
Towards an Easily Programmable IoT Framework

based on Microservices

Francisco Ortina,∗, Donna O’Sheab

aUniversity of Oviedo, Computer Science Department,
Calvo Sotelo s/n, 33007, Oviedo, Spain

bCork Institute of Technology, Computer Science Department,
Rossa Avenue, Bishopstown, Cork, Ireland

Abstract

The number of devices connected to the Internet of Things (IoT) is increas-
ing so rapidly that end-users with no programming background will demand
the implementation of their own IoT services and applications. However, IoT
programming is still a difficult task because of device heterogeneity, dynamic
changes in the physical environment, and scalability, security, accessibility
and availability issues. Many of these liabilities are also present in distributed
systems, where microservice architectures are successfully used. Therefore, in
this article we propose an IoT framework based on microservices to ease the
development of IoT software. Visual programming is proposed to permit end-
users to build simple services and applications. Visual dataflow abstractions
declaratively identify the “things” and services in the network, creating a
new level of indirection to create applications capable of adapting to changes
in the IoT network. The devices connected to the network must provide
a semantic self-description in order to support a global discovery service.
End-users could describe the domain logic with existing visual programming
abstractions previously proven to be suitable for non-programmers. The vi-
sual programs will be transparently compiled and deployed as microservices
in a cloud-based environment, optimizing network traffic and runtime per-
formance, while ensuring scalability, accessibility and availability. Software

∗Corresponding author
Email addresses: ortin@uniovi.es (Francisco Ortin), donna.oshea@cit.ie (Donna

O’Shea)
URL: http://www.di.uniovi.es/~ortin (Francisco Ortin),

http://cs.cit.ie/research-staff.donna-oshea.biography (Donna O’Shea)

Preprint submitted to Journal of Software October 9, 2017

container technologies will be utilized to provide self-deployment of microser-
vices.

Keywords: Internet of Things, visual programming language,
microservices, cloud computing, software container

1. Motivation

IoT refers to the networked interconnection of everyday objects, which are
often equipped with ubiquitous intelligence [1]. IoT increases the ubiquity of
the Internet by integrating every object for interaction, leading to a highly
distributed network of devices communicating with human beings as well
as other devices [2]. IoT applications are present in many different areas
such as building and home automation, health care, smart cities, education,
transport, manufacturing and environment monitoring [3]. Gartner forecasts
that 8.4 billion “things” will be connected worldwide at the end of 2017, up
31 percent from 2016, and will reach 20.4 billion by 2020 [4].

IoT applications involve interactions among a set of different heteroge-
neous devices. Some of them may just interact with the physical environment
(e.g., sensors and actuators), others may provide very specific services (e.g.,
data storage and social network interaction), and others allow programming
new services (e.g., dedicated servers and cloud computing). This heterogene-
ity is not only present in the physical devices but also in the big range of
platforms, operating systems and programming languages used to create IoT
applications. Besides this heterogeneity, other issues such as device discovery,
security and scalability make the development of IoT applications a difficult
task [5].

When developing an IoT application, developers build software using dif-
ferent types of physical devices for a particular purpose. Ideally, an IoT
framework facilitates this task by providing high-level abstractions to or-
chestrate the services running in the heterogeneous devices. The approach
of using high-level abstractions to express local device behavior was already
addressed in the field of Wireless Sensor Networks (WSN) to facilitate ap-
plication development and tolerance to failure [6, 7]. Another approach is
based on macroprogramming or large scale, where the global behavior of dis-
tributed computation is declaratively specified over a WSN, hiding from the
programmer details such as distributed-code generation, remote data access
and management, and inter-node program flow coordination [8].

2

Although WSN is an important element of the IoT domain, IoT consid-
ers a greater range of devices [9]. Therefore, IoT applications commonly deal
with different types of devices, platforms, operating systems and program-
ming languages [10]. To deal with this high level of heterogeneity, model-
driven [10] and generative framework approaches have emerged [11]. These
systems allow the high-level macroprogramming of heterogeneous devices
with different domain-specific programming languages to specify the differ-
ent concerns involved in an IoT application [10]. Following this trend, we
believe that the forthcoming growth of IoT will demand systems that allow
the creation of IoT applications and services by end users with no program-
ming background [12] (IoT services represent business activities provided as
black boxes, allowing the interaction with the physical world and commonly
consisting of other underlying services [13]; whereas IoT applications provide
different IoT services to the final user requiring human interaction [14]).

