
Efficient Runtime Metaprogramming Services for Java

Ignacio Lagartosa, Jose Manuel Redondoa, Francisco Ortina,∗

aUniversity of Oviedo, Computer Science Department,
Calvo Sotelo s/n, 33007, Oviedo, Spain

Abstract

The Java programming language and platform provide many optimizations to execute
statically typed code efficiently. Although Java has gradually incorporated more dy-
namic features across its versions, it does not provide several metaprogramming features
supported by most dynamic languages, such as structural intercession (the ability to dy-
namically modify the structure of classes) and dynamic code generation. Therefore, we
propose a method to add those metaprogramming features to Java in order to increase
its runtime adaptiveness, while taking advantage of the robustness of its static type
system and the performance of its virtual machine. We support the dynamic addition,
deletion and replacement of class methods and fields, and dynamic code generation. The
metaprogramming services are provided as a library, so neither the Java language nor
its virtual machine are modified. We evaluate our system, called JMPLib, and compare
it with the existing metaprogramming systems for the Java platform and other highly
optimized dynamic languages. JMPLib obtains similar runtime performance to the
existing fastest system that modifies the implementation of the Java virtual machine.
Moreover, our system introduces no performance penalty when metaprogramming is
not used, and consumes fewer memory resources than the rest of implementations for
the Java platform.

Keywords: Metaprogramming, structural intercession, static type checking, dynamic
code evaluation, code instrumentation, runtime performance

1. Introduction

Dynamic languages provide a high degree of runtime adaptiveness, supporting fea-
tures such as dynamic meta-programming, reflection, dynamic code evaluation, struc-
tural intercession, and dynamic reconfiguration and distribution. These features have
made dynamic languages appropriate for specific scenarios such as Web development,

∗Corresponding author
Email addresses: UO196684@uniovi.es (Ignacio Lagartos), redondojose@uniovi.es (Jose

Manuel Redondo), ortin@uniovi.es (Francisco Ortin)
URL: http://www.di.uniovi.es/~ortin (Francisco Ortin)

Preprint submitted to Journal of Systems and Software April 11, 2019

rapid prototyping, developing systems that interact with data that change unpre-
dictably, and dynamic aspect-oriented programming [1].

For example, in the Web development scenario, Ruby [2] is used for the rapid de-
velopment of database-backed Web applications with the Ruby on Rails framework [3].
This framework confirms the simplicity of implementing the DRY (Do not Repeat
Yourself) [4] and the Convention over Configuration [3] principles using the meta-
programming services of dynamic languages. Nowadays, JavaScript [5] is being widely
employed to create interactive Web applications with different frameworks such as An-
gular [6], Backbone [7] and Ember [8], while PHP is one of the most popular languages
for developing Web-based views. Python [9] is used for many different purposes; two
well-known examples are the Zope application server [10] (a framework for building
content management systems, intranets, and custom applications) and the Django Web
application framework [11].

The flexibility of dynamic languages is, however, counteracted by limitations derived
from the lack of static type checking. This deficiency implies two major drawbacks: no
early detection of type errors, and fewer opportunities for compiler optimizations. Static
typing offers the programmer the detection of type errors at compile time, making it
possible to fix them immediately rather than discovering them at runtime—when the
programmer’s efforts might be aimed at some other task, or even after the program
has been deployed. Moreover, since the runtime adaptability of dynamic languages
is mostly implemented with dynamic type systems, runtime type inspection and type
checking commonly involve a significant performance penalty [12].

The Java programming language provides a mature solution to implement efficient
and robust object-oriented applications. Its static type system detects many type errors
before program execution. Moreover, its highly optimized hotspot virtual machine
provides sophisticated optimizations to efficiently run Java applications [13].

Due to the success of dynamic languages, the Java statically typed language has
gradually incorporated more dynamic features into their platforms. Java 1.1 included
reflection services to examine the structures of objects and classes at runtime (i.e., in-
trospection). These services also allow creating objects and invoking methods of types
discovered at runtime. The dynamic proxy class API, added to Java 3, allows defining
classes that implement an interface and funneling all the method calls of that inter-
face to an InvocationHandler. The Java instrument package (Java 5) includes Java
agents to instrument programs running on the Java Virtual Machine (JVM). The Java
Scripting API, added to Java 6, permits scripting programs to be executed from, and
have access to, the Java platform. Java 7 adds a new invokedynamic instruction to the
virtual machine. This new opcode is mainly aimed at simplifying the implementation
of compilers and runtime systems for dynamically typed languages [14].

The main contribution of this article is the design and implementation of a lightweight
Java library, called JMPLib, to support common metaprogramming services, which can
be used with any standard JVM implementation. JMPLib enforces the Java type rules
when the application is adapted, providing earlier type error detection. The proposed
system supports thread-safe addition, deletion and modification of static and instance

2

methods and fields, interfaces, packages, annotations and generic types, plus the typical
functionalities of programmatic dynamic code evaluation. JMPLib provides all these
features with similar runtime performance to the most efficient implementation based
on the modification of the JVM.

The rest of this paper is structured as follows. Next section describes the back-
ground of our research, and the related work is discussed in Section 3. In Section 4, we
illustrate JMPLib with a motivating example, and we detail its design and architecture
in Section 5. Section 6 depicts an evaluation of our system compared to the related
work. The conclusions and future work are presented in Section 7.

2. Background

Java is both an object-oriented language and a platform. The Java platform includes
the execution engine (i.e., Java Virtual Machine or JVM) and a set of libraries. There
are different Java platforms for different application domains: micro edition for devices
with limited resources; standard edition, for general purpose use; and enterprise edition,
for multi-tier enterprise applications.

The JVM specification formally describes the features that any JVM standard im-
plementation must support [15]. Although there exist many JVM implementations
such as Jikes RVM, Azul Zing JVM and Excelsior JET, the reference one is the Ora-
cle’s Java HotSpot Virtual Machine [16]. The HotSpot JVM implementation includes
a garbage collector to remove unused objects, a just-in-time (JIT) compiler to generate
optimized code at runtime, a set of class loaders, a bytecode verifier, the runtime data
areas (e.g., heap memory, methods, threads, registers, etc.), and the native method
interface [17, 18].

Inside the Java HotSpot virtual machine, there are actually two separate JIT com-
piler modes, which are known as C1 and C2 [19]. The C1 compiler generates code
quickly and gathers profiling information at runtime. Once the application is prop-
erly warmed up (e.g., server-side applications), the C2 compiler recompiles the “hot”
methods (those methods consume more execution time). The C2 compiler implements
more aggressive optimizations, takes longer to compile and, commonly, provides better
runtime performance. In this way, the HotSpot JIT compiler combines the benefits of
fast warming up and high performance optimizations for the methods consuming most
of the execution time [19].

2.1. Metaprogramming and reflection

Metaprogramming is the ability of computer applications to treat programs as
data [20]. Reflection is one of the key techniques used to support metaprogramming.
Reflection is the capability of a computational system to reason about and act upon
itself, adjusting itself to changing conditions [21]. In a reflective language, the com-
putational domain is enhanced with its self-representation, offering its structure and
semantics as computable data.

Considering what can be done with the self-representation of applications, reflection
can be classified as [22]:

3

– Introspection: Self-representation of programs can be dynamically consulted but
not modified. The Java platform offers introspection by means of the java-

.lang.reflect package. The programmer can obtain information about classes,
objects, methods and fields at runtime.

– Intercession: The ability of a program to modify its own execution state, including
the customization of its own interpretation or meaning. Adding and removing ob-
ject fields and methods at runtime is a typical example of intercession provided by
dynamic languages such as Python and Ruby. Java does not support intercession.

Another criterion to categorize reflective systems is considering what can be re-
flected. According to this condition, two levels of reflection are identified:

– Structural reflection: The information reflected is the structure of the program,
offered to the programmer as data. In case the program structure is modified,
changes will be reflected at runtime. The capability of reading class structures
(e.g., Java) and modifying them (e.g., Python) are two examples of structural
reflection.

– Behavioral reflection: The ability to access system semantics. In case the se-
mantics is modified, it will involve a customization of the runtime behavior of
programs. For instance, MetaXa [23] is a Java extension that allows modifying
the method dispatching mechanism at runtime. Meta-Object Protocols (MOPs)
are a common way to implement this level of reflection (see Section 3).

Java only provides structural intercession, but it has included different features
to improve its metaprogramming capabilities. Java 5 provides agents to instrument
programs running on the JVM [24]. Java agents allow the transformation of Java
classes at load time and the runtime replacement of already loaded classes. The
(re)transformation of classes may change method bodies, but it cannot add, remove
or rename fields and methods, change their signatures or the inheritance tree (i.e., Java
agents do not provide structural intercession).

Java 7 added the invokedynamic opcode to the JVM in order to provide a user-
defined dynamic linkage mechanism, postponing type checking of method invocation
until runtime [25]. invokedynamic allows changing the method linked to a call-site
and relinking it to another method [26]. Once the link is established, the virtual ma-
chine performs its common optimizations, providing better runtime performance than
reflection [27].

3. Related work

We analyze the work related to the one presented in this paper. Firstly, we present
the systems that provide metaprogramming features for the Java platform. Then, we
analyze those that support similar characteristics for other platforms and languages.

4

3.1. Modifications of the Java platform to support metaprogramming

There are different projects aimed at adding structural intercession to Java. Unlike
our system, many of them are based on modifying the implementation of the JVM.
The Dynamic Code Evolution Virtual Machine (DCE VM) modifies the JVM to allow
the addition and deletion of class members, and the modification of class hierarchies at
runtime [28]. DCE VM ensures the type rules of the Java programming language, and
also verifies the correct state of program execution. After the adaptation, runtime per-
formance is penalized by 15%, but that value converges to 3% when the JVM reaches
a steady state [29]. This is the current reference implementation of the HotSwap func-
tionality originally defined in JSR 292, which was not finally included in the standard
platform [25].

Jvolve modifies the JVM to support evolving Java applications for fixing bugs
and adding new features [30]. Jvolve allows adding, deleting and replacing fields and
methods anywhere within the class hierarchy. It modifies the class loader, JIT compiler
and garbage collector of the JVM to provide those services. To adapt the running
applications, Jvolve stops program execution in a safe point and then performs the
update. Class adaptation is controlled by transformer functions that can be customized
by the user.

Dynamic Software Updating (DSU) systems migrate a running application to a
new version without stopping it. Javelus is a Java HotSpot VM-based DSU system
designed to minimize the required pausing time when applications are updated [31].
Instead of performing all the updates at once, Javelus only updates the changed code
during the suspension, and migrates stale objects on-demand after the application is
resumed, following a lazy approach. Javelus compares the old and new class versions
in an application and generates a dynamic patch. This patch contains a summary of
class changes, as well as a set of object transformers that modify the objects from the
old to the new version. Once a dynamic patch is ready, the programmer can initiate a
dynamic update request. Developers can write transformation procedures if the default
ones are inappropriate. Updates can only happen when the VM reaches a safe execution
point [31].

Iguana/J extends the JVM to provide behavioral reflection at runtime [32]. The pro-
grammer can intercept a few Java operations such as object creation, method invocation
and field access. The new behavior is specified by the user using and a Meta-Object
Protocol (MOP). When a MOP is associated to an object, it handles the operations
against that object and provides the services to adapt its execution. Each modifiable
operation is represented with one MOP class that the programmer has to extend to
define the expected runtime adaptations. The MOP classes and objects are compiled
following the Java type system rules.

