0.5)

reference = "String";
else

reference = 3;
Console.WriteLine(reference.Message);

Fig. 10. Optimistic behavior of dynamic references.

file. The XML document shown in Figure 9 is the sample3.dyn file that sets the
exception reference as dynamic. Each source code file could have a corresponding
XML document specifying its dynamism concern.

It is worth noting that setting a reference as dynamic does not imply that every
message could be send. Static typing is still performed. The major change is that
type checking is more optimistic. This shows how the dynamism concern implies
a modification of the type checking behavior performed over union types. If the
implicitly typed var reference inferred with a union type were static, type checking
is performed over all its possible concrete types. However, if the reference were
dynamic, type checking is performed over those concrete types that do not produce
a type error; if none exists, a type error is shown.

Figure 10 shows this behavior. Even though this code is compiled with the
everythingDynamic option, the compiler shows the following a static error:

Error ErrorManagement.NoTypeHasMember (Semantic error). The dynamic
type ’ ([Var(6)=6=string] ,[Var(5)=5=int])’ has no valid type type with ’Message’
member.

This behavior shows how static typing is performed even in dynamic scenarios,
providing better early type error detection. This lack in dynamic languages is shown
in the Visual Basic code in Figure 4. StaDyn is capable of detecting the compilation
error that Visual Basic does not find.

3.4 Implicitly-Typed Parameter and Attribute References

Concrete type reconstruction is not limited to local variables. StaDyn performs
a global flow-sensitive analysis of implicit var references. The result is a power-
ful parametric polymorphism (generics) much more straightforward than the one
offered by Java, C# (bounded) and C++ (unbounded) [8].

Implicitly-typed parameter references cannot be unified to a single concrete type.
Since they represent any actual type, we cannot perform type inference the same
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public static var upper(var parameter) {
return parameter.ToUpper();

}
public static var getString(var parameter) {

return parameter.ToString();
}

Fig. 11. Implicitly typed parameter references.

way as we did with local references. This necessity is shown in Figure 11. Both
methods require the parameter to implement a specific method, returning its value.
In the getString method, any object could be passed as a parameter because every
object accepts the ToString message. In the upper method, the parameter should
be any object able to respond to the ToUpper message. Depending on the type of
the actual parameter, the compiler should generate the corresponding compilation
error.

For this purpose we enhanced our type system to be constraint-based. Types
of methods in our object-oriented language may have an ordered list of constraints
specifying the set of restrictions that must be satisfied by the parameters. In our
example, the type of the upper method is

∀αβ.α→ β|α : Class (ToUpper : void→ β)

Using implicitly-typed attribute references, it is possible to create a generic
Wrapper class as shown in Figure 12. The Wrapper class is capable of wrapping any
type. Each time we call the set method, the new concrete type of the parameter
is saved as the object type. By using this mechanism the two lines with comments
report compilation errors. This coding style is type safe and it is easier that the
parametric polymorphism used in C++ and much more straightforward than the
bounded polymorphism offered by Java and C#. At the same time, runtime per-
formance is as good as if we were specified types explicitly. Although the source
code makes use of var references, concrete types are known at compile time. The
generated code uses static type information and, therefore, runtime performance is
better that the one obtained in dynamic languages.

Implicitly-typed attributes extend the constraint-based behavior of parameter
references in the sense that concrete type of the implicit parameter (the object
used in every non-static method invocation) could be modified at message passing.
In our example, the type of the wrapper attribute is modified each time the set
method (and the constructor) is invocated. This does not implies a modification of
the whole Wrapper type, but only the type of the single wrapper object –due to the
concrete type system employed.

For this purpose we have added a new kind of constraint to the type system: the
assignment constraint. Each time a value is assigned to an attribute type with a
fresh type variable, an assignment constraint is added to the method being analyzed.
This constraint postpones the unification of the concrete type of attribute, to
be performed later with the actual type used in the invocation. Therefore, the
unification algorithm mentioned in Section 3.1 is executed when the method is
called, using the concrete type of the actual object.
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class Wrapper {
private var attribute;
public Wrapper(var attribute) {

this.attribute = attribute;
}
public var get() {

return attribute;
}
public void set(var attribute) {

this.attribute = attribute;
}}

}
class Test {

public static void Main() {
string aString;
int aInt;
Wrapper wrapper = new Wrapper("Hello");
aString = wrapper.get();
aInt = wrapper.get(); // * Compilation error
wrapper.set(3);
aString = wrapper.get(); // * Compilation error
aInt = wrapper.get();

}
}

Fig. 12. Implicitly typed attribute references.

aString = getString(reference); // * Correct! 
aString = upper(reference); // * Compilation error

// * (correct if we set parameter to dynamic)

Fig. 13. Dynamic and static code interoperation.