Previous studies have identified visual programming languages as a suit-
able approach to build software by users with no programming background [15,
16]. If fact, there exist different visual programming languages and tools to
develop programs for IoT devices [17]. We think visual programming could
also be used to create global IoT services and applications by end-users, by
visually orchestrating the existing services in an IoT network including those
interacting with the physical environment through heterogeneous devices.

In this paper, we identify all the key elements to create an IoT framework
to ease the development of IoT applications and services. The services pro-
vided by the physical devices, by the IoT framework and by the user are pro-
vided as microservices, taking advantage of the adaptability, heterogeneity,
and fault tolerance benefits of the microservice architecture [18]. End users
with no programming skills will be able to describe IoT applications and
services with a visual language to declaratively specify how to orchestrate
the existing IoT microservices for a specific purpose. They will also iden-
tify the “things” declaratively, allowing the development of IoT services and
applications capable of adapting to physical changes in the network. Frame-
work and user microservices (non-device microservices) will be deployed in a
cloud-based environment, ensuring scalability, accessibility and availability.
The proposed system will transparently move those microservices to select
the most appropriate node to deploy them.

The rest of the paper is structured as follows. The following section de-
scribes the architecture of the proposed IoT framework and its key elements.
Section 3 illustrates an example case scenario to show how the different el-

3

Sensor
MS

Actuator
MS

Reprogrammable
Node MS

Discovery
MS

Query
MS

User
MS

Physical Devices
(i.e., “things”)

Connectivity

Dynamic Discovery

Cloud Environment

Microservices

Collaborations &
Processes

Applications

1

2

3

4

5

6

7

S
ec

ur
ity

Figure 1: Architecture of the proposed IoT framework.

ements of the proposed framework are used in a particular IoT application.
Related work is detailed in Section 4, and Section 5 presents the conclusions
and the future work.

2. Key elements

We first identify the key elements required to build the proposed frame-
work, where end-users could visually program IoT applications and services.
Figure 1 shows how these elements are related in the proposed architecture,
based on the IoT World Forum Reference Model (WFRM) [19].

2.1. Microservice architecture

A microservice is a small application with a single responsibility, which
can be deployed, scaled and tested independently [20]. Microservice archi-
tecture is a particular way to design software orchestrating and choreograph-
ing these independently deployable services [18]. Common benefits of this

4

architecture are decentralized control and data management, automated de-
ployment, and evolutionary design [18]. These features make microservice
architecture ideal for the proposed IoT framework. Its “smart endpoint and
dump pipes” approach makes applications to be highly decoupled and cohe-
sive, focusing on their own domain logic and acting as filters that receive a
request, apply domain logic and produce a response [18]. The logic behind
these services are commonly known by end users, who generally do not have
any programming experience.

As shown in Figure 1, the proposed IoT framework offers most of its func-
tionality as microservices (layer 5) to develop IoT applications and services
with all the benefits of a microservice architecture. First, physical devices
such as sensors, actuators and computing nodes offer their functionalities
as microservices. Second, other microservices abstract the different facili-
ties provided by the IoT framework, such as device discovery (Section 2.2).
Finally, the user may visually program their own domain-specific microser-
vices (Section 2.5) and declarative queries (Section 2.3) to avoid the coupling
between devices and applications.

The known benefits of microservice architecture [18] are particularly suit-
able in the IoT scenario. Its evolutionary design facilitates the replacement
and upgrade of microservices, suitable to address the required adaptability to
physical changes in IoT environments. The decentralized governance benefit
allows the use of different technologies and programming languages for each
microservice, supporting the existing heterogeneity in IoT applications. Its
design for failure considers that any microservice could fail due to unavail-
ability of the supplier, as happens in distributed IoT systems, providing more
resilience to applications. The infrastructure automation benefit promotes
scalability and automated deployment of those microservices not running in
specific IoT devices (e.g., framework services such as device discovery and
query, and user-defined services). Finally, the smart endpoint and dump
pipes approach allows the creation of applications by end-users using orches-
tration and choreography tools. Since the logic of the smart endpoints are
known by the final users, they could use visual abstractions to orchestrate
the existing microservices for a particular purpose.