Java Distributed Runtime Update Management System (Jdrums) is a client-server
system that allows modifying and adding more information to a running program [33].
Servers provide the update services to the clients, which run in the Jdrums virtual
machine. That virtual machine is a JVM extension that provides distributed dynamic
updates [34]. Those updates modify the existing classes, distributed as a deployment

5

kit. For each updated class, a new version is created. Every time an instance of an old
version is used, a new instance of the new version is created, its state is transferred to
the new object, and the reference is updated. Object migration is controlled by a class
that is included in the deployment kit.

In [35], a dynamic classes-enabled virtual machine, called DVM, is proposed. DVM
is a modification of the JVM implementation that supports the dynamic adaptation
of class structures. A new ClassLoader allows loading the modified classes, replacing
the existing ones (a functionality not included in the standard JVM). The instances of
the adapted classes can evolve in three different ways: no instance is modified, some of
them are (depending on user-defined criteria), and all of them are adapted.

3.2. Metaprogramming over the standard Java platform

There exist other works that provide runtime adaptability for Java, implemented
as frameworks instead of modifying the JVM. Pukall et al. propose unanticipated
runtime adaptation, that is adapting running programs depending on unpredictable
requirements [36]. They propose a system based on class wrappers and two roles:
caller (service clients) and callee (service providers). A callee is a class wrapper that
provides runtime adaptation and access to the original class, implemented with the
instrument Java 5 package. The callers are aimed at replacing invocations to an
object with invocations to the appropriate callee wrapper.

Dusc (Dynamic Updating through Swapping of Classes) is a technique based on the
use of proxy classes, requiring no modification of the runtime system [37]. Java agents
(i.e., the instrument package) is the main Java technology used to change method
implementations at runtime. Dusc performs the static modification of classes to allow
its later adaptation (making them swapping-enabled). They allow adding and deleting
classes, but modified ones must maintain their interface (private methods and fields
can be modified). Another noteworthy limitation is that non-public fields cannot be
accessed from outside the class.

Rubah is another framework for the dynamic adaptation of Java applications [38].
When a new dynamic update is available, Rubah loads the new versions of added or
changed classes at runtime and performs a full garbage collection (GC) of the program to
modify the running instances. The JVM is not modified. Instead, Rubah implements
an application-level GC traversal using reflection and some class-level rewriting. To
update an application with Rubah, the programmer has to specify the update points,
write the control flow migration, and detail the program state migration.

JRebel is a tool to skip the time-consuming build and redeploy steps in the Java
development process, allowing programmers to see the result of code changes instantly,
without stopping application execution [39]. Modified classes are recompiled and reloaded
in the running application. JRebel allows changes in the structure of classes. Classes
are instrumented with a native Java agent using the JVM Tool Interface, and a par-
ticular class loader. Each class is changed to a master class and different anonymous
classes that are dynamically JIT compiled [40]. JRebel does not check that the whole

6

application has no type errors. Thus, application execution crashes when changes in a
class imply errors in a program (e.g., a method is removed and it is invoked elsewhere).

Javeleon allows dynamic updates of Java applications requiring neither JVM modi-
fications nor language extensions [41]. It implements the so-called “in-place proxyfica-
tion” technique that instruments application classes with additional bytecode to locate
and use the different class and object versions. With the added code, Javeleon can
switch forth to an updated class when an invocation to a new method is performed,
switching back to the original one if the invocation returns a non-evolved object. The
runtime performance penalty of Javeleon is reported to be around 90% in a typical
usage, both before and after updates [41]. This penalty is mainly caused by the indi-
rection mechanism added to each class to support the dynamic updates. An extension
of this work indicates how to modify the Java virtual machine to directly support dy-
namic updates, so that the performance of the techniques used by Javaleon could be
improved [42].

MetaXa, formerly called MetaJava, is an extension of the Java platform with a reflec-
tive meta-level architecture [23]. Structural and behavioral intercession is provided by
means of a Meta-Object Protocols (MOP) [43]. By implementing metaobjects, MetaXa
permits the programmer to modify the semantics of a few programming language op-
erations, such as object creation, method invocation and field access. MetaXa allows
the adaptation of single objects, implementing a class versioning approach with shadow
classes. A shadow class is a new particular type for the modified object [23].

3.3. Other approaches to structural intercession

MetaML is a statically typed programming language that supports program ma-
nipulation [44]. It allows the programmer to construct, combine and execute code
fragments in a type safe manner. In this way, dynamically evaluated programs do not
produce type errors. MetaML does not support the manipulation of dynamically eval-
uated code; i.e., evaluation of code represented as a string, unknown at compile time.
Therefore, its metaprogramming features cannot be used to adapt applications to new
requirements emerged after their execution.

FickleII is a small class-based language that supports the modification of object
types at runtime to demonstrate how that feature could be introduced in an imper-
ative, statically typed, class-based, object-oriented language [45]. They define a type
change primitive as dynamic object reclassification: a programming language feature
that allows an object to change its class membership at runtime while retaining its
identity. In FickleII, a class definition may be preceded by the keywords root or state.
Class reclassification can only occur within a hierarchy rooted with a root class. state
classes are subclasses of root classes and they are the only ones that can be reclas-
sified. Classes that are neither root nor state are respected by reclassification [46].
The FickleII implementation of object reclassification offers an advantage over similar
approaches (such as wide classes [47, 48]): FickleII is type-safe, i.e., any type-correct
program (in terms of the type system) is guaranteed to never attempt to access non-
existing fields or methods [49].

7

Predicate classes are a linguistic construct proposed by Chambers [50] aimed at pro-
viding transparent type change functionality at runtime, based on dynamically evalu-
ated predicates. Like a normal class, a predicate class has a set of superclasses, methods
and fields. However, unlike a normal class, an object is automatically an instance of a
predicate class whenever it satisfies a predicate expression associated with the predicate
class. That predicate expression can test the state of the object, thereby providing a
form of implicit property-based dynamic inheritance (i.e., type change). This linguis-
tic construct was added to the Cecil programming language, which can optionally use
static type checking [51]. Because Cecil is prototype-based rather than class-based,
the adaptation of predicate classes to Cecil’s object model was renamed to predicate
objects.

Dynamic C++ classes allow the runtime update of running C++ classes [52]. The
existing classes can be modified with different class versions, and other new classes can
also be introduced. Each new implementation of a class either updates an existing one
(a new version) or introduces a new class (a new type) that implements an interface
known at compile time. The instances of the modified classes are not updated. All the
new objects are created with the new class version, but the existing ones maintain its
version at the moment of creation.

zRotor is a modification of the .Net virtual machine to provide native support
of structural intercession [53]. zRotor extends the class-based object-oriented model
with prototype-based semantics to support metaprogramming for both kinds of object
models [12]. By using this hybrid object model, it allows modifying the structure of
both classes and objects. The JIT compiler is modified to provide structural intercession
natively. Therefore, zRotor provides important runtime performance improvements
compared to similar approaches [22]. Additionally, dynamic inheritance primitives such
as changing the class inheritance tree and the type of instances were implemented for
both object models [54].

4. Motivating example

This section illustrates part of the metaprogramming services provided by our sys-
tem, called JMPLib (Java MetaProgramming Library)—the source code is available for
download at [55]. In this motivating example, JMPLib is used to programmatically
manipulate the structure of a simple Calculator class providing two basic methods:
add and subtract. These methods receive two double parameters, and return their
addition or subtraction.

The code in Figure 1 adds a lastResult field (line 6) and a getLastResult method
(line 15) to Calculator. This new field stores the value of the last operation. The code
also replaces the existing implementations of add (line 8) and subtract (line 13) to store
in lastResult the value of the last operation. Code manipulation can be performed
with the modification of the source code as text, and operating on its Abstract Syntax
Tree (AST). In this way, line 8 replaces the implementation of add by indicating the text
of its source code. On the other hand, sub is modified by: taking its AST (line 10);

8

creating an AST that assigns the subtraction of the two parameters to lastResult

(line 11); adding that new assignment at the beginning of the method body (line 12);
and replacing the existing method implementation (line 13).

1: public static void adaptationExample(String methodName, double param1, double param2) {
2: Calculator calc = new Calculator();
3: // Transaction with different modifications
4: IIntercessor intercessor = new TransactionalIntercessor().createIntercessor();
5: // Adds one "lastResult" field
6: intercessor.addField(Calculator.class,

 new jmplib.reflect.Field(Modifier.PRIVATE, double.class, "lastResult"));

7: // Changes the implementation of "add" to consider "lastResult"
8: intercessor.replaceImplementation(Calculator.class, new jmplib.reflect.Method("add",

 // Method signature: return type followed by parameter types

 MethodType.methodType(double.class, double.class, double.class),

 "this.lastResult = a + b; return this.lastResult;"));

9: // Also changes "sub", but modifying the existing AST
10: MethodDeclaration md = Introspector.decorateClass(Calculator.class)

 .getMethod("sub", double.class, double.class).getMethodDeclaration();

11: ExpressionStmt stmt = new ExpressionStmt(new AssignExpr(
 new NameExpr("lastResult"),

 new BinaryExpr(new NameExpr(md.getParameters().get(0).getId().getName()),

 new NameExpr(md.getParameters().get(1).getId().getName()),

 BinaryExpr.Operator.minus)
 , AssignExpr.Operator.assign));

12: md.getBody().getStmts().add(0, stmt);
13: intercessor.replaceImplementation(Calculator.class, new Method(md));
14: // Adds getLastResult
15: intercessor.addMethod(Calculator.class, new Method("getLastResult",

 MethodType.methodType(double.class), "return this.lastResult;"));

16: // Executes all the changes at once
17: intercessor.commit();
18: // Calls the new "sub" method
19: calc.sub(3.3, 4.4);
20: // Gets a Java 8 standard functional interface to invoke getLastResult
21: IEvaluator evaluator = new SimpleEvaluator().createEvaluator();
22: Function<Calculator, Double> getLastResult = evaluator.getMethodInvoker(

 Calculator.class, "getLastResult",

 new MemberInvokerData<Function>(Function.class, Calculator.class,
 double.class));

23: double result = getLastResult.apply(calc);
24: // Dynamic code evaluation (i.e., eval) to call one method in calc with 2 params
25: result = evaluator.generateEvalInvoker("calculator." + methodName + "(p1, p2)",

 new EvalInvokerData<>(CalcFunc.class, new String[]{"calculator", "p1", "p2"}),

).apply(calc, param1, param2);

26: }

Figure 1: Example of metaprogramming using JMPLib.

JMPLib allows the execution of metaprogramming operations both sequentially and
using transactions. With transactions, a sequence of operations can be performed at the
same time, improving runtime performance. Moreover, if JMPLib is run with multiple
threads, transactions are synchronized with the rest of concurrent operations, locking
all the modified classes when the transaction is committed—JMPLib is thread safe.

Both sequential and transactional operations are provided with the IIntercessor

interface. Line 4 shows how to create a new transaction; lines 6, 8, 13 and 15 add

9

different operations to the transaction; and line 17 executes the transaction by calling
the commit method. All the changes specified in the operations are type-checked to-
gether, similarly to recompiling a new version of the original program. If a type error
exists in any of the operations, the system is rolled back and none of the operations are
executed.

The Java type system allows the direct invocation to the new implementations of
add and sub methods, as they already existed in the original code (line 19). However,
that is not the case for getLastResult. Since getLastResult is added at runtime, the
static type system of Java does not allow the programmer to write code invoking the
new method, because getLastResult did not exist when the application was compiled.
To perform that invocation in a type-safe and efficient way, JMPLib uses the stan-
dard functional interfaces included in Java 8 [56]. In line 22 of Figure 1, a Function

reference is defined to get the new getLastResult method, specifying its name, class
and parameters. The use of the Java functional interface to call the method (line 23)
provides high runtime performance (Section 6), since reflection is not used and no type
conversions are performed at runtime.

