
 ������������	
��
������������
����
����
��
���	���
������������
�����

����������	�
������
��������
�������
�������

��������	��������������������
�
���������
��������
�������� ���
��
����
�����

���!�
�"�����#���"!���
����������$����
���%��#�������
���������������������&&''(�����)*

���+,��+

The aim of this paper is to show an object-oriented database
management system, named BDOviedo3, which is highly
integrated with a persistent object-oriented abstract machine
and with an object-oriented operating system. It is being
developed within a research project named Oviedo31, which
tries to build an experimental integral object-oriented system
where all the components share the same object-oriented
paradigm.

This database management system has been structured as a set
of modules that are briefly described. Specifically, indexing in
object-oriented database management system is analyzed and
the major features to create a possible indexing mechanism for
the Oviedo3 OODBMS are proposed.

-�%.�
��
Object-Orientation, OODBMS, Abstract-Machine, Operating
System, Persistence, Indexing.

/0�)*+,��$�+)�*

The object-oriented technologies are well established in the
software industry. Nevertheless, the adoption of the object-
oriented paradigm is not done in an integral way in all the
system components, producing:

• ���������	�
�����. It is basically due to two reasons.
Firstly, the no suitable abstractions of the operating
systems, so when a client object has to invoke a method
that is offered by a server object, and both objects are not
into the same address space, it is necessary to use the
mechanisms that are offered by the operating system, and
these mechanisms do not became proper to the object-
oriented paradigm since they are oriented to communicate
processes. In order to solve this problem an intermediate
software is included as for example COM (Component
Object Model) [1] and CORBA (Common Object Request
Broker Architecture) [2]. In the second place, an
impedance mismatch is too caused every time that the
object-oriented applications need to use the operating
system services. The interface services are close to the
procedural paradigm, generally in the shape of system
calls. A solution can be the use of adaptation layers which
encapsulate the operating system interface by means of a
class library (i.e. MFC library [3]).

1 Project PBP-TIC97-01 “Object Oriented Integral System: Oviedo3”.
Partially supported by the second regional plan of research of the
Principality of Asturias (FICYT).

• �����������
�
��	 �������	 �������	 ������	 ������.
Although different system elements use the object-
oriented paradigm, an interoperability problem can exist
between them. So, an application implemented using the
C++ language, with the C++ object model, can easily
interact with its objects, but when it wants to use objects
that have been created with another programming
language or another object-oriented database an
interoperability problem appears. It is due to the fact that
an object model for an element is not necessarily
compatible with the object model of other elements. This
problem can be solved adding software layers, again. So,
CORBA defines a proper object model with basic data
types, and a mapping is specified between the object
model of each language and its interface into the CORBA
model.

�12���3�
�������+��4����5�����������1����

OODBMSs have been developed to support new kinds of
applications for which semantic and content are represented
more efficiently with the object model [4]. Therefore, the
OODBMSs present the two problems previously mentioned.
Besides, object-orientation is reduced to wrappers in quite a
number of commercial DBMSs (Persistence, UniSQL, Illustra,
Omniscience,etc.). These systems, named ������������
���� [5],
are based on traditional relational models. In these cases the
impedance mismatch is again reduced adding a software layer
that is the responsible for the assembling/disassembling of
objects into tables.

�12���3�
�������)���5
����%���"

As mentioned, the interoperability problem and the impedance
mismatch can be solved generating a proliferation of additional
software layers that reduce system portability and flexibility. In
fact, extra complexity is introduced in the system, further
reducing global system performance.

Another approach in order to solve these problems is based on
the construction of a homogeneous system in which all
elements share the same object-oriented paradigm: an Integral
Object-Oriented System. Oviedo3 2[6] is a research project that
tries to build an experimental integral object-oriented system
based on that foundation [7]. All components: user interfaces,
applications, languages, compilers, databases, … and the
operating system itself share the same object-oriented
paradigm.

2 Oviedo Orientado a Objetos (Object-Oriented Oviedo). Oviedo is the
name of the University.

The object-oriented operating (OOOS) provides only one
abstraction: objects. Objects can only create new objects from a
class or send messages to others. One technique to structure an
OOOS aimed to support an integral object-oriented system
which offers many advantages is to use an object-oriented
abstract machine as the substrate of the OOOS. This machine
offers the basic object model and support to all objects of the
rest of the system.