2.2. Dynamic discovery of self-described elements

The number of “things” connected to IoT networks increase rapidly.
These “things” provide different interfaces and services. New devices are
usually added to the network, and existing ones could be replaced and even

5

removed. IoT applications must be able to adapt to these physical changes in
the IoT networks. Therefore, an IoT framework should provide a mechanism
to dynamically discover and integrate IoT devices and any other microser-
vice [21].

In Figure 1, we identify the dynamic discovery of IoT elements as the third
layer, above the physical devices and connectivity layers of the WFRM. Every
time a new device is connected to the network, a dynamic self-description of
the service(s) it provides should be included in the system. The numerous
existing standards to describe devices (such as SensorML, OGC/SWE, W3C
SSN and HyperCat) should be considered and generalized with a common
scheme. Semantic-based technologies will play an important role in this
context [22].

The user will be able to create new applications (layer 6) and services
(layer 5) by using a visual programming language over the IoT framework
(Section 2.5). After authentication, they will only be allowed to access those
devices they are authorized for. The new services created by users will also
be included in the dynamic discovery service (User microservice in Figure 1),
available to create other applications and services. This dynamic discovery
layer will use one of the existing approaches to discover microservices in a
microservice architecture [23].

2.3. Declarative access to elements

As mentioned, the physical devices connected to the Internet are con-
stantly changing. For instance, new sensors and actuators may be added
to a building, some may be removed, and computing nodes may be repro-
grammed. Therefore, the explicit access to physical devices implies high
coupling and hence adaptability issues [24].

To avoid this coupling, we propose the identification of devices by means
of declarative queries that select the them by dynamically checking their
description, which may include sematic information (layer 3) [25]. For in-
stance, instead of consulting the presence sensors 1, 2 and 3 in room A,
we may just call a query microservice to know whether there is somebody
in room A. Therefore, if new presence sensors are added to that room, or
simply replaced with different ones, the application using the query will con-
tinue working. The proposed declarative access to physical devices represent
a new abstraction level between the IoT devices and applications, permitting
applications to adapt to changes in the physical environment.

6

These queries will be programmed by the end user using a visual dataflow
language (an example will be shown in Section 3). Its implementation is
deployed as another microservice to be used by IoT applications. The mi-
croservice architecture allows applying this approach not only to devices, but
also to any microservice (layer 5).

2.4. Microservice deployment in a cloud environment

Those microservices providing the functionalities implemented by the
physical devices (device microservices) will be running in the devices them-
selves. However, those providing functionalities of the IoT framework and
those programmed by the users (non-device microservices) will be dynam-
ically deployed to minimize network traffic and maximize runtime perfor-
mance. For instance, the example query of presence sensors in a room would
be ideally deployed close to the network where the sensors are connected to.
The IoT framework will use its dynamic discovery microservice (Section 2.2)
to locate the best node to deploy that microservice.

Besides choosing the most appropriate node, non-device microservices will
be deployed to a cloud environment (layer 4). In this way, scalability, accessi-
bility and availability are ensured [26]. The use of a high-level simple visual
language also facilitates this task, since the language could be easily and
transparently translated into different languages (e.g., Python, JavaScript
and Ruby) and frameworks (e.g., Django, Node.js and Rails, respectively).

Microservices are developed in different languages, platforms, operating
systems and frameworks, communicating with a lightweight mechanism (of-
ten an HTTP API) [18]. In a cloud-based environment, the deployment of
these microservices require the configuration of cloud instances where mi-
croservices can run. Software containers (operating-system-level virtualiza-
tion) allow the existence of multiple isolated user-space instances, and are
easily packaged, lightweight and designed to run anywhere [27]. For this rea-
son, the framework could use software containers such as Docker and CoreOS
RKT to provide self-deployment of microservices [28].

2.5. Visual programming

When end-users connect different devices to the Internet, they will prob-
ably be interested in building services to orchestrate those devices for some
particular purpose. Due to the rapid growth of IoT, end users with no pro-
gramming background will eventually demand the implementation of their
own services [29]. Existing studies have identified visual programming as a

7

suitable approach to build simple programs by non-programmers [15, 16]. For
this reason, we propose the use of visual languages to allow non-programmers
to build simple IoT microservices and applications, and the declarative queries
identified in Section 2.3.