The type rules of Java are checked when JMPLib is used. For example, an overloaded
implementation of add could be dynamically added to Calculator, only if the number
or types of the arguments are changed. If we try to include another add method with-
out changing its signature, JMPLib throws a CompilationFailed exception with the
message “method add(double, double) is already defined in class Calculator”. Likewise,
if we try to delete a method or field used by another class, JMPLib will throw the same
exception at adaptation time to ensure that the new program version follows the Java
type rules. This shows that JMPLib not only supports dynamic metaprogramming,
but also benefits from the robustness of static type checking.

JMPLib also allows the evaluation of dynamically generated code (line 25), similar
to the eval function implemented by Lisp, Python and JavaScript. The code to be
evaluated can be represented as a string or an AST, and dynamically compiled to
Java bytecode before its evaluation. In our example, we invoke a method unknown at
compile-time (line 25). Its name is passed as the methodName parameter to the code in
Figure 1. Type safety is ensured with the use of the functional CalcFunc interface, which
represents the methods in Calculator receiving two doubles and returning another
one. The EvalInvokerData object is used to pass parameters from the application
environment to the code to be evaluated dynamically.

5. Design of JMPLib

JMPLib supports many metaprogramming features provided by most dynamic lan-
guages. Those operations include thread-safe structural intercession and dynamic code
evaluation (a detailed description of all the primitives provided by JMPLib can be
consulted in [57]):

– Addition, replacement and deletion of methods and fields. If a field is replaced,
the new one must be a subtype of the existing one. Otherwise, a compiler error is

10

produced at runtime. The value of the field is kept (or promoted) when its type
is replaced.

Likewise, a method could be replaced when its type (i.e., signature) is a sub-
type of the existing one, according to the Java type system. In other words,
signature modification allows contravariant parameters (types of new parameters
must be subtypes of the former ones) and covariant return types (a super-type
of the original one). This makes the existing invocations to be valid for the new
signature.

Methods and fields could be deleted if the rest of the code in the application is
not using them. Otherwise, a CompilationFailedException is thrown.

– Addition and deletion of interfaces from the interface implementation list (Java
implements) in a given class or interface.

– Replacement of method implementations. This operation substitutes the imple-
mentation of a method, maintaining its signature.

– Dynamic code evaluation. At runtime, JMPLib can execute strings and Abstract
Syntax Tree (AST) structures as Java code, returning the result of the code
evaluated. Java 8 functional interfaces are used to perform efficient type-safe
invocations.

– Addition of new types to running Java applications. This primitive is used to add
new classes, interfaces and enumerations without stopping program execution. It
can be done by manipulating either text as source code or AST structures to
represent the new types.

– Addition and deletion of annotations to classes, interfaces, methods and fields.

– Inclusion of import statements to any code to be evaluated at runtime. Without
this service, the programmer would need to state the full name (i.e., include its
package) of every type used in the new code to be evaluated at runtime.

– Addition and deletion of generic types to classes and methods.

5.1. Architecture

JMPLib manipulates Java programs to provide the runtime metaprogramming ser-
vices described above. Using the standard elements of the Java platform, our system
provides metaprogramming facilities for any platform implementation, with no language
extension. The architecture of JMPLib is presented in Figure 2. We first describe the
objective of each module; then, we detail the most important ones.

11

JMPLib implements two Java agents [24]: one for single-threaded applications and
another one for concurrent program adaptation1. We use the ability of Java agents to
replace Java bytecode at load-time and at runtime. At load-time, JMPLib instruments
the Java classes to allow its later adaptation (Instrumentation module). At runtime,
when a class is adapted (Intercession module), a new version is created and the imple-
mentation of the old one is replaced to forward field accesses and method invocations
to the new version.

The Intercession module provides the façade to class adaptation. Every time a class
is modified, a new class version is generated and loaded into memory. The Class Versions
Tables module stores several data structures to locate the different class versions and
their members. In this way, JMPLib knows how to modify the implementation of old
members, redirecting them to the corresponding ones in the last version.

As shown in Figure 1, the programmer may add new code by manipulating either
strings as source code or data structures as ASTs. Additionally, JMPLib provides the
programmer the up-to-date source code of the last version in both representations2

(text and AST). In order to provide that functionality, we included the JavaParser
library [58] in JMPLib and integrated it with our Introspection module.

As JMPLib creates new classes and members (e.g., invokers and creators) to sim-
ulate class adaptation, the standard introspection package (java.lang.reflect) will
reflect those artificial elements at runtime. In order to provide the programmer the
abstraction of class adaptation without modifying the Java introspection package,
JMPLib implements the Introspection module (jmplib.reflect). This new package
re-implements the whole reflect Java package to provide introspection considering the
last class versions. Therefore, it gives the programmer the abstraction that classes are
actually modified.

The Introspection module follows the Decorator design pattern [59] to integrate
JavaParser in JMPLib. As shown in line 10 of Figure 1, Introspector decorates any
Java element (class, interface, method, etc.) to represent its last version and obtain its
source code and AST. The types provided (Class, Method, Field, etc.) are used to
interact with the Intercession and Dynamic Code Evaluation modules (Figure 2).

JMPLib generates Java code at runtime and compiles it with the Java compiler (Java
6 ToolProvider) [60], generating the .class files to be loaded into memory. Type
rules are dynamically checked by the Java compiler. A CompilationFailed exception
containing the compiler output is thrown if any error exists. Unlike most dynamic
languages, the error is produced when the code is compiled—at adaptation time—, not
when an invalid statement (e.g., invoking a deleted method) is executed—which could
happen potentially much later than the adaptation.

The Dynamic Code Evaluation module provides services to evaluate code created at
runtime as text or as AST structures. The eval method allows the evaluation of Java

1By default, the agent for single-threaded applications is used; otherwise, the thread safety pa-
rameter must be passed to the agent.

2JMPLib also provides the source code of the Java API, if it has been installed in the JDK.

12

Agents Class Versions Tables

Instrumentation JavaParser

Intercession

Java Compiler

Introspection
Dynamic Code

Evaluation

Source Code

Modification
Thread Safety

Transactions

Java Virtual Machine

A.class B.class

JMPLib core

A.Class

(instrumented)

A.Class

(new version 1)

B.Class

(instrumented)

A.Class

(new version 2)

Generated1.Class

(dynamically evaluated)

JMPLib interface

JMPLib

Original Application

Instrumented Classes New Class Versions Dynamically Evaluated Code

class loading

class instrumentation

access to JMPLib services

dynamic generation of class versions dynamic generation of code

to be evaluated at runtime

Figure 2: Architecture of JMPLib.

expressions. After the dynamic compilation process, a type-safe reference pointing to
the eval method is returned to the caller. The use of functional interfaces allows us to
prevent the use of reflection and type casts, obtaining significant runtime performance
benefits (Section 6.3). The exec method generates and loads into memory a new type
at runtime.

When programmers write new code to be evaluated at runtime, they are not aware
of the different class versions. Therefore, they will use the members in the last class
version, but writing code for the original one. In order to avoid the compiler errors
produced by this difference, their code must be transparently converted into another
one that considers the existing class adaptations. For instance, code invoking an added
method in an existing object will crash at runtime, since the new method belongs to
the last class version, not to the object class (a previous version). The Source Code
Modification module performs syntax and semantic analysis (detailed in Section 5.4)
to achieve the type-based modification of the code to be evaluated, making sure that it

13

private static void _creator(C obj) {

// Creates one instance of the last version

C_NewVersion_2 lastVersion =

Versions.getNewVersionOf(obj.getClass()).newInstance();

// Gets the previous last version

Object oldVersion = obj._newVersion == null ? obj : obj._newVersion;

// Transfers the object states

jmplib.util.TransferState.transferState(oldVersion, lastVersion);

// Updates the reference to the last version

obj._newVersion = lastVersion;

}

public static double _method_invoker(C obj, double param1) {

// Checks if an instance of the last version was already created

if (!Versions.existsNewVersion(obj))

_creator(obj); // Creates the new version and transfers the state of the object

// Calls the ‘method’ method in the last version

return ((C_NewVersion_2)obj._newVersion).add(param1);

}

C

- field: int

- _newVersion: Object

C_NewVersion1

C_NewVersion2

- field: int

- newVersion: Object

- newField: long

- _creator(C)

+ method(double): double

+ _method_invoker(C, double): double

+ newMethod(float): float

+ _newMethod_invoker(C, float): float

…

Members added by JMPLib in the

instrumentation phase

Members added by the user

Members added by JMPLib for a

new class version

Client

+ method(double):double

+ field_fieldGetter(): int

+ field_fieldSetter(int)

Figure 3: Class versions in memory after class adaptation.

uses the last versions in the program.
JMPLib allows the concurrent adaptation of programs. The Thread Safety module

provides this capability when the thread safety parameter is passed to the Java agent.
In that case, JMPLib generates thread-safe code when classes are instrumented and
new versions are dynamically generated. Different monitors are used to synchronize
the adaptation of classes with the runtime system that forwards method invocations
and field accesses, and transfers object states from one class version to another.

The Transaction module ensures that all the adaptations in a transaction are exe-
cuted atomically. If an error exists, it rolls back all the modifications and none occurs.
For concurrent programs, no other adaptation could be performed when a transaction
is committed. Moreover, a transaction only creates a new version of the adapted classes
regardless the number of modifications, providing better runtime performance.

5.2. Instrumentation

Instrumentation takes place when the JVM loads each class before its execution,
modifying the class implementation to support dynamic metaprogramming. We use
ASM to instrument the classes directly in their binary form [61]. The instrumentation
process consumes CPU time, but it is only performed once per class, and it commonly
takes place at the beginning of execution (Section 6.4).

As shown in Figure 3, the instrumentation process adds a newVersion field to every
class at load time. This Object field will dynamically point to its last updated version,
which reflects all the changes performed by the programmer. Our system transparently
uses the newVersion field to efficiently transfer the state of objects from old class
versions to the last one.

Figure 3 also shows the members added to each class by the Instrumentation module.
Besides the newVersion field, a pair of get / set methods for each field are also added

14

to each class (fieldGetter and fieldSetter). These two methods are used to forward
field access to the last class version through newVersion (next subsection).

The instrumentation process also modifies the bytecode for accessing fields outside
their class (i.e., when this is not the reference used to access the field). Those field
accesses are replaced with invocations to the corresponding get / set methods added.
In this way, JMPLib ensures that the accessed field belongs to the last updated version
(newVersion). Next subsection explains why this process is not necessary inside the
class scope (i.e., when this is used), avoiding the performance cost of using the get /
set methods.

The Instrumentation module also replaces the occurrences of the instanceof and
checkcast bytecodes. Since class adaptation is implemented with the creation of new
classes at runtime, these two opcodes must consider such new classes. Therefore, the
instrumentation agents replace the instanceof and checkcast bytecodes with the
corresponding introspective code that checks whether the object is an instance of any
of the existing class versions.

In the design of JMPLib, we carefully considered that changes in the instrumentation
process must not include significant penalties in runtime performance (Section 6.4).
The reason of this design criterion is that all the classes are instrumented and, in real
applications, only some of them are adapted.

5.3. Intercession

When a class is modified at runtime, a new class is created holding the new members
plus the existing ones. As shown in Figure 3, JMPLib creates the new C NewVersion1

and C NewVersion2 classes when the newField and newMethod members are added
to C. The last version provides the new members (newMethod and newField) plus the
original ones (method and field).

When the implementation of one method is modified, JMPLib assigns the new
body to the new class version, but the rest of classes in the application keep calling
the original one. In Figure 3, C NewVersion2 holds the new implementation of method,
but the existing code (e.g., the Client class) invokes the original method in C. To
overcome this problem, the method implementations of earlier class versions (method
in C) are replaced with an invocation to an invoker method added to the new version
(method invoker in Figure 3).