HARDWARE

Abstract Machine
Operating System

Database and Compilers

Graphics and Multimedia Subsystems

User Interface

Figure 1 Components of the Oviedo3 System, shown in logical
order of development

The object-oriented database management system (OODBMS)
of the Oviedo3 system is highly integrated with the abstract
machine and the operating system. It shares with them the same
object-oriented paradigm. Furthermore, the OODBMS will
take advantage of some important features that the operating
system transparently achieves like: persistence, concurrency,
distribution and security. BDOviedo3 will provide a query
processing based on an indexing mechanism that is being
currently constructed.

The master guidelines of the object-oriented abstract machine
in which the Oviedo3 system is based are described in the next
section. After this some preliminary advantages due to the
machine are listed. Section 3 briefly describes the object-
oriented operating system.

The major features and the architecture of the OODBMS
designed for the Oviedo3 system are introduced in the next
section. This section shows some benefits of using the object-
oriented abstract machine and operating system for the
construction of the OODBMS too.

Finally, the following sections show the functionality of every
module in which this OODBMS has been structured.
Specifically, in the section 5, different OODBMS indexes are
listed and the major features for the indexing mechanism of the
BDOviedo3 OODBMS are introduced.

��������	�
����������������
����
���

The abstract machine, called Carbayonia3, supports an object
model with the following features [8]: object identity and
abstraction, encapsulation, polymorphism or message passing,
inheritance and also generic and aggregation relationships
between objects. This model includes object-orientation

3 "Carbayón" means "big oak" in Asturian, the local language. It is a
symbol for the city of Oviedo. "Carbayonia" means land of oaks.

concepts widely accepted and allows, therefore, to represent the
most used programming languages models.

Figure 2 shows the architecture of the abstract machine consists
of five areas: class area, references area, instance area, threads
area and system references area. Each area can be considered as
an object in charge of the management of its data. The main
characteristic of the machine is that every action upon an object
is made using a reference to it.

• �����	����. Maintains the description of each class. There
is a set of primitive classes defined permanently in this
area.

• ����������	 ����. Stores the references. Every reference
has a type (relates to the class area) and points to a object
of this type (relates to the instance area).

• ��������	 ����. Stores objects created. At run time, the
information of its class can be accessed in the class area.

• ������	����. A main thread is created for every running
application. This area stores the set of existing threads at
run time. Every thread has a contexts heap.

• ������	����������	����. Contains references with specific
functions in the machine.

The machine language is a pure object-oriented low level
language, named Carbayón. It allows class declaration, method
definition and exception handling. It will be the intermediate
language used by compilers of programming languages like
Eiffel, C++, etc. Once compiled into this intermediate
language, the source language of object creation is irrelevant.
There are a number of classes built into the class area of the
machine, with “Object” as the root class.

Some of the preliminar advantages derived from using an
abstract machine in general for this system are:

• ������
�
��� All system elements, from the operating
system, databases, etc. to applications developed in it will
work without modifications in every platform where the
abstract machine is present.

• ���������	 �
�����	
�	 �������. There is a common
object model for the system, supplied by the machine for
every object. Thus impedance mismatch between user
objects and the operating system is removed.

����������
��������

�
����
�����

��������
�������

�������
�������

���� �� ���

Figure 2 Abstract Machine Architecture

• ��������
��	 ��������	
�����������. Once an object is
created in the machine, it is independent from the
programming language used to define it. Objects can
interact, migrate, etc. with no need for additional
mechanisms by the use of different languages.

• �����������
��	��	������
��	������	��������� The abstract
machine facilitates the implementation of operating
system features such as: persistence, security, distribution,
and concurrency. So, the persistence is a native property
of the abstract machine. That is, the abstract machine
functionality has been extended to offer persistent objects.
This will also benefit the OODBMS. For more
information about the abstract machine see [7,9].

 ��������	�
�����������!�����"��#����

The operating system, named SO4, offers the abstraction of a
single object space where objects exist indefinitely, virtually
infinite, and where objects placed in different machines
cooperate transparently using messages. Besides, the operating
system transparently achieves a set of important features:
capability-based protection mechanism, complete persistence,
object distribution and concurrency.

Security ensures only authorized objects are allowed to send
messages to other objects. Persistence makes objects stay in the
system until they are no longer needed. Distribution permits
object invocation regardless its location. Concurrency gives the
object model the ability to execute tasks in parallel. For more
information about the operating system see [10].