The users will have a visual mechanism to identify the existing microser-
vices they are authorized to use. Utilizing these microservices, a domain-
specific application, procedure or another service could be implemented with
visual abstractions. The visual compiler will generate code using the appro-
priate technology in the server transparently selected for deployment (Sec-
tion 2.4). The generated code could use orchestration and choreography tech-
nologies used in microservice architectures such as Activiti, Apache ODE,
MQTT and RabbitMQ [23].

3. Example case scenario

In order to show how the proposed framework works, we describe an
example use case. In this example, an end-user creates a service that connects
to the web calendar of a company, selects the meeting rooms of one building,
and warms up each room by turning on its heaters five minutes before each
scheduled meeting.

Figures 2 and 3 show mock-ups of a web front-end to visually program
the framework. First, the user authenticates himself or herself using any web
browser. Then, the left-hand side of the system shows the different elements
the user is authorized to use. Examples of those elements are the running
services, queries, sensors, actuators, processing nodes, data sources, storage
and programming elements. Except the last one, all of them are implemented
as microservices (Figure 1), but the programming environment classifies them
differently, regarding its nature (Services, Queries, Sensors, etc.).

In order to implement the room warming service described above, the
user first creates a declarative Presence query to know if there is somebody
in one room (as explained later, the heaters will turn off when nobody is
in the room). Figure 2 shows this use case. We follow a dataflow approach
similar to visual tools such as RapidMiner and Node-RED. The query being
created has three inputs (country, place and roomID) to identify the room
we want to warm up. Its output is a Boolean value indicating whether there
is someone in that room.

The query implements a filter for the sensors the user has access to (i.e.,
the Sensors box). The first Filter box identifies those placed in the spec-

8

Figure 2: Creation of a declarative query.

ified room, place and country (right-hand side of Figure 2). The second
Filter selects only those sensors aimed at presence detection. Finally, the
Any higher order function returns one single value representing the presence
of somebody in that room (true if any presence sensor detects that).

The visual query language is declarative, not imperative. That is, the
dataflow in Figure 2 is not implemented eagerly, running one filter after
the other, as proposed in the Pipes and Filters architecture pattern [30].
Its execution does not take all the sensors in the system and then applies
the three filters sequentially. Instead, the language takes the declarative
query and creates an efficient routine to populate the list of sensors from
the dynamic discovery layer in Figure 1. This layer is implemented with
a database management system that, for instance, indexes the sensors by
authorized user. The resulting sensor set could be cached when no device
has been changed in the network.

Before creating the room warming service, other two queries are built
following the same approach (left-hand side of Figure 3): Meetings to know
the meetings in rooms booked for today, and Heaters that returns the set
of heaters in one room. Now, the user is ready to build the room warming
service using these three queries.

Services and programs are created with visual programming elements,
following an approach similar to Scratch and Blockly. Figure 3 shows a
sample service that starts running at 7:00 am, using an event block. Then,
the Meetings query is called to get the meetings booked for today, and a
loop iterates through them. A new thread is created for each room, which

9

Figure 3: Creation of an example application.

waits until 5 minutes before the meeting. Then, all the heaters in that room
are set to 21 degrees Celsius, using the Heaters query. The following loop
waits 10 minutes and, if the is no one in the room, turns off the heaters and
terminates.

For each query and service developed, the user may simulate its execu-
tion (top right of Figures 2 and 3). Simulation asks the user about runtime
events to facilitate testing. If the simulation is correct, the user will then
click on the Deploy button. The framework will implement the user-defined
microservices (the three queries and the room warming service) in a specific
technology (e.g., language and application framework) depending on the ex-
isting configuration of the computation node they will be deployed on. It
could also use any of the orchestration and choreography tools existing for
microservice architectures [23]. Then, the framework transparently selects
the best computation node to deploy that service depending on different
dynamic criteria such as network topology and traffic, the devices used by
the service, and the computation capacity available in the nodes. In addi-

10

tion, non-device microservices are deployed in the cloud, guaranteeing high
availability, scalability and accessibility. When necessary, software containers
could be used to provide self-deployment of microservices.

If presence sensors or heaters in the building are replaced, the service will
continue working, because it is programmed against the Presence, Heaters
and Meetings declarative queries. The requirement is that the description
of new presence sensors and heaters indicate the room they are located and
their purpose. Once the room warming service is created, anyone authorized
could execute it using any device (e.g., a smartphone or tablet) connected to
the Internet.