JMPLib adds to the new class version one invoker method for each original one. The
objective of invoker methods is twofold. First, they transfer the object state from the
original class to the new version. This is only done once per object, so next invocations
to any invoker method using that object will skip the state transfer operation. In this
way, we make sure that object state is transferred before executing any method in the
new class version. The second objective of invoker methods is to call the last version
of the associated method (method in C NewVersion2). Therefore, any invocation to
method in C ends up executing the same method in C NewVersion2 (after transferring
the state of the object).

15

Figure 3 depicts the code of invoker methods. Their signatures include the original
type (C) as its first parameter, followed by the method arguments. Invokers first check
whether the object state has already been transferred to the last class version. If so,
they just call the last implementation of the associated method. Otherwise, the state
is transferred by calling the creator method added by JMPLib to each class version.

The creator method (Figure 3) creates an instance of the last version, and gets
the previous version. Then, it transfers the last state to the new instance representing
the last version. The newVersion field in the original object is finally updated with
the new instance. Therefore, the subsequent method invocations using that object will
not need to transfer the object state. Moreover, if a new version is created and the
object is not used, the object state is not transferred (it is lazy).

As shown in Figure 3, different versions of a class may be created. All the different
versions point to the last one, and all the method implementations in old versions are
replaced with invocations to the new corresponding invoker method in the last version.
The result is that the existing calls to old methods will invoke the last implementation
with only one level of indirection (invoker), regardless the number of existing class
versions.

As mentioned, JMPLib distinguishes two kinds of field accesses. For field access
where the implicit object is this, the code is left unchanged. This is because JMPLib
complies that: 1) methods in old versions are never executed (its body is replaced with
invocations to the new version); and 2) object state is transferred to the last class
version before executing any method. Therefore, this field accesses will always get the
last object state, since it is previously transferred.

The second case scenario of field access is when the object is not this. In that case,
if fields were accessed directly, it would not be ensured that the code would access the
last version state. This is the reason why, in the instrumentation phase, JMPLib adds
a pair of get / set methods for each field, and replaces this second kind of field accesses
with invocations to those methods. In this way, those field accesses are actually treated
as methods by JMPLib. Notice that this scenario is not very common, since fields are
commonly declared as private or protected.

When a method or field is deleted, the new class version will not include it. Since
Java type checking is performed upon adaptation, JMPLib ensures that the new appli-
cation version does not perform direct calls to the deleted class member. However, that
invocation could still happen using reflection, if the program keeps a Method or Field

reference pointing to the old version. For this particular case scenario, JMPLib replaces
the body of the deleted methods in the original class with one statement throwing a
MethodNotFound exception. Similarly, the bodies of the get / set method pairs for each
field throw FieldNotFound exceptions.

5.4. Dynamic code evaluation

This module of JMPLib provides primitives to perform dynamic code evaluation of
text and AST structures. The exec method is used to create a new Java type (class,

16

interface or enumeration), check that it fulfills the language rules, and load it into
memory, returning the new type created (a Class<?> object).

The typical eval function supported by most dynamic languages is offered by the
generateEvalInvoker method. As shown in Figure 2, JMPLib dynamically generates
a new class (e.g., Generated1) with one eval method returning the Java expression to
be evaluated at runtime. After the dynamic compilation process, a type-safe reference
pointing to the eval method is returned to the caller. The use Java of functional
interfaces allows us to avoid the use of reflection and type casts, obtaining significant
runtime performance benefits (Section 6.3).

If the dynamically generated code has any error, JMPLib throws a runtime ex-
ception. Otherwise, the generated code is loaded, and hence instrumented with the
process described in Section 5.2. Therefore, dynamically generated classes can also be
dynamically adapted by JMPLib.

The Dynamic Code Evaluation module is not a mere wrapper of the Java com-
piler. To provide the programmer the abstraction of runtime adaptable classes, it
is necessary to perform different changes in the programmer’s code before its dy-
namic evaluation. For example, the code "obj.newMethod(value)" invokes the new
method added to C, not present in the original version of the class. The invocation
uses an instance of the original C class (obj). However, that new method is not ac-
tually added to C (it is added to C NewVersion2), so the code written by the user
would result in a compiler error. For this reason, JMPLib replaces that code with
"C NewVersion2. newMethod invoker(obj, value)".

The Source Code Modification module performs all the necessary changes in the
code to be evaluated at runtime. These changes are not only made to the code in
the eval and exec primitives, but also to the body of methods added and replaced
at runtime. These are the main modifications done by the Source Code Modification
module:

1. Replace all the invocations to methods in adapted classes with the corresponding
invoker in the last version.

2. Substitute this and super references. Since the dynamically evaluated code is
placed in a new class generated at runtime, those two references must be replaced
with references pointing to the appropriate objects.

3. Modify the field accesses of adapted objects with invocations to the corresponding
get / set methods in the last class version.

4. Modify all the static method invocations and field accesses to use the last class
version.

To perform these code modifications, we used the Polyglot open source Java com-
piler [62]. After the semantic analysis phase, we traverse the type-annotated Abstract
Syntax Tree (AST) checking for the types inferred by the compiler. Then, the Source
Code Modification module consults the Class Version Tables and modifies the code to
ensure that it uses the last up-to-date version of every type.

17

5.5. Thread safety

If the thread safety parameter is passed to the Java agent upon application execu-
tion, JMPLib provides all its services (Section 5) in a thread-safe way. Different threads
may adapt the application classes concurrently while the application is running, since
JMPLib transparently synchronizes all the operations. In thread-safe mode, JMPLib
performs the following additional operations:

– Class adaptation is synchronized. Section 5.3 details how, when a class is adapted,
a new class version is generated and the code in the old versions are replaced.
JMPLib synchronizes the intercession operations on a per-class basis: there can-
not be two concurrent adaptations of the same class. For this purpose, we use
the Class<?> object of the original class as a monitor.

– Object state transfer (creator) and method invocation and field access (invoker)
are synchronized. In the instrumentation phase, a ReadWriteLock instance field
is added to every class. This Java monitor allows multiple simultaneous reader
threads on a per-object basis, but exclusive writers. Therefore, for each object,
there could be simultaneous invokers, but they will be locked by transfers of ob-
ject states (creators). This makes the runtime system to be thread safe and
efficient, since concurrent method invocations are allowed.

– Method invocations (invokers) and class adaptations are exclusive. When an
object field is being accessed or one of its method is being invoked, its class cannot
be adapted by another thread. As in the first case scenario, we use the object class
of the first class version as a monitor. Object state transfer is also synchronized
with class adaptation, since creators are always called by invokers.

– Transactions. Since transactions may involve the adaptation of multiple classes,
the concurrent modification of those classes and the accesses to their members are
locked when the transaction is committed. All the monitor objects of the classes
adapted are used to synchronize the execution of the transaction.

– Dynamic code evaluation primitives can be executed simultaneously. However,
neither JavaParser nor Polyglot are thread safe. Therefore, JMPLib synchronizes
the use those tools to generate and transform code. In this way, only one thread
could be generating code with each tool.

– In thread-safe mode, JMPLib uses synchronized versions of the data structures
in the Class Version Tables module (ConcurrentHashMap instead of HashMap).

6. Evaluation

This section is aimed at answering the following research question:

18

Is the proposed design and implementation suitable to provide a wide set
of metaprogramming services for the Java platform without modifying the
JVM, providing competitive runtime performance and memory consump-
tion?

In order to answer the research question, we first perform a qualitative compari-
son of the metaprogramming services provided by JMPLib and the most similar works
discussed in Section 3. Then, we evaluate the runtime performance and memory con-
sumption of JMPLib, using different benchmarks and real applications. We compare
them with different systems and languages that provide similar metaprogramming fea-
tures.

6.1. Qualitative evaluation

In the qualitative evaluation, we selected the systems in the related work section that
are more similar to JMPLib. We classify them as systems providing metaprogramming
a) by modifying the JVM (Section 3.1); b) over the standard Java platform (Section 3.2);
and c) by using MOPs. The purpose of this comparison is not to identify the best
system, but rather to see whether the proposed design and implementation succeeds in
supporting most of the features provided by the existing systems (i.e., the first part of
the research question).

Table 1 shows the qualitative comparison. Regarding the intercession primitives,
most of the systems support the addition, deletion and replacement of methods and
fields. DCE VM, Pukall et al. and Dusc support neither replacing field types without
losing their values, nor replacing method signatures without changing their implemen-
tations (Pukall et al. only provides those features for public and non-final members;
and Dusc just allows removing private members). MetaXa does not support inter-
cession of static members. It can also be seen in Table 1 that many systems do not
allow the manipulation of annotations, generic types, native methods, interface imple-
mentation, and changing the base class (dynamic inheritance). JMPLib supports those
features except changing the base class. Although the runtime model of JMPLib was
designed to allow this functionality, we do not have a working implementation yet—
next version is expected support it. Lastly, only DVM, Pukall et al. and the two
MOPs allow the adaptation of single objects. In that case, a new class is created for
that particular instance (i.e., schema versioning [63]), causing different problems such
as maintaining the class data consistency, class identity, usage of class objects in the
code, garbage collection, inheritance reliability and memory consumption [64]. Due to
all these problems caused by class versioning, we decided not to include this feature in
JMPLib.

Table 1 also analyzes the additional features discussed in the article. Around half of
the systems, including JMPLib, provide their services using the standard Java platform
and language, and they allow dynamic updates in arbitrary execution points (not in par-
ticular places). Only JMPLib and Dusc provide transactions. JMPLib and Iguana/J
allow calling their services programmatically; other services support those features indi-
rectly (e.g., class loaders or plugins must be implemented) or partially (e.g., the whole

19

new class must be specified instead of one single member). The structure of the new
class versions could be consulted with introspection services in all the systems but Dusc
and Iguana/J. MetaXa and Jdrums are the only systems that are not thread safe.

Only JMPLib and Javeleon enforce Java type rules at adaptation time, since both
are based on source code recompilation. However, the Javeleon instrumentation pro-
cess causes a runtime performance overhead of 89.4% [41], whereas JMPLib adds no
instrumentation overhead (see Section 6.4). Jvolve defines a mechanism to enforce
type rules at adaptation time based on bytecode recompilation, but the Jikes RVM
used in the implementation does not perform bytecode verification when bytecode is
recompiled [30]. DVM allows type rule enforcement when the JIT compiler and method
inlining are disabled, causing a 92% runtime performance overhead [35]. Other systems
such as JRebel and DCE VM do not check whether member deletion causes type errors
if the code in other classes use such deleted members, so applications will throw type
error exceptions when the deleted members are accessed.

The last classification of features includes dynamic code evaluation. JMPLib is the
only system that supports that kind of metaprogramming features. The rest of the
systems are focused on structural intercession.

6.2. Methodology of the quantitative evaluation

This section comprises a description of the systems and benchmark suites used in
the evaluation, together with the explanation of how data is measured and analyzed.

6.2.1. Selected systems

We selected different systems that provide the metaprogramming features sup-
ported by JMPLib. First, we include those systems similar to ours, aimed at providing
metaprogramming services for the Java language:

– Dynamic Code Evolution Virtual Machine (DCE VM) 64-Bit Server (build 25.71-
b01-dcevmlight-26, mixed mode). DCE VM is a modification of the JVM that
allows the dynamic addition and deletion of class members [28]. DCE VM permits
the programmer to replace the loaded classes with new class versions.

– JRebel 7.0.4 [39]. JRebel is a Java agent that allows reloading modified Java
classes at runtime, without stopping the application execution. JRebel is com-
monly used to speed up the development process of Java applications by skipping
the time-consuming build and redeploy steps.