$��������	�
������������������
����"�������#����

BDOviedo34 is the OODBMS for the Oviedo3 system. As it is
an OODBMS provides the features of an object model and all
capabilities of a DBMS. The BDOviedo3 object model is the
abstract machine object model, and some DBMS capabilities
(such as concurrency, persistence, etc.) are supplied by the
operating system.

BDOviedo3 is a pure OODBMS. Applications development
uses object-oriented analysis and design tools. Then, modeled
objects can be directly translated into object-oriented
programming languages objects, and finally objects can be
directly stored in the database using the abstract machine
persistence system.

Furthermore, BDOviedo3 system can be customized. Selecting
the indexing mechanism, the cost model functions for queries,
etc. is allowed. The main idea is to make comparisons between
different strategies for index management, cost models, etc.

Nowadays there are a number of OODBMS (Thor, Poet,
ObjectStore, Ode, etc.) and persistent storage managers (Shore,
Texas, PSE, etc.). Some of them are commercial as well as
research projects of different universities. Shore [11] is a
persistent object system, expanding on the basic capabilities of
Exodus [12], that represents a merger of object-oriented
database and file system technologies. Texas [13] is an object-
oriented persistent storage implemented as a C++ library. Thor

4 Base de Datos de Oviedo3 (Oviedo3 Database)

[14] is an OODBMS that is intended to run on a heterogeneous
collection of machines connected by a communications
network. It provides a universe of objects that can be shared by
programs written in different programming languages. Poet
[15] and ObjectStore [16] are commercial OODBMS that work
on C++ and include version-control mechanism, transaction
management, etc. Poet works on Java too. Nevertheless, we
think that the structure and features mentioned before (abstract
machine and operating system) are very suited for an
OODBMS and worth to research.

��%����&��� ��'��� ()� �*�����&� +�� ���� �,������&� �)���-
���������(���������������

The existence of an object-oriented operating system and
ultimately of an object-oriented abstract machine provides a set
of benefits for the construction of the OODBMS:

• ��
�
�����	
��	 ���������
��� So, the database engine can
take advantage of some operating system capabilities, such
as: security, persistence, distribution and concurrency,
building on them incrementally by means of the object-
orientation present in the system.

• ��������	
�������
��	 �
�	 ��	 ����	 ��	 ��	 ������. The
OODBMS is not an individual element inside this integral
system, like in conventional operating systems. The
OODBMS is an integral part of the computation
environment. Database objects are objects just like other
objets in the system (operating system or user ones). The
database only offers convenient access to them. The
system is composed of a set of homogeneous objects. The
OODBMS can be seen as playing the part of the file
system in conventional operating systems, but with
database capabilities. The database would not be used in
isolation, but as a management system encompassing all
objects in the system. For example, a user would find any
object uniformly by querying the database.

• �����������	
�������. It is not necessary to add new
software layers to conventional operating systems to fill
the semantic gap between operating system abstractions
and objects. The integral system is already object-
oriented.

• �������
�
��	
�������. Building database applications on
this system is more productive, since it is not necessary for
the programmer to change paradigms. Database and
operating system share the same object-oriented paradigm,
which is used uniformly in the system. For example, the
same query language would be applied to database
programming and user interface search tasks.

���%���+ ����������*��

The BDOviedo3 OODBMS has been structured into three
major modules (Figure 3). At present, a first prototype is being
developed. Some of its features are briefly described in the next
sections. More advanced features of the OODBMS, such as
schema evolution, object versioning, etc. will be considered in
future prototypes.

� ������"��

This module has two basic functions, query processing and
storage management, that will be described in the next
paragraphs.

/*��)�!�+������&

The majority of techniques for processing relational queries
need to be extended, and some new techniques need to be
developed for processing and optimizing object-oriented
database queries. As, OODBMS queries can involve different
data types (it makes the design of an object algebra harder),
path expressions (an object may have references to other
objects) and methods (which make difficult to estimate the cost
of executing a query). The existence of class hierarchy
represents another problem for the query processor.

Despite the above differences between relational and object-
oriented query processing, methodologies for processing
relational queries can be adopted for processing object-oriented
queries. There are basically two such methodologies [17],
algebra-based optimization and cost estimation-based
optimization.