4. Related work

Artem Katasonov identified the eventual necessity of empowering non-
programmers to easily program the devices connected to smart environ-
ments [12]. According to Katasonov, such a system must provide high-level
programming abstractions, on-the-fly deployment, flexibility to add and re-
move devices from the environment, and a mechanism to restrict user access
to the existing services. He proposes the use of Ontology Driven Software
Engineering (ODSE) to support the composition of components to create ap-
plications supported by the graphical Smart Modeler tool [31]. He also iden-
tifies the utilization of Scratch as an important direction of future work [12].

Some authors detected the similarities between large-scale distributed ap-
plications and IoT environments: they require big scalability and adaptability
capabilities to adapt to dynamically changing environments [32]. Since the
microservice architecture has been successfully used with distributed systems,
it was applied to the design of the DIMMER Smart City IoT platform [32].
DIMMER uses semantic information to provide the dynamic discovery of
devices, while microservices support its decentralized management.

Node-RED is a tool for wiring together hardware devices, APIs, and
online services connected to the same network [33]. It provides a visual
browser-based programming system that generates JavaScript code to be
deployed as part of a Node.js server. Unlike our proposed system, Node-
RED follows a local programming approach rather than distributed macro-
programming [34]. Although data sources are connected graphically, the user
must write JavaScript code when specific processing is necessary. Therefore,
it does not provide visual programming for general-purpose programming
(Figure 3), and hence the user must be able to program in JavaScript. The

11

query system described in this article has been partially inspired in Node-
RED and RapidMiner [35].

Other visual programming languages have been defined to program IoT
devices. NETLabTK is a visual drag and drop web interface to connect
sensors, actuators, media, and networks associated with smart objects in
IoT environments [36]. Ardublock is a graphical programming language for
Arduino integrated in Eclipse, while allowing the developer to write Java
code [37]. Modkit is another visual language to program different micro-
controllers including Arduino, littleBits, Particle Photon, MSP340, Tiva C
launch pad, and Wiring S [38]. S4A customizes Scratch to program Arduino
devices [39]. miniBloq is an open source graphical programming environment
for Multiplo, Arduino, physical computing devices and robots, which allows
writing C/C++ and Python text code [40]. All of these languages are fo-
cused on programming devices rather than distributed IoT applications that
use different devices and services.

There exist different research works aimed at tackling the heterogeneity of
IoT applications. One approach is using Model-Driven Development (MDD),
as Srijan [10]. Srijan separates different concerns such as domain, platform,
deployment and architecture. Different roles in the IoT development are also
identified: domain experts, software designers, application developers, device
developers and network managers. Each one uses a domain-specific language
to specify their concerns, and the final application is generated by combining
all the specifications. Other IoT systems based on MDD are PervML [41],
DiaSuite [42], ATaG [43] and Pantagruel [44].

Macroprogramming is another approach to deal with the heterogeneity
of IoT development. Opposite to expressing the behavior of local nodes,
macroprograms describe the behavior of a distributed system. Kairos is pro-
vided as a Python extension that hides from the programmer the details of
distributed-code generation and instantiation, remote data access and man-
agement, and inter-node program flow coordination [8]. Parts of the Python
program are compiled to native code and installed in the nodes. A runtime
library implements runtime calls between nodes, managing access to each
node state. MacroLab is a macroprogramming framework that provides a
vector programming abstraction similar to Matlab for Cyber-Physical Sys-
tems (CPSs) [45]. It implements a deploy-specific code decomposition to
distribute the operations in the macroprogram across the network.

Olympus is a high-level programming model for pervasive computing envi-
ronments [46]. It specifies with high-level descriptions the changing resources

12

available in the runtime environment, such as services, applications, devices,
devices, locations and users. The framework resolves the high-level descrip-
tions into actual entities based on constraints, ontological descriptions, ex-
isting resources, space-level policies and the current context. Then, a system
called Gaia divides the application into components that are migrated across
the devices in the environment [47].

There are different IoT reference architectures aimed at handling the
common requirements of IoT applications, and offer them as a superset of
reusable functionalities [48]. The Industrial Internet Reference Architecture
(IIRA) is a standard-based open architecture for Industrial Internet Sys-
tems [49]. The IIRA has industry applicability to drive interoperability, map
applicable technologies, and guide technology and standard development.
The description and representation of the architecture are generic and at a
high level of abstraction. The IIRA distills and abstracts common character-
istics, features and patterns from common use cases, prominently those that
have been defined in the Industrial Internet Consortium (IIC).