– JMPLib 1.1.0. This version of JMPLib provides the metaprogramming services
described in this article (Section 5).

– Java 64-bit 1.8.181 for Windows 10. Although Java does not provide struc-
tural intercession, we include the execution of the original Java programs with
no metaprogramming to compare the reflective systems with the baseline one.

20

Modified VMs Frameworks over JVM MOPs

F
e
a
tu

r
e

D
C
E

V
M

J
v
o
l
v
e

J
a
v
e
lu

s

J
d
r
u
m
s

D
V
M

J
M

P
L
ib

P
u
k
a
ll

e
t
a
l.

D
u
s
c

R
u
b
a
h

J
R
e
b
e
l

J
a
v
e
le
o
n

Ig
u
a
n
a
/
J

M
e
ta

X
a

S
tr

u
ct

u
ra

l
In

te
rc

es
si

o
n

1 Yes Yes Yes Yes Yes Yes Partially Partially Yes Yes Yes No Partially
2 No Yes Yes Yes Yes Yes No No Yes Yes Yes Yes Partially
3 Yes Yes Yes Yes Yes Yes Partially Partially Yes Yes Yes No Partially
4 Partially Yes No Yes Yes Yes Partially No Yes Yes Yes No Partially
5 Yes Yes Yes Yes Yes Yes Partially Yes Yes Yes Yes Yes Partially
6 No No No Yes Yes Yes No Yes Yes Yes No No No
7 No No No Yes Yes Yes No Yes Yes Yes No No No
8 No No No Yes Yes Yes No No Yes Yes No No No
9 No No No Yes Yes Yes No No Yes Yes No No No

10 Yes Yes Yes Yes Yes Yes No No No No No No Yes
11 Yes No Yes No Yes Yes No No Yes Yes Yes No No
12 Yes No Yes No Yes Partially Partially No Yes Yes Yes No Yes
13 No No No No Partially No Yes No No No No Yes Yes

A
d

d
it

io
n

a
l

F
ea

tu
re

s 14 No No No No No Yes Yes Yes Yes Yes Yes No No
15 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
16 No No No No No Yes No Yes No No No No No
17 No No No Partially Partially Yes No Partially No Partially No Yes No
18 No No No No Yes Yes Yes Yes No Yes Yes Yes Yes
19 Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes No Yes
20 Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes No
21 No Partially No No Partially Yes No No No No Yes No No

C
o
d

e
E

v
a
lu

a
ti

o
n 22 No No No No No Yes No No No No No No No

23 No No No No No Yes No No No No No No No
24 No No No No No Yes No No No No No No No
25 No No No No No Yes No No No No No No No
26 No No No No No Yes No No No No No No No
27 No No No No No Yes No No No No No No No

Table 1: Qualitative comparison of systems related to JMPLib (the features are 1: add/remove fields, 2: re-
place field type without losing its value, 3: add/remove methods, 4: replace method signature without changing its imple-
mentation, 5: replace method implementation, 6: add/remove/replace annotations from classes, 7: add/remove/replace
annotations from methods, 8: add/remove/replace generic types from classes, 9: add/remove/replace generic types from
methods, 10: modify native method implementations, 11: add/remove/replace interfaces, 12: add/remove/replace base
class, 13: adaptation of single objects, 14: standard virtual machine, 15: standard Java language, 16: combined opera-
tions through transactions, 17: programmatic support of metaprogramming primitives, 18: dynamic updates in arbitrary
execution points, 19: access to the dynamic structure of adapted classes through introspection services, 20: thread-safety,
21: Java type rules enforcement at adaptation time, 22: dynamic evaluation of expressions, 23: dynamic creation of new
types, 24: creation, modification and evaluation of ASTs, 25: source code extraction from reflected metaobjects, 26: ASTs
extraction from reflected metaobjects, 27: add/remove/replace of imports for expressions).

Second, to analyze alternative ways to obtain metaprogramming over the Java plat-
form, we include popular languages for the JVM that provide metaprogramming:

– Jython 2.7.0 (formerly called JPython) is a 100% pure Java implementation of the
Python programming language, seamlessly integrated with the Java platform [65].
Jython 2.7.0 is compatible with Python 2.7 and supports structural intercession
and dynamic code generation.

– Rhino 1.7.1.1 is an open-source implementation of JavaScript written entirely in
Java, developed by Mozilla [66]. It can be embedded into Java applications to

21

provide scripting capabilities. Since Java 6, Rhino is included in the Java standard
edition as the default JavaScript engine.

– Groovy 2.5. Groovy is an optionally-typed and dynamic language for the Java
platform [67]. It provides many metaprogramming services, and supports type
inference and compilation to .class files. We compiled all the Groovy programs
with groovyc before its execution and annotated them with @CompileStatic to
enable all the compile-time optimizations provided by the language.

Third, we measure other reflective language implementations, not for the JVM,
that provide state-of-the-art optimizations, and offer important runtime performance
gains [68, 69]:

– PyPy 5.0.1 [70]. PyPy is an alternative Python implementation that provides
a tracing JIT compiler to optimize program execution at runtime, generating
dynamically optimized machine code for the hot code paths of commonly executed
loops. PyPy has been evaluated as the fastest Python implementation for most
kinds of applications, including metaprogramming [71].

– V8 6.1.0 is the Google JavaScript engine used in Chrome, which can run both
standalone and embedded into C++ applications [72]. V8 implements a runtime
adaptive JIT compiler that dynamically optimizes the generated code, based on
heuristics of the code execution profile. For the hotspot functions detected at
runtime, the JIT compiler applies aggressive optimizations including inline caches,
type feedback, customization, control flow graph optimizations and dead code
elimination.

– SpiderMonkey 24.2.0 is the JavaScript engine of Mozilla, currently included in the
Firefox Web browser and the GNOME 3 desktop [73]. It uses three optimization
levels: an interpreter, the baseline JIT-compiler, and the IonMonkey compiler
for more powerful optimizations. The baseline compiler generates binary code
dynamically, collecting more accurate type information and applying basic opti-
mizations. Finally, IonMonkey is only triggered for hotspot functions, providing
optimizations such as type specialization, function inlining, linear-scan register
allocation, dead code elimination, and loop-invariant code motion.

We do not include the Iguana/J and MetaXa MOPs because they provide poor
runtime performance. Object creation in Iguana/J encounters a 25x delay when the
classes are adapted, and the cost of method interception is 24x because it uses reflec-
tion [74]. In MetaXa, when a class is modified, method invocation, field access and
object creation is 28, 23 and 8.5 times slower than Java [75].

6.2.2. Selected benchmarks

We measure the execution of different applications, from synthetic microbenchmarks
to real applications:

22

– Microbenchmark. In order to evaluate the runtime performance of the metapro-
gramming primitives provided by JMPLib, we implemented eight different syn-
thetic microbenchmarks that use metaprogramming services in different case sce-
narios.

– SciMark 2.0, a Java benchmark for scientific and numerical computation [76].
More precisely, fast Fourier transformations (FFT), dense LU matrix factoriza-
tion, Monte Carlo integration that approximates the value of Pi (MonteCarlo),
and Jacobi successive over-relaxation (SOR).

– Shootout. This benchmark is composed of different well-known algorithms im-
plemented in different programming languages [77]. We run those tests that do
not perform any I/O interaction, which are: BinaryTrees, Fannkuchredux, Man-
delbrot, Nbody and SpectralNorm.

– Real large scale applications taken from the Java Grande benchmark (its third
section) [78]:

◦ Euler: solves the time-dependent Euler equations for flow in a channel with
a bump on one of the walls.

◦ MonteCarlo: a financial simulation that uses Monte Carlo techniques to price
products derived from the price of an underlying asset.

◦ MolDyn: a N-body code that models the behavior of N argon atoms interact-
ing under a Lennard-Jones potential in a cubic spatial volume with periodic
boundary conditions.

◦ Search: solves a game of connect-4 on a 6x7 board using an alpha-beta
pruned search technique.

◦ RayTracer: measures the performance of a 3D ray tracer. The scene rendered
contains 64 spheres, and is rendered at a resolution of 25x25 pixels.

As described in Section 6.2.1, we measure programs coded in Java (JRebel, DCE
VM and JMPLib), Python (Jython and PyPy), Groovy and JavaScript (Rhino, V8
and SpiderMonkey). We took Java programs and manually translated them into the
other languages. Although this translation might introduce a bias in the runtime per-
formance of the translated programs, we thoroughly checked that the same operations
were executed in all the implementations. We verified that the benchmarks compute
the same results in all the programs.

Table 2 shows the number of methods, classes, lines of code and different complexity
measures of the code used in the evaluation. The data presented in Table 2 is for the
original Java application.

23

Number Number Lines Non- Average Average Average Total
of of of comment cyclomatic design essential cyclomatic

methods classes code LOC complexity complexity complexity complexity

J
a
v
a

G
ra

n
d

e Euler 26 4 5,481 3,089 4.04 2 1.24 101
MolDyn 17 4 453 402 3.65 1.71 1 62
JGMontecarlo 167 14 2,947 1,125 1.51 1.25 1.22 252
Search 26 5 612 411 4.04 1.85 2.15 105
Raytracer 76 17 906 710 1.62 1.34 1.17 123

S
ci

M
a
rk FFT 32 7 502 409 2.78 1.41 1.34 89

LU 36 7 596 470 2.89 1.33 1.28 104
MonteCarlo 25 7 385 304 2.64 1.32 1.32 66
SOR 27 7 392 331 2.63 1.33 1.3 71

S
h

o
o
to

u
t BinaryTrees 21 7 220 207 1.81 1.48 1.43 38

Fannkuchredux 19 6 210 201 2.21 1.47 1.58 42
Mandelbrot 19 6 198 191 2.05 1.47 1.68 39
Nbody 28 8 287 285 1.68 1.46 1.25 47
SpectralNorm 24 7 274 262 1.96 1.62 1.29 47

Table 2: Details of the code used in the evaluation (the cyclomatic complexity of one method measures
the number of linearly independent paths through its execution; the design complexity measures how
interlinked a method control flow is with calls to other methods; and the essential complexity is a
graph-theoretic measure of just how ill-structured a method control flow is [79]).

6.2.3. Data analysis

We follow the methodology proposed by Georges et al. [80] to evaluate the runtime
performance of applications, including those executed on virtual machines that provide
JIT-compilation. In this methodology, two approaches are considered: 1) start-up
performance is how quickly a system can run a relatively short-running application;
2) steady-state performance concerns long-running applications, where JIT compilation
does not involve a significant variability in the total running time, and hot-spot dynamic
optimizations are applied.

To measure start-up performance, a two-step methodology is used:

1. We measure the execution time of running multiple times the same program. This
results in p (we take p = 30) measurements xi with 1 ≤ i ≤ p.

2. The confidence interval for a given confidence level (95%) is computed to elimi-
nate measurement errors that may introduce a bias in the evaluation. The con-
fidence interval is calculated using the Student’s t-distribution because we took
p = 30 [81].

In the subsequent figures, we show the mean of the confidence interval plus the width
of the confidence interval relative to the mean (bar whiskers). If two confidence intervals
do not overlap, we can conclude that there is a statistically significant difference with
a 95% (1-α) probability [80].

The steady-state methodology comprises the following four steps:

1. Each application (program) is executed p times (p = 30), and each execution per-
forms at least k (k = 10) different iterations of benchmark invocations, measuring

24

each invocation separately. We refer xij as the measurement of the jth benchmark
iteration of the ith application execution.