Algebra-based optimization consists of primarily two steps. In
the first step, the input query is expressed in an algebraic

expression, which is then transformed into a semantically
equivalent but more efficient expression using equivalence
transformation rules. In the second step, physical
characteristics of the database such as the existence of fast
access paths and database statistics are taken into consideration
to generate a concrete and efficient execution plan for the
algebraic expression obtained in the first step. The advantages
of this methodology include extensibility and a relative
easiness for implementation. The main drawback is that the
search space for optimization in the second step is limited by
the algebraic expression generated in the first step. So, there is
a good possibility that the resulting execution plan is not close
to an optimal plan.

The cost estimation-based optimization methodology tries to
combine the above two steps as follows. The equivalence
transformation rules are used to systematically transform the
initial algebraic expression to all reasonable and equivalent
expressions, and for each such expression, the cost of its best
execution plan is estimated using the physical characteristics of
the database. Eventually, the execution plan with the lowest
estimated cost is selected for actual execution. The cost
estimation-based approach is usually more effective than the
algebra-based approach. This is the approach [18] that is being
analyzed for BDOviedo3 OODBMS query processing.

������&�������0*��

An important issue related to query languages concerns
optimization techniques and access structures able to reduce
query processing costs. Indexes contribute significantly to the
efficient processing of database queries. Indexing techniques
for OODBMSs can be classified [19] as structural and
behavioral.

����������	
���&
�� is based on object attributes. It is very
important because most object-oriented query languages allow
query predicates to be issued against object attributes.
Structural indexing techniques proposed so far can be classified
into three categories: the first category providing support for
nested predicates or aggregation hierarchy (such as Nested
index, Path index, Multiindex, etc.). The second, supporting
queries issued against an inheritance hierarchy (such as
CH_Tree, H_tree, etc.). The last category supporting for both
class hierarchies and composition hierarchies (i.e. Nested
Inherited index).

'���
����	
���&
�� aims at providing efficient execution for
queries containing method invocations. It is based on pre-
computing or caching method results and storing them into an
index. The major problem of this approach is how to detect
changes to objects that invalidate the results of a method.

������&�������0*����*,,+����&�/*��������*����&��������
����������� ��������)�� Next, some indexing techniques in
order to speed up the associative search for supporting queries
against inheritance hierarchy are described. These techniques
are based on the fact that an instance of a subclass is also an
instance of its superclass. As a result, the access scope of a
query against a class generally includes not only its instances
but also those of all its subclasses. A query may also be
formulated explicitly against a class and some of its subclasses.
In order to support the superclass-subclass relationship
efficiently, the index must achieve two objectives. First, the
index must support efficient retrieval of instances from a single
class. Second, it must also support efficient retrieval of
instances from classes in a hierarchy of classes. These

Abstract Machine (Carbayonia)

 Operating System (SO4)

D
B

O
vi

ed
o3

 Visual Tools

Definition
Language

 Query
Language

Manipulation
Language

 OODBMS Engine

�7)LHOG1DPH

1DPH��6WULQJ
/LVW,QGH[��7OLVW

&ODVV1DPH�6WULQJ

6HOHFWHG�,QWHJHU

72EMHFW,QGH[

2EMHFWV�76WUXFW,QGH[

,QVHUW���

(UDVH��

5HWULHYH��

5HLQGH[��

*HW)LHOG1DPHV��

6HW)LHOG1DPHV��

&UHDWH,QGH[��������

7/LVW)LHOG1DPH

/LVW�7/LVW

����76WUXFW,QGH[

,QVHUW��

(UDVH��

5HWULHYH��

5H2UGHU��

*HW6L]H��

/HVV��

(TXDO��

76WUXFW,QGH[&+7UHH ����

72EMHFW,QGH[/LVW

*HW1DPH��

6HW1DPH��

(TXDO��

6HW��

,QVHUW���

$GG��

(UDVH3RV��

(UDVH)LHOG��

*HW������

)LHOGV��7/LVW)LHOG1DPH

76WUXFW,QGH[+7UHH

*HW��

*HW6L]H��

$GG,QGH[��

'HOHWH,QGH[��

&UHDWH,QGH[/LVW��

6HW6HOHFWHG��

*HW6HOHFWHG��

7,QGH[

1HZ2EMHFW,QGH[��

1HZ,QGH[��

5HPRYH,QGH[��

*HW,QGH[��

,QVHUW��

(UDVH��

5HWULHYH��

5HRUGHU��

,QGH[HV�7OLVW

1..*

1..*

The query language proposed by ODMG (OQL) is not
computationally complete. It provides declarative access to
objects with a like-SQL syntax and provides high-level
primitives to deal with sets of objects (although it is not
restricted to this collection construct). OQL can be invoked
from within programming languages for which an ODMG
binding is defined. Conversely, OQL can invoke operations
programmed in these languages.