IoT-A proposes an architectural reference model together with the def-
inition of an initial set of key building blocks [50]. Using an experimental
paradigm, IoT-A combines top-down reasoning about architectural principles
and design guidelines with simulation and prototyping in exploring the tech-
nical consequences of architectural design choices. This architectural model
is now being maintained by the IoT Forum.

Fog Computing is a highly virtualized platform that provides compute,
storage, and networking services between end devices and traditional Cloud
Computing Data Centers [51]. It uses collaborative end-user clients to carry
out a substantial amount of storage (rather than stored primarily in cloud
data centers), communication (rather than routed over the internet back-
bone), control, configuration, measurement and management (rather than
controlled primarily by network gateways). This architecture provides low
latency and location awareness, wide-spread geographical distribution, a very
large number of nodes, predominant role of wireless access and heterogeneity.
Therefore, fog computing has been identified as an appropriate architecture
for IoT services and applications [51]. The OpenFog Reference Architecture
is aimed at developing an open architecture fog computing environment [52].

13

5. Conclusions

Although IoT programming is a difficult task, end-users will demand pro-
gramming their own IoT services and applications. In this position paper, we
describe the architecture of an IoT framework to facilitate this task, describ-
ing its key elements. We propose visual general-purpose programming to
specify the domain logic, and dataflow abstractions to provide data process-
ing and the declarative identification of devices. Semantic self-descriptive
information should be provided for each smart object to support the im-
plementation of a global discovery service. A microservice architecture for
the proposed IoT framework assists in providing adaptability to physical
changes in IoT networks, the usage of different technologies and languages,
failure recovery, and the utilization orchestration and choreography tools. A
cloud-based environment supporting those microservices eases network traf-
fic optimization, scalability, accessibility and availability. Software containers
could be used to transparently deploy microservices in the IoT network.

We plan to implement the propose IoT framework in the following years.
Its development will require a multidisciplinary team with knowledge in soft-
ware development, network administration, embedded devices, programming
language design, cloud computing, compiler construction and distributed
middleware.

Acknowledgments

This work has been funded by the European Union, through the Euro-
pean Regional Development Funds (ERDF); and the Principality of Asturias,
through its Science, Technology and Innovation Plan (grant GRUPIN14-100).
We have also received funds from the Banco Santander through its support
to the Campus of International Excellence.

References

[1] F. Xia, L. T. Yang, L. Wang, A. Vinel, Internet of Things, International
Journal of Communication Systems 25 (9) (2012) 1101–1102.

[2] L. Atzori, A. Iera, G. Morabito, The Internet of Things: A survey,
Computer Networks 54 (15) (2010) 2787–2805.

[3] L. D. Xu, W. He, S. Li, Internet of things in industries: a survey, IEEE
Transactions on Industrial Informatics 14 (2) (2014) 2233–2243.

14

[4] Gartner newsroom, Gartner Says 8.4 Billion Connected “Things” Will
Be in Use in 2017, Up 31 Percent From 2016, http://www.gartner.

com/newsroom/id/3598917 (2017).

[5] C. Sarkar, S. N. A. U. Nambi, R. V. Prasad, A. R. Biswas, A scalable
distributed architecture towards unifying IoT applications, in: Internet
of Things, WF-IoT, 2014, pp. 508–513.

[6] S. Madden, M. J. Franklin, J. M. Hellerstein, W. Hong, Tag: A tiny ag-
gregation service for ad-hoc sensor networks, ACM SIGOPS Operating
Systems Review 36 (SI) (2002) 131–146.

[7] S. Madden, M. J. Franklin, J. M. Hellerstein, W. Hong, The design of
an acquisitional query processor for sensor networks, in: Proceedings
of the International Conference on Management of Data, SIGMOD ’03,
ACM, New York, NY, USA, 2003, pp. 491–502.

[8] R. Gummadi, O. Gnawali, R. Govindan, Macro-programming wireless
sensor networks using kairos, in: Proceedings of the International Con-
ference on Distributed Computing in Sensor Systems, DCOSS’ 05, 2005,
pp. 126–140.

[9] C. Alcaraz, P. Najera, J. Lopez, R. Roman, Wireless sensor networks
and the Internet of Things: Do we need a complete integration?, in:
1st International Workshop on the Security of the Internet of Things
(SecIoT’10), IEEE, Tokyo (Japan), 2010, pp. 1–8.