2. For each i invocation of the benchmark, we determine the si iteration where
steady-state performance is reached. The execution reaches that state when the
coefficient of variation (CoV , defined as the standard deviation divided by the
mean) of the last k iterations (from si−k+1 to si) falls below a threshold (2%).
To avoid an influence of the previous benchmark execution, a full heap garbage col-
lection is done before performing every benchmark invocation. Garbage collection
may still occur at benchmark execution, and it is included in the measurement.
However, this method reduces the non-determinism across multiple invocations
due to garbage collection kicking in at different times across different executions.

3. For each application execution, we compute the xi mean of the k benchmark
iterations under steady state:

xi =

si∑
j=si−k+1

xij

k

4. Finally, we compute the confidence interval for a given confidence level (95%)
across the computed means from the different application invocations using the
Student’s t-statistic described above. The overall mean is computed as x =∑p

i=1 xi/p. The confidence interval is computed over the xi measurements.

6.2.4. Data measurement

To measure the execution time of each benchmark invocation, we instrument the
applications with code that registers the value of high-precision time counters provided
by the Windows operating system. This instrumentation calls the native function
QueryPerformanceCounter of the kernel32.dll library. This function returns the
execution time measured by the Performance and Reliability Monitor of the operating
system [82]. We measure the difference between the beginning and the end of each
benchmark invocation to obtain the execution time of each benchmark run.

Memory consumption is measured following the same methodology to determine
the memory used by the whole process. For that purpose, we use the maximum size of
working set memory employed by the process since it was started (the PeakWorkingSet
property). The working set of a process is the set of memory pages currently visible
to the process in physical RAM memory. Those pages are resident and available for
an application to be used without triggering a page fault. The working set includes
both shared and private data. The shared data comprises the pages that contain all
the instructions that the process executes, including those from the process modules
and the system libraries. The PeakWorkingSet was measured with explicit calls to the
services of the Windows Management Instrumentation infrastructure [83].

All the tests were carried out on a 3.50 GHz Intel Core i5-4690 system with 8 GB
of RAM, running an updated 64-bit version of Windows 10. We used the 64-bit Java

25

Virtual Machine 1.8.0.144. All the benchmarks were executed after system reboot,
removing the extraneous load, and waiting for the operating system to be loaded.

If the P1 and P2 programs run the same benchmark in T and 2.5 × T milliseconds,
respectively, we say that runtime performance of P1 is 150% (or 2.5 times) higher than
P2, P1 is 150% (or 2.5 times) faster, P2 requires 150% (or 2.5 times) more execution time
than P1, or the performance benefit of P1 compared to P2 is 150%—the same for memory
consumption. To compute average percentages, factors and orders of magnitude, we
use the geometric mean.

6.3. Runtime performance

We developed a synthetic microbenchmark to first measure runtime performance of
the metaprogramming primitives; afterwards, we evaluate more realistic programs. The
microbenchmark measures execution time of static and instance method invocations,
and static and instance field accesses for reading and writing operations; all of them
added at runtime with intercession.

Figure 4 displays the execution times of the operations measured relative to JMPLib.
Startup and steady-state execution times are the same in this scenario, because each op-
eration is measured in a loop of 10,000 iterations. Therefore, the benchmark execution
reaches a steady state, producing the same results for both methodologies.

The average performance cost of JMPLib compared to Java is 17%, the lowest
one among the systems providing metaprogramming for the Java language (DCE VM,
JRebel and JMPLib). JRebel requires 5% more execution time than JMPLib. DCE
VM is only 1% slower than JMPLib, so there is no statistical significant difference
between them (i.e., 95% confidence intervals overlap [80]).

The reflective languages for the Java platform are significantly slower than the
systems for the Java language: Jython, Rhino and Groovy require, respectively, 12,
23 and 131 times more execution time than JMPLib. Analyzing the three highly-
optimized implementations of dynamic languages, they perform notably better than the
languages for the JVM. There is no significant difference between PyPy and JMPLib,
and SpiderMonkey and V8 require 11% and 119% more average execution time than
our system.

The execution times of the microbenchmark give us an initial evaluation of the
cost of metaprogramming. However, we should also evaluate more realistic programs
where metaprogramming is used in the implementation of real algorithms. To this
aim, we took 14 programs from the 3 benchmark suites described in Section 6.2.2. All
the programs were implemented using metaprogramming: structural intercession was
used to add all the methods and fields to classes; and methods were implemented with
dynamic code generation operations. Then, we run the application and measure its
execution time with the two methodologies described in Section 6.2.3.

Figure 5 shows the average startup and steady-state execution times for the 14
applications, relative to JMPLib startup (Table 3 details the non-relative steady-state
execution times for all the benchmarks). For both methodologies, JMPLib provides
the best runtime performance, requiring 23% (startup) and 21% (steady-state) more

26

0

1

2

3

4

Instance method Static method Instance field read Static field read Instance field write Static field write Instance field read & write Static field read & write

Java JMPlib DCE VM JRebel Jython Rhino Groovy PyPy V8 SpiderMonkey

Static method Instance field read Static field read Instance field write Static field write Instance field read & write Static field read & write

0

1

2

3

4

8.9

282

9.8
16.5

5.3

15.4

5

23

5.7

8.7

297

10.2

20.4

6.5

10
10.8

113 128 175 111

10216867266

E
xe

cu
ti

o
n

 t
im

e
re

la
ti

v
e

 t
o

 J
M

P
Li

b
E

xe
cu

ti
o

n
 t

im
e

re
la

ti
v
e

 t
o

 J
M

P
Li

b

Figure 4: Microbenchmark execution times relative to JMPLib.

execution time than Java with no meta-programming. Again, the difference between
DCE VM and JMPLib is no statistically significant (on average, JMPLib is 2% faster
than DCE VM). The other system for the Java language, JRebel, is the third fastest
implementation, consuming 63% and 68% more CPU time than JMPLib.

The three implementations of dynamic languages for the Java platform, provide a
slower metaprogramming alternative to the systems in the first group. Jython, Rhino
and Groovy are, respectively, 49, 182 and 94 times slower than JMPLib for startup;
and 45, 151 and 84 times for steady state.

The highly-optimized languages provide significantly better results than those com-
piled for the Java platform. Compared to JMPLib, V8, SpiderMonkey and PyPy re-
quire 23%, 50% and 250% more execution time for startup; and 49%, 89% and 327%
for steady state. Therefore, the JVM does not seem to be an efficient platform for
dynamically typed programs that use metaprogramming.

JMPLib provides metaprogramming services for the Java language taking advantage
of the hotspot runtime optimizations implemented by the JVM. These optimizations
achieve better runtime performance than the most optimized implementations of lan-
guages supporting metaprogramming. Moreover, the proposed system, which can be
used over any JVM implementation, provides similar runtime performance to the ex-

27

0

1

2

3

4

Java JMPlib DCE VM JRebel Jython Rhino Groovy PyPy V8 SpiderMonkey

Startup Steady state

E
x
e

c
u

ti
o

n
 t

im
e

re
la

ti
v

e
 t

o
 J

M
P

Li
b

st
a

rt
u

p

49
35

182

151 94 84

Figure 5: Average startup and steady-state execution times for 14 applications, relative to JMPLib
startup.

Java JMPLib
DCE

JRebel Jython Rhino Groovy PyPy V8
Spider

VM Monkey

S
ci

M
a
rk FFT 238 253 261 257 11,133 61,947 10,290 1,687 265 346

LU 418 576 589 579 127,025 423,181 62,919 5,848 1,973 2,888
MonteCarlo 76 89 92 373 2,488 16,420 3,466 854 331 481
SOR 263 355 362 394 12,893 48,432 8,418 1,119 485 481

S
h

o
o
to

u
t BinaryTrees 37 43 44 66 488 1,931 13,460 48 62 69

Fannkuchredux 194 189 196 193 4,426 21,429 3,289 301 236 204
Mandelbrot 671 723 738 737 67,698 259,166 8,438 7,000 1,436 1,498
Nbody 264 270 276 2,025 25,363 61,338 51,016 1,537 289 478
SpectralNorm 989 1,024 1,058 1,398 36,072 134,569 306,345 4,010 940 1,393

J
a
v
a

G
ra

n
d

e Raytracer 727 1,795 1,882 4,177 69,935 317,567 587,252 4,746 1,556 2,432
Euler 2,243 2,537 2,585 20,954 119,988 513,243 1,099,269 13,757 4,145 5,435
MolDyn 875 941 963 1,075 35,968 157,426 197,499 3,363 1,065 1,639
JGMontecarlo 1,833 2,487 2,572 2,740 125,222 483,691 582,911 14,614 4,565 4,811
Search 1,427 1,830 1,884 1,862 88,464 476,210 369,708 9,011 2,666 2,791

Table 3: Steady-state execution times (milliseconds) for the SciMark 2.0, Shootout and Java Grande
(large-scale applications) benchmarks. All the programs were implemented using metaprogramming:
structural intercession was used to add methods and fields to classes; and methods were implemented
with dynamic code generation operations. Then, the execution time of the programs are measured.

isting fastest implementation that modifies the JVM.
All the systems improve their performance for the steady-state methodology. How-

ever, all the systems running over the JVM show significantly higher improvements
(from 12% to 37%) than the three non-JVM dynamic languages (from 1% to 3%). Fur-
thermore, the Java platform provides better optimizations when the application reaches
a steady state at runtime.

6.4. Performance cost of metaprogramming

As described in Section 5.2, JMPLib performs code instrumentation when classes
are loaded into memory. To provide dynamic metaprogramming, classes are extended
and parts of their code are modified. In this section, we evaluate the cost of that
instrumentation, measuring the same programs as in the previous section but without
using metaprogramming. Therefore, we evaluate the cost of running a program in a
metaprogramming system when no metaprogramming is used.

28

E
x
e

cu
ti

o
n

 t
im

e
re

la
ti

v
e

 t
o

 J
M

P
Li

b

0

1

2

3

4

0

1

2

3

4

Java JMPLib DCE VM JRebel Jython Rhino Groovy PyPy V8 SpiderMonkey

47

27
35

43
36

39

Figure 6: Average startup and steady-state execution times when no metaprogramming is used, relative
to JMPLib.

Figure 6 shows average execution times for the 14 programs selected, when no
metaprogramming primitive is used. All the execution times are lower than those in
the previous section. In fact, there is no statistically significant difference between Java,
JMPLib and DCE VM for both startup and steady state. JMPLib is 25% (startup)
and 18% (steady state) faster than the other system for Java (JRebel).

The dynamic languages for the JVM are at least 25 times slower than JMPLib,
showing that the JVM executes Java much more efficiently than dynamic languages.
Although differences with the highly-optimized languages are not as high as those with
the dynamic languages for the JVM, they show execution times from 17% to 232%
higher than JMPLib. Therefore, the statically typed Java language performs notably
better than dynamic languages, even when metaprogramming is not used. Conse-
quently, JMPLib benefits from the performance gains of both the Java language and
the JVM.

6.5. Performance cost of thread safety

As mentioned, JMPLib provides a thread-safe execution mode that must be indi-
cated to the Java agent at startup. To evaluate its performance cost, we measure the
execution time of all the programs in Sections 6.3 and 6.4 in the thread safe mode.

On average, the programs that perform class adaptations at runtime (Section 6.3)
require 22.66% more execution time when the thread safe mode is enabled. If no
metaprogramming is used (Section 6.4), the performance difference is lower than the
error (2.8%), so there is no statistically significant difference.

6.6. Memory consumption

Figure 7 shows the average memory consumption for the 14 applications, relative to
Java. It distinguishes the two scenarios of Sections 6.3 and 6.4: when metaprogramming
primitives are used, and when only instrumentation takes place (no metaprogramming).