�������	
�������������������

Some OODBMSs propose an object database language. For
example, Thor [14] proposes the Theta language, Ode [29]
proposes the O++ language (a C++ extension), etc. However,
the languages for BDOviedo3 will follow as much as possible
the ODMG 2.0 specification. Therefore, it is convenient to
keep in mind the following points:

• The base object-oriented programming language for the
database languages (ODL, OML and OQL) must be
selected. This language can be C++, Java, etc. But, it is
possible to use an object-oriented language (C++
Oviedo3) designed for Oviedo3 because when it is
compiled Carbayón object code for the abstract machine is
already generated. The C++ Oviedo3 language takes
advantage of some abstract machine features.

• The BDOviedo3 OML will be created by extending the
C++ Oviedo3 language with the database capabilities (i.e.
queries, transactions…). Any database manipulation
program implemented with this language will generate
Carbayon object code when compiled.

Class Professor
{
attribute string FirstName;
attribute string LastName;
attribute short Age;
short GetAge();
relationship set<Section> Teaches inverse
Section::Is_Taught_By;
};

Class Section
{
attribute short Number;
short GetNumber();
relationship Professor Is_Taught_By inverse
Professor::Teaches;
};

Figure 5 ODL specification in the BDOViedo3 System

• The ODL and OQL specifications can be directly
translated to the abstract machine language. A translation
to C++ Oviedo3 intermediate language can be made too.
The first option is used in the current prototype (Figure 5
and Figure 6) .

• The object code will be linked with the BDOviedo3
engine that will supply all DBMS capabilities.

Class Professor

AGGREGATION
 /* class attributes */

LastName:String;
FirstName:String;
Age:Integer;

/* relationship attributes */
Teaches:Tset;

METHODS
FieldbyName(ParamName:String):Object;

REFS
 Bres:Bool;

INSTANCES
Param1str:String(’LastName’);
Param2str:String(’FirstName’);
Param3str:String(’Age’);

CODE

ParamName.Equal(Param1str):bRes;
JFD bRes, Label1;
Assign rr, LastName;
Jmp Fend;

Label1:

ParamName.Equal(Param2str):bRes;
JFD bRes, Label2;
Assign rr,FirstName;
Jmp FEnd;

Label2:
ParamName.Equal(Param3str):bRes;
JFD bRes, Label3;
Assign rr, Age;
Jmp FEnd;

Label3:

FEnd:
Exit;

ENDCODE

/* class methods */

GetAge():Integer
CODE
ENDCODE

ENDCLASS

Figure 6 Carbayón code generated from the ODL specification
of the Professor Class

���� �����������

The combination of an object-oriented abstract machine
offering object support with an object-oriented operating
system implemented as a set of objects is a promising way of
structuring object-oriented integral systems. Furthermore, it
facilitates the construction of an integrated OODBMS.
Advantages such as portability, language independence and
impedance mismatch removal are complemented with the
improvement and ease of implementation of the funcionality of
the OODBMS.

BDOviedo3 is a pure OODBMS, the objects defined with an
object-oriented programming language are allowed to be
directly stored into the database (using the abstract machine

persistence system). Besides, BDOviedo3 system can be
customized. The indexing mechanism, the cost functions for
queries, etc. can be selected, in order to comparisons between
different strategies can be made.

We expect to find many difficulties when we integrate the
different mechanisms which compose the system. Nevertheless
we believe this mixture of properties is very promising and it
will be worth building a system like this.

Keep in mind, our main aim is to build a working prototype in
which the primary elements of the system work. Subsequently,
other aspects, such as transactions management, schema
evolution, versioning, etc. will be considered.

���� ����������

[1] D. Rogerdson, "Inside COM", Microsoft Press,1996.
[2] "Object Manaement Group. Common Object Request

Broker Architecture and Specification (CORBA)", URL
http://www.omg.org, March 1998.