[10] P. Patel, D. Cassou, Enabling high-level application development for the
internet of things, Journal of Systems and Software 103 (2015) 62 – 84.

[11] D. Cassou, B. Bertran, N. Loriant, C. Consel, A generative programming
approach to developing pervasive computing systems, in: Proceedings
of the Eighth International Conference on Generative Programming and
Component Engineering, GPCE ’09, ACM, New York, NY, USA, 2009,
pp. 137–146.

[12] A. Katasonov, Enabling non-programmers to develop smart environ-
ment applications, in: Symposium on Computers and Communications,
ISCC, IEEE, 2010, pp. 1059–1064.

15

[13] M. Thoma, S. Meyer, K. Sperner, S. Meissner, T. Braun, On IoT-
services: Survey, classification and enterprise integration, in: IEEE
International Conference on Green Computing and Communications,
2012, pp. 257–260.

[14] D. Guinard, P. Spiess, V. Trifa, S. Karnouskos, D. Savio, Interacting
with the SOA-based internet of things: Discovery, query, selection, and
on-demand provisioning of web services, IEEE Transactions on Services
Computing 3 (2010) 223–235.

[15] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, Y. Kafai,
Scratch: Programming for all, Communications of the ACM 52 (11)
(2009) 60–67.

[16] A. Wilson, D. Moffatt, Evaluating Scratch to introduce younger
schoolchildren to programming, in: 22nd Annual Workshop of the Psy-
chology of Programming Interest Group, 2010, pp. 1–12.

[17] P. P. Ray, A survey on visual programming languages in in-
ternet of things, Scientific Programming 2017 (2017) (2017) 1–6.
doi:10.1155/2017/1231430.

[18] M. Fowler, J. Lewis, Microservices, http://www.martinfowler.com/

articles/microservices.html (2014).

[19] Internet of Things World Forum, Building the Internet of Things,
http://cdn.iotwf.com/resources/72/IoT_Reference_Model\

_04_June_2014.pdf (2014).

[20] J. Thönes, Microservices, IEEE Software 32 (1) (2015) 116–117.

[21] D. Georgakopoulos, P. P. Jayaraman, M. Zhang, R. Ranjan, Discovery-
Driven Service Oriented IoT Architecture, in: IEEE Conference on Col-
laboration and Internet Computing, CIC 2015, Hangzhou, China, Oc-
tober 27-30, 2015, 2015, pp. 142–149.

[22] M. Serrano, H. N. M. Quoc, D. L. Phuoc, M. Hauswirth, J. Soldatos,
N. Kefalakis, P. P. Jayaraman, A. B. Zaslavsky, Defining the stack for
service delivery models and interoperability in the Internet of Things:

16

A practical case with OpenIoT-VDK, IEEE Journal on Selected Areas
in Communications 33 (4) (2015) 676–689.

[23] S. Newman, Building Microservices: Designing Fine-Grained Systems,
1st Edition, O’Reilly Media, 2015.

[24] H. B. Pötter, A. Sztajnberg, Adapting heterogeneous devices into an iot
context-aware infrastructure, in: Proceedings of the 11th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’16, ACM, New York, NY, USA, 2016, pp. 64–74.

[25] W. Wang, S. De, G. Cassar, K. Moessner, Knowledge representation in
the Internet of Things: Semantic modelling and its applications, Au-
tomatika - Journal for Control, Measurement, Electronics, Computing
and Communications 54 (4) (2013) 388–400.

[26] P. P. Deshmukh, B. G. Pund, M. A. Pund, Cloud computing assure high
accessibility, scalability and processing power with windows azure, IJCA
Proceedings on International Conference on Benchmarks in Engineering
Science and Technology 2012 ICBEST (4) (2012) 11–14.

[27] D. Merkel, Docker: Lightweight linux containers for consistent develop-
ment and deployment, Linux Journal 2014 (239).

[28] A. Cockcroft, State of the art in microservices, in: DokerCon Europe
(keynote talk), DockerCon’14, 2014, pp. 1–78.

[29] H. Lieberman, F. Paterno, V. Wulf (Eds.), End User Development,
Springer, 2006.

[30] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal,
Pattern-Oriented Software Architecture - Volume 1: A System of Pat-
terns, Wiley Publishing, 1996.

