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Abstract: An emerging research topic called big code has recently appeared. Big code is based on the idea 
that open source code repositories can be used to create new kind of programming tools and services to 
improve software reliability and construction. We discuss different fields of application of big code, and the 
key issues to implement tools aimed at improving software construction following this approach. We 
describe the existing works that have already used this idea to build tools for vulnerability detection, software 
deobfuscation, automatic code completion for API usage, and efficient querying using detailed source-code 
information. Then, we propose different fields of application and the key issues found. We identify eight 
different fields where big code may be applied, and describe different examples for each field. We also detect 
seven different issues that must be tackled when creating tools based on the big code approach. 
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1. Introduction 

In the last years, there has been an increasing interest in big data, namely processing and analyzing large 

datasets. The objective of big data is to extract value from large datasets, such as the creation of predictive 
models, generation of reports, data visualization, finding relationships between variables, and object grouping 

(clustering). Big data is being used in many different fields such as medicine, finance, healthcare, education, 

social networks and genomics. 
At the same time, the use of open source code repositories (GitHub, SourceForge, BitBucket and CodePlex) 

has significantly risen in the last decade. One example of this trend is the publication of the 10 millionth 
GitHub repository. The first million repositories were created just under 4 years. The 10 millionth just took 

48 days [1]. These massive codebases imply a unique opportunity for creating new kind of programming 
tools and services to improve software reliability and construction, using machine learning and probabilistic 
reasoning. Due to its similarity with big data, this research field has been termed “big code” [2]. 

The main contributions of this paper are the description of the emerging topic of big code, and the new 

opportunities it creates for improving software construction. To this end, we identify the existing work in this 
field (Section 2), the expected fields of application of big code (Section 3), and different issues to be 

considered in the usage of massive codebases (Section 4). 

2. Existing Works 

The Software Reliability Lab in the Department of Computer Science at ETH Zurich has produced several 



  

notable results in big code using statistical reasoning. They created JSNice, a kind of deobfuscator that 
predicts names of variables and built-in type annotations of JavaScript programs, using conditional random 
fields (CRFs) [3]. They trained the CRF model with 10,517 projects from GitHub, predicting the correct names 

for 63.4% of program identifiers and 81.6% for type annotations. Slang is another tool to perform code 

completion for programs using APIs, reducing the problem of code completion to a natural-language 
processing problem of predicting probabilities of sentences. They used both n-gram and recurrent neural 
network models, obtaining the desired completion in the top 3 candidates in 90% of the cases. They also 

investigated statistical machine translation from C# to Java, achieving 41% of the translated methods to be 

semantically equivalent to the original ones [4]. 
The Machine Learning and Computer Security Research (MLSEC) at the University of Göttingen has also 

developed different tools that process program representations to improve software security. In particular, 
the Joern tool represents programs as code property graphs, a combination of abstract syntax trees (AST), 

control flow graphs (CFG) and program dependency graphs (PDG), and stores them in a graph database [5]. 

That representation allows modeling templates of common vulnerabilities with graph traversals to identify 
buffer and integer overflows, format string vulnerabilities, and memory disclosures. With that infrastructure, 
they managed to identify 18 previously unknown vulnerabilities in the source code of the Linux kernel. 

The MLSEC has also used supervised learning algorithms for discovering vulnerabilities in source code [6]. 

They take the ASTs of code with known vulnerabilities to extrapolate them by determining structural patterns. 
Then, functions potentially suffering from the same flaw can be suggested to the analyst. They applied this 
method to discover 10 zero-day vulnerabilities in 4 open-source projects [6]. Chucky is another tool that 

exposes missing checks in vulnerable code, learning from the analysis of programs that do not have those 

vulnerabilities [7]. Chucky found 12 previously unknown vulnerabilities in 2 popular software projects. 
Regarding the representation of programs, Urma and Mycroft argue that graph data models and their 

associated query languages provide a unifying conceptual model, and an efficient scalable implementation to 
store full source-code detail [8]. Based on this idea, Wiggle is a tool that stores overlapping graphs as a 

mixture of AST, type information, CFG and data-flow levels. The experiments showed that Wiggle scales to 

multi-million-line programs, and it is more expressive than source-code query languages [8]. 

3. Potential Fields of Application 

We now discuss some fields of application of big code that we believe might be active topics of research in 
the following years. We classify them regarding the main techniques to be used, and describe for each 

classification some example problems worth solving. 