[3] "Microsoft Corporation. Microsoft Visual C++ MFC
Library Reference," Microsoft Press, 1997.

[4] E. Bertino and L. Martino, "Object-Oriented Database
Systems: Concepts and Architectures," Addison-Wesley,
1993.

[5] M. Stonebraker and D. Moore, "Object-Relational
DBMSs," Morgan Kaufmann, 1996.

[6] J.M. Cueva Lovelle et. al, "El Sistema Integral
Orientado a Objetos: Oviedo3," (The Integral Object-
Oriented System : Oviedo3), II Jornadas sobre
Tecnologías Orientadas a Objetos, Oviedo, Spain, 1996,
(in spanish).

[7] D. Álvarez, "Persistencia Completa para un Sistema
Operativo Orientado a Objetos usando una Máquina
Abstracta con Arquitectura Reflectiva," (Complete
Persistence for an Object-Oriented Operating System
using an Abstract Machine with Reflective
Architecture), Doctoral Thesis, University of Oviedo,
Spain, March 1998.

[8] G. Booch, "Object Oriented Analysis and Design with
Applications," Addison-Wesley, 1994.

[9] F. Ortín, D. Álvarez, R. Izquierdo, A.B. Martínez and
J.M. Cueva, "El Sistema de Persistencia en Oviedo3,"
(The Persistence System for Oviedo3), III Jornadas de
Tecnologías de Objetos, Sevilla, Spain, 1997, (in
spanish).

[10] D. Álvarez, L. Tajes et. al., "An Object-Oriented
Abstract Machine as the Substrate for an Object-
Oriented Operating System," 11th European Conference
on Object-Oriented Programming (Workshop).
Jyväskylä 1997.

[11] "Shore- A High-Performance, Scalable, Persistent
Object Repository," URL
http://www.cs.wisc.edu/shore/, March 1998.

[12] "Exodus-An Extensible Object-Oriented Database
System Toolkit," URL http://www.cs.wisc.edu/exodus,
March 1998.

[13] V. Singhal, S.V. Kakkad and P.R. Wilson, "Texas: An
Efficient, Portable Persistent Store," Proc. of the Fifth
International Workshop on Persistent Object Systems,
Italia, September-92.

[14] "Programming Methodology Group," URL http://
www.thor.lcs.mit.edu/index.html, March 1998.

[15] "Poet Software," URL http://www.poet.com, March
1998.

[16] "The ObjectStore ODBMS Resource Center," URL
http://www.odi.com/products/produts.html, March 1998.

[17] C. Yu and W. Meng, "Principles of Database Query
Processing for Advanced Applications," Morgan
Kaufmann, 1998.

[18] E. Bertino and P. Foscoli, "A Model of Cost Functions
for Object-Oriented Queries," Proc. of 5th International
Workshop on Persistent Object Systems. Italia, 1992.

[19] E. Bertino and P. Foscoli, "Index Organizations for
Object-Oriented Database Systems," IEEE Transactions
on Knowledge and Data Engineering. Vol.7, 1995.

[20] W. Kim, K.C. Kim and A.Dale. "Indexing Techniques
for Object-Oriented Databases," in Object-Oriented
Concepts, Databases, and Applications, Addison-
Wesley, 1989.

[21] S. Ramaswamy and C. Kanellakis. "OODB Indexing by
Class Division," ACM SIGMOD, 1995.

[22] C. Chin, B. Chin and H. Lu, "H-trees: A Dinamic
Associative Search Index for OODB," ACM SIGMOD,
1992.

[23] E. Bertino, "Index Configuration in Object Oriented
Databases," VLDB Journal,3, 1994.

[24] M. Ozsu, "Transaction Models and Transaction
Management in Object Oriented Database Management
Systems," In Object-Oriented Database Systems,
Springer-Verlag, 1994.

[25] M. Loomis,"Object Databases. The Essentials,"
Addison-Wesley, 1995.

[26] "Object Database Management Group," URL
http://www.odmg.org, March 1998.

[27] R. Cattell, T. Atwood, J. Duhl et. al, "The Object
Database Standard:ODMG-93," Morgan Kaufmann,
1994.

[28] R. Cattell, D. Barry, D. Bartels et al, "The Object
Database Standard: ODMG 2.0," Morgan Kaufmann,
1997.

[29] D. Moore, "An Ode to persistence. Journal Object
Oriented Programming," November-December, 1996.