[31] A. Katasonov, M. Palviainen, Towards ontology-driven development of
applications for smart environments, in: Proceedings of the 8th Annual
IEEE International Conference on Pervasive Computing and Communi-
cations Workshops, Mannheim, Germany, 2010, pp. 696–701.

[32] A. Krylovskiy, M. Jahn, E. Patti, Designing a smart city internet of
things platform with microservice architecture, in: Proceedings of the

17

2015 3rd International Conference on Future Internet of Things and
Cloud, FICLOUD ’15, IEEE Computer Society, Washington, DC, USA,
2015, pp. 25–30.

[33] Node-RED, A visual tool for wiring the Internet of Things, https:

//nodered.org (2017).

[34] M. Blackstock, R. Lea, Toward a distributed data flow platform for
the web of things (distributed node-red), in: Proceedings of the 5th
International Workshop on Web of Things, WoT ’14, ACM, New York,
NY, USA, 2014, pp. 34–39.

[35] RapidMiner, Data science behind every decision, https://rapidminer.
com (2017).

[36] NETLabTK, NETLabTK: tools for tangible design, http://www.

netlabtoolkit.org (2017).

[37] Ardublock, Ardublock: a graphical programming language for Arduino,
http://blog.ardublock.com (2017).

[38] Modkit: programming your world, Modkit, http://www.modkit.com

(2017).

[39] S4A, S4A: a Scratch modification for simple programming of Arduino,
http://s4a.cat (2017).

[40] miniBloq, An open source programming environment for Multiplo and
Arduino, http://blog.minibloq.org (2017).

[41] E. Serral, P. Valderas, V. Pelechano, Towards the model driven devel-
opment of context-aware pervasive systems, Pervasive and Mobile Com-
puting 6 (2) (2010) 254–280.

[42] D. Cassou, J. Bruneau, C. Consel, E. Balland, Toward a tool-based
development methodology for pervasive computing applications, IEEE
Transactions on Software Engineering 38 (6) (2012) 1445–1463.

[43] A. Pathak, V. K. Prasanna, High-Level Application Development for
Sensor Networks: Data-Driven Approach, in: S. Nikoletseas, J. D. Rolim

18

(Eds.), Theoretical Aspects of Distributed Computing in Sensor Net-
works, Monographs in Theoretical Computer Science. An EATCS Series,
Springer Berlin Heidelberg, 2011, pp. 865–891.

[44] Z. Drey, J. Mercadal, C. Consel, A taxonomy-driven approach to visually
prototyping pervasive computing applications, in: Proceedings of the
Domain-Specific Languages, IFIP TC 2 Working Conference, DSL, 2009,
pp. 78–99.

[45] T. W. Hnat, T. I. Sookoor, P. Hooimeijer, W. Weimer, K. Whitehouse,
Macrolab: a vector-based macroprogramming framework for cyber-
physical systems., in: T. F. Abdelzaher, M. Martonosi, A. Wolisz (Eds.),
SenSys, ACM, 2008, pp. 225–238.

[46] A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. H. Campbell, M. D.
Mickunas, Olympus: A high-level programming model for pervasive
computing environments, in: Proceedings of the Third IEEE Interna-
tional Conference on Pervasive Computing and Communications, PER-
COM ’05, IEEE Computer Society, Washington, DC, USA, 2005, pp.
7–16.

[47] M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Camp-
bell, K. Nahrstedt, Gaia: A Middleware Infrastructure to Enable Active
Spaces, IEEE Pervasive Computing (2002) 74–83.

[48] M. Weyrich, C. Ebert, Reference architectures for the Internet of Things,
IEEE Software 33 (1) (2016) 112–116.

[49] Industrial Internet Consortium, Industrial Internet Reference Architec-
ture, https://www.iiconsortium.org/IIRA-1-7-ajs.pdf (2015).

[50] IoT Forum, Internet of Thinks Architecture. Introduction
to the Architectural Reference Model for the Internet of
Things, http://iotforum.org/wp-content/uploads/2014/09/

120613-IoT-A-ARM-Book-Introduction-v7.pdf (2017).

[51] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role
in the internet of things, in: Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, MCC ’12, ACM, New
York, NY, USA, 2012, pp. 13–16.

19

[52] OpenFog Consortium, OpenFog Reference Architecture for Fog
Computing, https://www.openfogconsortium.org/wp-content/

uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf

(2017).

20