We can see how JMPLib is the JVM-based system that consumes fewer memory
resources. When no metaprogramming is used, it requires 97% more memory than
Java, and 4 times more when metaprogramming is used. As shown in Table 4, an

29

0

5

10

15

20

25

Java JMPlib DCE VM JRebel Jython Rhino Groovy PyPy V8 SpiderMonkey

Without metaprogramming With metaprogramming

M
e

m
o

ry
 c

o
n

su
m

p
ti

o
n

re
la

ti
v

e
 t

o
 J

a
v

a

Figure 7: Average memory consumption with and without metaprogramming, relative to Java.

instrumented application in JMPLib loads, on average, 157% more classes than Java,
causing the additional memory consumption. Those additional classes represent the
implementation of JMPLib plus the extra code added in the instrumentation phase.
When metaprogramming is used, Table 4 shows how JMPLib is the system that loads
more classes in the JVM to support application adaptation (136% more classes than
the instrumentation scenario).

DCE VM consumes 104% more memory than Java if no adaptation is required
(Figure 7). In that scenario, it loads 112% more classes than baseline Java program
(Table 4), so DCE VM creates a significant number of new types to allow the later
adaptation of the application. When metaprogramming is used, DCE VM consumes
4.1 more memory than Java and only loads 7% more classes than the previous scenario
(no metaprogramming). Therefore, most of the runtime adaptation is implemented
inside the virtual memory.

In Figure 7, we can see that JRebel consumes more memory than the two previous
systems: 2.6 and 5.4 times more than Java for instrumentation and metaprogramming
scenarios, respectively. Like JMPLib, JRebel is implemented over the standard JVM.
However, its implementation requires 182% more classes than JMPLib for instrumented
applications, and 23% more for program adaptation.

7. Conclusions

JMPLib shows how structural intercession and dynamic code generation can be
included in the Java platform efficiently, without modifying its virtual machine. We
instrument the classes at load time, replacing the implementation of methods to support
a lazy state transfer mechanism with one single level of indirection. Our system takes
advantage of the hotspot dynamic optimizations implemented by the JVM and the
robustness of the Java type system to provide good runtime performance and early
type error detection. Therefore, it is necessary to modify neither the JVM nor the
language implementation.

30

Java JMPLib DCE VM JRebel

No-meta No-meta Meta No-meta Meta No-meta Meta

J
a
v
a

G
ra

n
d

e Euler 424 1,353 3,067 1,001 1,091 3,494 3,602
MolDyn 588 1,349 3,072 995 1,102 3,492 3,597
JGMontecarlo 437 1,375 3,165 1,013 1,101 3,503 3,611
Search 421 1,353 3,079 1,000 1,095 3,494 3,599
Raytracer 460 1,208 2,981 1,023 1,027 3,517 3,628

S
ci

M
a
rk FFT 450 1,188 2,891 1,013 1,089 3,518 3,618

LU 451 1,188 2,860 1,014 1,089 3,524 3,619
MonteCarlo 451 1,188 2,874 1,014 1,090 3,519 3,624
SOR 451 1,189 2,864 1,014 1,090 3,520 3,613

S
h

o
o
to

u
t BinaryTrees 655 1,238 2,894 1,173 1,249 3,599 3,707

Fannkuchredux 452 1,201 2,866 1,013 1,089 3,505 3,613
Mandelbrot 452 1,201 2,888 1,013 1,089 3,510 3,614
Nbody 454 1,203 2,892 1,015 1,091 3,515 3,624
SpectralNorm 628 1,226 2,865 1,026 1,119 3,516 3,647

Table 4: Classes loaded at runtime by systems that support metaprogramming for Java (meta: ap-
plications created with metaprogramming, i.e. Section 6.3; no-meta: applications not using metapro-
gramming, i.e., Section 6.4).

The evaluation showed that the proposed system provides similar runtime perfor-
mance to DCE VM, the fastest existing system, which is implemented as a modification
of the JVM. For the 14 applications measured, JMPLib performs significantly better
than the metaprogramming languages for the JVM, and even better than the existing
highly-optimized non-JVM language implementations. JMPLib provides higher perfor-
mance benefits when the JVM reaches a steady state at runtime. Our system introduces
no runtime performance penalty when metaprogramming is not used, and consumes
fewer memory resources than the rest of implementations for the Java platform.

We are currently working on supporting dynamic inheritance (i.e., modification the
base class). At present, we allow modifying the base class of any non-native class—if
the source code of the Java platform is included in the JDK installation. In our current
version, native classes cannot be extended, and overriding of native methods is not
supported either.

Currently, JMPLib requires the source code of classes to provide structural inter-
cession. Although the standard library can be adapted (if the source code of the JDK
is included upon installation), we plan to overcome this limitation in future versions.
ASM will be used to perform code manipulation at the bytecode level.

The last step of the project is to allow the dynamic adaptation of whole Java appli-
cations. After modifying, recompiling and testing the new version of a program, it could
be replaced at runtime without stopping its execution and maintaining its state [84].

The current release of the JMPLib library, its source code, the execution time and
memory consumption tables, and all the examples and benchmarks used in this pa-
per can be downloaded from http://www.reflection.uniovi.es/invokedynamic/

download/2018/jss

31

http://www.reflection.uniovi.es/invokedynamic/download/2018/jss
http://www.reflection.uniovi.es/invokedynamic/download/2018/jss

Acknowledgments

This work was funded by the European Union, through the European Regional
Development Funds (ERDF), and the Principality of Asturias, through its Science,
Technology and Innovation Plan (Grant GRUPIN14-100). The authors also received
funds from the Banco Santander through its support to the Campus of International
Excellence.

References

[1] F. Ortin, J. M. Cueva, Dynamic adaptation of application aspects, Journal of
Systems and Software (2004) 229–243.

[2] D. Thomas, C. Fowler, A. Hunt, Programming Ruby, 2nd Edition, Addison-Wesley,
2004.

[3] D. Thomas, D. H. Hansson, A. Schwarz, T. Fuchs, L. Breed, M. Clark, Agile Web
Development with Rails. A Pragmatic Guide, Pragmatic Bookshelf, 2005.

[4] A. Hunt, D. Thomas, The pragmatic programmer: from journeyman to master,
Addison-Wesley Longman Publishing Co., Inc., Boston, Massachusetts, 1999.

[5] ECMA-357, ECMAScript for XML (E4X) Specification, 2nd edition, European
Computer Manufacturers Association, Geneva, Switzerland, 2005.

[6] Google, Angular: One framework. Mobile & desktop, http://angular.io (2018).

[7] DocumentCloud, Backbone.js, http://backbonejs.org (2018).

[8] Tilde inc., Ember: a framework for creating ambitious web applications, http:

//emberjs.com (2018).

[9] G. van Rossum, L. Fred, J. Drake, The Python Language Reference Manual, Net-
work Theory, United Kingdom, 2003.

[10] A. Latteier, M. Pelletier, C. McDonough, P. Sabaini, The Zope book, http://

zope.readthedocs.io/en/latest/zope2book/ (2018).

[11] Django Software Foundation, Django, the web framework for perfectionists with
deadlines, https://www.djangoproject.com (2018).

[12] F. Ortin, M. A. Labrador, J. M. Redondo, A hybrid class- and prototype-based
object model to support language-neutral structural intercession, Information and
Software Technology 44 (1) (2014) 199–219.

[13] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, D. Cox,
Design of the Java HotSpot Client Compiler for Java 6, ACM Transactions on
Architecture and Code Optimization 5 (1) (2008) 7:1–7:32.

32

http://angular.io
http://backbonejs.org
http://emberjs.com
http://emberjs.com
http://zope.readthedocs.io/en/latest/zope2book/
http://zope.readthedocs.io/en/latest/zope2book/
https://www.djangoproject.com

[14] Oracle, Java Virtual Machine Support for Non-Java Languages,
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/

multiple-language-support.html (2018).

[15] T. Lindholm, F. Yellin, G. Bracha, A. Buckley, The Java Virtual Machine Speci-
fication, Java SE 8 Edition, Addison Wesley, 2014.

[16] Oracle, The Java HotSpot virtual machine – technical white paper,
http://java.sun.com/products/hotspot/docs/whitepaper/Java_HotSpot_

WP_Final_4_30_01.pdf (2018).

[17] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, D. Cox,
Design of the Java HotSpot client compiler for Java 6, ACM Transactions on
Architecture and Code Optimization 5 (1) (2008) 1–32.

[18] B. Venners, Inside the Java Virtual Machine, 1st Edition, McGraw-Hill Profes-
sional, 1999.

[19] Z. Majo, T. Hartmann, M. Mohler, T. R. Gross, Integrating profile caching into the
hotspot multi-tier compilation system, in: Proceedings of the 14th International
Conference on Managed Languages and Runtimes, ManLang 2017, ACM, New
York, NY, USA, 2017, pp. 105–118.

[20] K. Czarnecki, U. W. Eisenecker, Generative Programming: Methods, Tools, and
Applications, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,
2000.

[21] P. Maes, Computational reflection, Ph.D. thesis, Laboratory for Artificial Intelli-
gence, Vrije Universiteit Brussel (January 1987).

[22] F. Ortin, J. M. Redondo, J. B. G. Perez-Schofield, Efficient virtual machine support
of runtime structural reflection, Science of Computer Programming 74 (2009) 836–
860.

[23] M. Golm, J. Kleinöder, Jumping to the meta level, in: P. Cointe (Ed.), Meta-Level
Architectures and Reflection, Springer Berlin Heidelberg, Berlin, Heidelberg, 1999,
pp. 22–39.

[24] Oracle, Java agents to instrument programs running on the JVM,
https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/

package-summary.html (2018).

[25] Oracle, JSR 292: Supporting Dynamically Typed Languages on the JavaTM Plat-
form, https://jcp.org/en/jsr/detail?id=292 (2011).

[26] P. Conde, F. Ortin, JINDY: A Java library to support invokedynamic, Computer
Science and Information Systems 11 (1) (2014) 47–68.

33

http://docs.oracle.com/javase/7/docs/technotes/guides/vm/multiple-language-support.html
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/multiple-language-support.html
http://java.sun.com/products/hotspot/docs/whitepaper/Java_HotSpot_WP_Final_4_30_01.pdf
http://java.sun.com/products/hotspot/docs/whitepaper/Java_HotSpot_WP_Final_4_30_01.pdf
https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html
https://jcp.org/en/jsr/detail?id=292

[27] F. Ortin, P. Conde, D. F. Lanvin, R. Izquierdo, Runtime performance of
invokedynamic: an evaluation with a Java library, IEEE Software 31 (4) (2014)
82–90.

[28] T. Würthinger, C. Wimmer, L. Stadler, Dynamic code evolution for Java, in:
Proceedings of the 8th International Conference on the Principles and Practice of
Programming in Java, PPPJ’10, ACM, New York, NY, USA, 2010, pp. 10–19.

[29] T. Würthinger, C. Wimmerb, L. Stadler, Unrestricted and safe dynamic code
evolution for Java, Science of Computer Programming 78 (5) (2013) 481–498.

[30] S. Subramanian, M. Hicks, K. S. McKinley, Dynamic software updates: a VM-
centric approach, in: Proceedings of the 30th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’09, ACM, New York, NY,
USA, 2009, pp. 1–12.

[31] T. Gu, C. Cao, C. Xu, X. Ma, L. Zhang, J. Lü, Low-disruptive dynamic updating of
Java applications, Information and Software Technology 56 (9) (2014) 1086–1098.

[32] B. Redmond, V. Cahill, Supporting unanticipated dynamic adaptation of applica-
tion behaviour, in: B. Magnusson (Ed.), Proceedings of the European Conference
on Object-Oriented Programming, ECOOP’02, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2002, pp. 205–230.

[33] J. Andersson, T. Ritzau, Dynamic code update in Jdrums, in: Proceedings of the
ICSE00 Workshop on Software Engineering for Wearable and Pervasive Comput-
ing, 2000, pp. 1–3.