3.5 Interaction between Static and Dynamic Typing

StaDyn performs static type checking of both dynamic and static var references.
This makes possible the combination of static and dynamic code in the same appli-
cation, because in both scenarios the compiler has type information.

Code in Figure 13 uses the getString and upper methods of Figure 11.
reference may point to a string or to an exception. Therefore, it is type safe
to invoke the getString method, but an erroneous dynamic behavior might be ob-
tained calling to the upper method. This is the reason why, if the reference is set as
static a compilation error is shown. Otherwise, if reference is set as dynamic, the
same source code will be compiled without errors –although this optimism might
involve errors at runtime.

Since dynamic and static code behaves differently, it is necessary to describe
interoperation between both types of references. In case we set reference as a
dynamic reference, could it be passed as an argument to the upper or getString
methods? That is, how could optimistic (dynamic) code interoperate with pes-
simistic (static) one? Figure 13 shows an example.

The first invocation is correct regardless of the dynamism of parameter. Being
optimistic or pessimistic, the argument responds to the ToString method correctly.
However, it is not the same in the second scenario. By default, a compilation error
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class Test {
private var testField;
public void setField(var param) {

this.testField = param;
}
public var getField() {

return this.testField;
}
public static void Main() {

var wrapper = new Wrapper("hi");
var test = new Test();
test.setField(wrapper);
string s = test.getField().get(); // * Correct!
wrapper.set(true);
bool b = test.getField().get();   // * Correct!bool b = test.getField().get();   // * Correct!
string s = test.getField().get(); // * Compilation Error

}
}

Fig. 14. Alias analysis.

is obtained, because the parameter reference is static and reference may point
to an exception, causing an erroneous behavior. However, if we set the parameter
of the upper method as dynamic, the compilation is correct.

This way, dynamic code could easily interoperate with static one: dynamic
references should satisfy the constraints inferred in every possible concrete type.
Promotion of static references to dynamic ones is more flexible: static references
should satisfy at least one constraint from the set of alternatives.

3.6 Alias Analysis for Concrete Type Evolution

The problem of determining if a storage location may be accessed in more than one
way is called Alias Analysis [27]. Two references are aliased if they point to the
same object. Although alias analysis is mainly used for optimizations, we have used
it to know the concrete types a reference may point to.

Code in Figure 14 uses the Wrapper class previously shown. Initially the wrapper
reference points to a string object. Then a Test object that references to the
original Wrapper object is created. If we get the object inside the wrapper object
inside the test object, we get a string object. Then a bool attribute is set to the
wrapper object. Repeating the previous access to the object inside the wrapper
object inside the test object, a bool object is obtained.

The alias analysis algorithm implemented is type-based (uses type information to
decide alias) [14], inter-procedural (makes use of inter-procedural flow information)
[27], context-sensitive (differentiates between different calls to the same method)
[16], and may-alias (detects all the objects a reference may point to; opposite to
must point to) [3].

Alias analysis is an important tool for our type-reconstructive concrete type
system, and it is the key technique we are presently using to implement our current
stage: structural reflective type evolution –see Section 6.
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4 Implementation

All the programming language features described in this paper have been im-
plemented over the CLR 2.0 platform, using the C# 2.0 programming lan-
guage. Current release of the StaDyn programming language, its source
code, and all the examples presented in this paper are freely available at
http://www.reflection.uniovi.es/stadyn

Our compiler is a multiple-pass language processor that follows the Pipes and
Filters architecture pattern [7]. We have used the AntLR language processor tool
to implement lexical and syntactic analysis [34]. Abstract Syntax Trees (ASTs) have
been implemented following the Composite design pattern [17] and each pass over
the AST implements the Visitor design pattern [17].

Currently we have developed the following AST visits: two visitors for the SSA
algorithm; two visitors to load types into the types table; one visitor for symbol
identification [46] and another one for type inference; and two visitors to generate
code. Once the final compiler is finished, the number of AST visits will be reduced.
The complexity of our implementation is O(n), being n the number of abstract
nodes in the AST. At present, we use the CLR 2.0 as the sole compiler’s back-end.
However, we have designed the code generator module following the Bridge design
pattern to add both the DLR (Dynamic Language Runtime) [20] and the zRotor
[39] back-ends in the future .

5 Related Work

There have been few approaches implemented to include static and dynamic typing
in the same programming language. Although several theoretical works exist, there
is a lack on real implementations of these proposals.

5.1 Visual Basic .Net

The Visual Basic .Net programming language incorporates both dynamic and static
typing [45]. Compiled applications run over the .Net platform using the same virtual
machine.

The main benefit of its dynamic type system is that it supports duck typing.
However, since no static type inference is performed with dynamic references, there
are interoperation lacks between dynamic and static code. If it is necessary to use
a dynamic object in static code, a cast must be performed. Therefore, all the type
checking is performed at runtime. At the same time, dynamic references do not
produce any type error at compile time.

Another limitation of Visual Basic .Net is that dynamism is included in the
source code. This forces the programmer to explicitly state which references are
static and which are dynamic, making difficult the transition between both scenar-
ios.
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5.2 Boo

Boo is a recent object-oriented programming language that is both statically and
dynamically typed with a python inspired syntax [5]. In Boo references may be de-
clared without specifying its type and the compiler performs type inference. How-
ever, references could only have a unique type in the same scope. Moreover, fields
and parameters could not be declared without specifying its type.

Boo offers dynamic type inference with a special type called duck. If a reference
has this type, any operation could be performed over that reference –no static typing
is performed. Converting a dynamic type reference to a static one implies a type
cast.

Although this behavior is similar to the one offered by Visual Basic .Net, the
Boo compiler provides the ducky option that interprets the Object type as if it were
duck. Turning on the ducky option allows the programmer to test out the code more
quickly, and makes coding in Boo feel much more like coding in a dynamic language.
So, when the programmer has tested the application, she may wish to turn the ducky
option back off and add various type declarations and casts. However, this scheme
does not follow the Separation of Concerns principle [22]; it sets all the object
references as dynamic.

5.3 Dylan

Dylan is a high-level programming language, designed to allow efficient, static com-
pilation of features normally associated with dynamic languages [42]. Dylan permits
both explicit and implicit variables declaration. It also supports two compilation
scenarios: production and interactive.

In the interactive mode, all the types are ignored and no static type check-
ing is performed. This behavior is similar to the one offered by dynamic languages.
When the production configuration is selected, explicitly typed variables are checked
following a common static type system. However, types of generic references (refer-
ences without type declaration) are not inferred at compile type –they are checked
at runtime.

5.4 Strongtalk

Strongtalk is a major re-thinking of the Smalltalk-80 programming language [6]. It
retains the basic Smalltalk syntax and semantics [18], but a type system is added
to provide more reliability and much more runtime performance. Types added by
Strongtalk made the best performance optimization ever achieved over Smalltalk.

One key issue in Strongtalk is that its type system is completely optional. This
assumes that is the programmer’s responsibility to ensure that types are sound in
regard to dynamic behavior. Type errors are checked at compile type, but they do
not guarantee a correct dynamic behavior. This type system is not completely safe,
but implies a significant performance improvement.
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6 Conclusions and Future Work

The main contribution of our work is that supporting both dynamic and static
typing in the same programming language, following the Separation of Concerns
principle, provides runtime flexibility, type safety, runtime performance, direct dy-
namic and static code interoperation, language simplicity, and movement from rapid
prototyping to robust software development.

If runtime flexibility is needed to make parts of an application (or the whole
program) more flexible, it is only necessary to specify it in separate files, without
changing the source code. These parts of the application will use a more optimistic
type checking scheme. Otherwise, if parts of an application are identified as critical
in performance and safety, static references will be used and the same code will be
compiled in a pessimistic way. Source code can be moved from optimistic to pes-
simistic and the other way round. This feature is achieved by means of modularizing
the dynamism concern into separate XML files.

StaDyn performs type inference in dynamic and static scenarios. When types
could be inferred at compile time (not always possible), runtime performance and
safety will be better than the one offered by dynamic languages. Moreover, JIT com-
pilation and adaptive hotspot optimization of the CLR are used in both scenarios
at runtime.

Another benefit of applying the same type system for both dynamic and static
typing is language interoperation. Since we do type inference in dynamic and static
compilation modes, it is possible to make dynamic and static code interoperate.
Currently, IronPython and the Java Scripting API are two common examples that
show how dynamic languages can interoperate with static ones, but not the other
way round. If the programmer creates a class instance in Python, the static code
cannot directly retrieve its type. This lack is due to the fact that Python does no
static type checking. Therefore, types created by the programmer in Python are
not included in the type system of the static program.

Future work will be centered in adding two important features available in most
dynamic languages: structural reflection and dynamic code generation. Structural
reflection permits the dynamic addition, deletion and modification of classes and
objects. StaDyn will analyze concrete type evolution by means of its alias analysis
mechanism. Only dynamic references will permit type evolution. When the name
of the member to be added, removed or modified is known statically, it will be used
to modify the concrete type. Otherwise, a dynamic type inference system will be
used with dynamic references. Dynamic code generation implies producing (part
of) programs at runtime. The compiler API will be added to the runtime, inferring
types at execution. If some compile error exists, the execution of this code will
throw an exception.
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