[34] J. Andersson, A deployment system for pervasive computing, in: Proceedings of
the International Conference on Software Maintenance, SM, 2000, pp. 262–270.

[35] S. Malabarba, R. Pandey, J. Gragg, E. Barr, J. Fritz Barnes, Runtime support
for type-safe dynamic Java classes, in: E. Bertino (Ed.), Proceedings of the Euro-
pean Conference on Object-Oriented Programming, ECOOP’00, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2000, pp. 337–361.

[36] M. Pukall, C. Kästner, G. Saake, Towards unanticipated runtime adaptation of
Java applications, in: Proceedings of the Asia-Pacific Software Engineering Con-
ference, APSEC’08, 2008, pp. 85–92.

[37] A. Orso, A. Rao, M. J. Harrold, A technique for dynamic updating of Java software,
in: Proceedings of the IEEE International Conference on Software Maintenance
(ICSM 2002), Montreal, Canada, 2002, pp. 649–658.

[38] L. Pina, M. Hicks, Rubah: Efficient, general-purpose dynamic software updating
for Java, in: 5th Workshop on Hot Topics in Software Upgrades, USENIX, San
Jose, CA, 2013, pp. 1–6.

34

[39] ZeroTurnAround, JRebel, reload code changes instantly, https:

//zeroturnaround.com/software/jrebel (2018).

[40] J. Kabanov, Reloading Java Classes 401: HotSwap and JRebel Be-
hind the Scenes, https://zeroturnaround.com/rebellabs/reloading_java_

classes_401_hotswap_jrebel (2018).

[41] A. R. Gregersen, B. N. Jørgensen, Dynamic update of Java applications - Balancing
change flexibility vs programming transparency, Journal of Software Maintenance
and Evolution 21 (2) (2009) 81–112.

[42] A. R. Gregersen, D. Simon, B. N. Jørgensen, Towards a Dynamic-update-enabled
JVM, in: Proceedings of the Workshop on AOP and Meta-Data for Software Evo-
lution, RAM-SE ’09, ACM, New York, NY, USA, 2009, pp. 2:1—-2:7.

[43] G. Kiczales, J. des Rivires, D. G. Bobrow, The Art of the Metaobject Protocol,
The MIT Press, Cambridge, 1991.

[44] W. Taha, T. Sheard, Multi-stage programming with explicit annotations, in:
Proceedings of the 1997 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-based Program Manipulation, PEPM ’97, ACM, New York, NY, USA,
1997, pp. 203–217.

[45] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, P. Giannini, Fickle: Dynamic
object re-classification, in: J. L. Knudsen (Ed.), Proceedings of the European Con-
ference on Object-Oriented Programming, ECOOP’01, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2001, pp. 130–149.

[46] D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca, A
type preserving translation of Flickle into Java, Electronic Notes in Theoretical
Computer Science 62 (2002) 69–82.

[47] M. Serrano, Wide classes, in: R. Guerraoui (Ed.), Proceedings of the European
Conference on Object-Oriented Programming, ECOOP’99, Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1999, pp. 391–415.

[48] M. Serrano, Bigloo. A practical Scheme compiler. User manual for version 4.2b.,
http://www-sop.inria.fr/mimosa/fp/Bigloo/doc/bigloo.pdf (2018).

[49] D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca, A
provenly correct translation of Fickle into Java, ACM Transactions on Program-
ming Languages and Systems 29 (2007) 1–67.

[50] C. Chambers, Predicate classes, in: O. M. Nierstrasz (Ed.), Proceedings of the
European Conference on Object-Oriented Programming, ECOOP’93, Springer,
Berlin, Heidelberg, 1993, pp. 268–296.

35

https://zeroturnaround.com/software/jrebel
https://zeroturnaround.com/software/jrebel
https://zeroturnaround.com/rebellabs/reloading_java_classes_401_hotswap_jrebel
https://zeroturnaround.com/rebellabs/reloading_java_classes_401_hotswap_jrebel
http://www-sop.inria.fr/mimosa/fp/Bigloo/doc/bigloo.pdf

[51] C. Chambers, Object-oriented multi-methods in Cecil, in: O. L. Madsen (Ed.),
Proceedings of the European Conference on Object-Oriented Programming,
ECOOP’92, Springer Berlin Heidelberg, Berlin, Heidelberg, 1992, pp. 33–56.

[52] G. Hjálmtýsson, R. Gray, Dynamic C++ classes: A lightweight mechanism to
update code in a running program, in: Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ATEC ’98, USENIX Association, Berkeley,
CA, USA, 1998, pp. 1–6.

[53] J. M. Redondo, F. Ortin, J. M. C. Lovelle, Optimizing reflective primitives of
dynamic languages, International Journal of Software Engineering and Knowledge
Engineering 18 (6) (2008) 759–783.

[54] J. M. Redondo, F. Ortin, Efficient support of dynamic inheritance for class- and
prototype-based languages, Journal of Systems and Software 86 (2) (2013) 278–301.

[55] F. Ortin, J. M. Redondo, I. Lagartos, Efficient runtime metaprograming ser-
vices for Java (support material website), http://www.reflection.uniovi.es/
invokedynamic/download/2018/jss (2018).

[56] Oracle, Java 8 functional interfaces, https://docs.oracle.com/javase/8/docs/
api/java/util/function/package-summary.html (2018).

[57] I. Lagartos, JMPLib documentation, https://computationalreflection.

github.io/JMPLib (2018).

[58] D. van Bruggen, Java Parser and Abstract Syntax Tree for Java 9, https://

github.com/javaparser/javaparser (2018).

[59] G. Erich, H. Richard, J. Ralph, V. John, Design patterns: elements of reusable
object-oriented software, Addison-Wesley Professional Computing Series, 1995.

[60] Oracle, Java 8 ToolProvider, https://docs.oracle.com/javase/7/docs/api/

javax/tools/ToolProvider.html (2018).

[61] OW2, ASM Java bytecode manipulation and analysis framework, http://asm.

ow2.org (2018).

[62] N. Nystrom, M. Clarkson, A. Myers, Polyglot: An Extensible Compiler Framework
for Java, in: G. Hedin (Ed.), Compiler Construction, Vol. 2622 of Lecture Notes
in Computer Science, Springer, Berlin / Heidelberg, 2003, pp. 138–152.

[63] J. F. Roddick, A survey of schema versioning issues for database systems, Infor-
mation and Software Technology 37 (7) (1995) 383–393.

[64] J. Kleinöder, M. Golm, MetaJava - a platform for adaptable operating-system
mechanisms, in: Proceedings of the Workshops on Object-Oriented Technology,
ECOOP ’97, Springer-Verlag, London, UK, UK, 1998, pp. 507–514.

36

http://www.reflection.uniovi.es/invokedynamic/download/2018/jss
http://www.reflection.uniovi.es/invokedynamic/download/2018/jss
https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html
https://computationalreflection.github.io/JMPLib
https://computationalreflection.github.io/JMPLib
https://github.com/javaparser/javaparser
https://github.com/javaparser/javaparser
https://docs.oracle.com/javase/7/docs/api/javax/tools/ToolProvider.html
https://docs.oracle.com/javase/7/docs/api/javax/tools/ToolProvider.html
http://asm.ow2.org
http://asm.ow2.org

[65] The Jython project, Jython: Python for the Java platform, http://www.jython.
org (2018).

[66] Mozilla, Rhino, an open-source implementation of JavaScript written in
Java, https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
(2018).

[67] Apache Groovy, Groovy, a multi-faceted language for the Java platform, http:
//groovy-lang.org (2018).

[68] J. Quiroga, F. Ortin, SSA transformations to facilitate type inference in dynami-
cally typed code, The Computer Journal 60 (9) (2017) 1300–1315.

[69] M. Garcia, F. Ortin, J. Quiroga, Design and implementation of an efficient hybrid
dynamic and static typing language, Software: Practice and Experience 46 (2)
(2015) 199–226.

[70] A. Rigo, M. Fijalkowski, C. F. Bolz, A. Cuni, B. Peterson, A. Gaynor, H. Ardo,
H. Krekel, S. Pedroni, PyPy official homepage, http://pypy.org (2018).

[71] J. M. Redondo, F. Ortin, A comprehensive evaluation of widespread Python im-
plementations, IEEE Software 34 (4) (2015) 76–84.

[72] Google Inc., The V8 JavaScript engine, https://code.google.com/p/v8 (2018).

[73] Mozilla, The SpiderMonkey JavaScript engine, https://developer.mozilla.

org/en-US/docs/Mozilla/Projects/SpiderMonkey (2018).

[74] B. Redmond, V. Cahill, Supporting unanticipated dynamic adaptation of applica-
tion behaviour, in: B. Magnusson (Ed.), European Conference on Object-Oriented
Programming (ECOOP), Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp.
205–230.

[75] M. Golm, Design and implementation of a meta architecture for Java, Ph.D. the-
sis, Institute for Mathematical Machines and Data Processing of the Friedrich
Alexander Universityl (January 1999).

[76] R. Pozo, B. Miller, Scimark 2.0: How fast is your Java platform for number crunch-
ing?, http://math.nist.gov/scimark2 (2018).

[77] I. Gouy, Shootout, the computer language benchmarks game, http://

benchmarksgame.alioth.debian.org (2018).

[78] EPCC, Java Grande benchmark suite, https://www.epcc.ed.ac.uk/

research/computing/performance-characterisation-and-benchmarking/

java-grande-benchmark-suite (2018).

37

http://www.jython.org
http://www.jython.org
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
http://groovy-lang.org
http://groovy-lang.org
http://pypy.org
https://code.google.com/p/v8
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
http://math.nist.gov/scimark2
http://benchmarksgame.alioth.debian.org
http://benchmarksgame.alioth.debian.org
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/java-grande-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/java-grande-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/java-grande-benchmark-suite

[79] B. Leijdekkers, Metrics reloaded: automated code metrics plugin for IntelliJ IDEA,
https://github.com/BasLeijdekkers/MetricsReloaded (2018).

[80] A. Georges, D. Buytaert, L. Eeckhout, Statistically rigorous Java performance
evaluation, in: Proceedings of the 22nd Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications, OOPSLA, ACM, New
York, NY, USA, 2007, pp. 57–76.

[81] D. J. Lilja, Measuring computer performance: a practitioner’s guide, Cambridge
University Press, 2005.

[82] MicrosoftTechnet, Windows server techcenter: Windows performance monitor,
http://technet.microsoft.com/en-us/library/cc749249.aspx (2015).

[83] Microsoft, Windows management instrumentation, http://msdn.microsoft.

com/en-us/library/windows/desktop/aa394582(v=vs.85).aspx (2015).

[84] R. H. R. Pereira, J. B. G. Perez-Schofield, F. Ortin, Modularizing application
and database evolution – an aspect-oriented framework for orthogonal persistence,
Software: Practice and Experience 47 (2) (2017) 193–221.

38

https://github.com/BasLeijdekkers/MetricsReloaded
http://technet.microsoft.com/en-us/library/cc749249.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582(v=vs.85).aspx

	Introduction
	Background
	Metaprogramming and reflection

	Related work
	Modifications of the Java platform to support metaprogramming
	Metaprogramming over the standard Java platform
	Other approaches to structural intercession

	Motivating example
	Design of JMPLib
	Architecture
	Instrumentation
	Intercession
	Dynamic code evaluation
	Thread safety

	Evaluation
	Qualitative evaluation
	Methodology of the quantitative evaluation
	Selected systems
	Selected benchmarks
	Data analysis
	Data measurement

	Runtime performance
	Performance cost of metaprogramming
	Performance cost of thread safety
	Memory consumption

	Conclusions