 Statistical modelling methods. Statistical methods such as conditional random fields can be used to 

extract useful information from existing applications, and provide statistically likely solutions to 
problems that are difficult to solve with traditional rule based techniques [3]. These methods can be 
used to provide code completion after analyzing recurrent idioms, perform automatic type annotation 

of gradually typed languages [3], obtain semantic information of programs that use contracts (Eiffel, 

Code Contracts and D) and improve deobfuscation –not only for variable names. 

 Machine learning for the extrapolation of known patterns. Yamaguchi et al. [6] showed how ASTs of 
programs showing a similar pattern can be embedded in a vector space to identify those patterns, and 

then extrapolate them to a code base. This technique can be used, apart from vulnerability detection, 
for predicting errors not detected by compilers, such as lack of exception handling in languages 

without the throws descriptor, null reference exceptions, and race conditions. In general, we think 

this technique may be used to extrapolate patterns of undesirable code.  

 Statistical analysis of co-occurrence and anomaly detection. By analyzing high-quality code, a 



  

probabilistic model can be built by computing the probability of co-occurrence of different elements in 

the same source code pattern (e.g., in Java overriding hashCode also commonly requires overriding 

equals [9]). Similarly, it can also be used for anomaly detection compared to the codebase of 

high-quality programs (e.g., using a Java AutoCloseable object with neither a try-with-resources 

statement nor a finally block). This technique was used by MLSEC to determine missing checks in 

vulnerable source code [7], but it can be generalized to many different scenarios. 

 Natural language processing (NLP). NLP techniques such as n-gram and recurrent neural network 
models were used to synthesize sequences of calls to some APIs, together with their arguments [10]. 
The combination of NLP and statistical reasoning may be used for other tasks such as the automatic 

creation of program test cases, default implementation of methods and functions, automatic 
classification of programs behaviors by using latent semantic analysis [6], and sophisticated code 
completion from program structures and source comments.  

 Supervised learning. The program representation may be extended with other labeled information for a 

set of training codebases, to later predict that labeled information. The inferred function may be 
valuable to improve the software construction process. One example is improving the decompilation 
process, learning from recurrent patterns that specific compilers use to generate binary code [11]. 

Another example is predicting the performance benefit of annotating the type of a variable in a 

gradually typed language, using regression techniques [12]. 

 Knowledge-based systems. Both Joern and Wiggle (Section 2) represent programs as different kinds of 
graphs in a graph database, and later perform queries using a domain-specific language (DSL) provided 

by that database. They used this approach to detect vulnerabilities, covariant array assignment, and 
the use of Java generic wildcards [8]. The valuable information extracted by performing static program 

analysis (e.g., methods overriding another method, methods calling another method, classes 
implementing one interface, and types using another type) can be extended by a rule-based knowledge 

system, which in turn uses a DSL to gather that valuable information stored in the graph database. 
With this approach, experts may create systems for numerous purposes, such detecting 

non-refactored code, measuring software metrics, ensuring high-level guidelines like the well-known 

Oracle and Carnegie Mellon Java guidelines [13], detecting typical semantic errors not checked by the 
compiler [9], and identifying typical performance problems.  

 Web-based collaborative systems. The previous rule-based knowledge system could be provided as a 
website as JSNice [3], so that programmers may check the limitations of their code online. They could 

also include specific knowledge as experts to be used in their own programs. In a collaborative 
environment, these rules may even be promoted to the global system. The system may also be used as 
a service provider, following the programming copilot metaphor proposed by Kite [14]. Besides, the 

programs used in the collaborative system could also be incorporated in the system codebase. 

 Unsupervised learning. It can be analyzed how different programming elements such as methods, 
classes, packages and interfaces are classified, considering all the different features that can be 

extracted from its representation. The groups created can be used for many different purposes: 
discovering unknown software patterns, finding relationships between program elements, helping to 

reform functionality that has become dispersed because of software evolution, identifying software 
with related functionality, recommending source code patterns based on the program structures in the 

same group, and program anomaly detection. 

4. Issues to be Considered 

To achieve the identified fields of application of big code, the following issues need to be addressed. 



  

1) Static program analysis. To gather detailed information about programs, static program analysis must 
be performed. To this end, the information gathering process may be included as a plugin of an existing 
compiler, extracting the analysis information. This process commonly requires considerable computing 

resources. 

2) Program representation. Programs can be represented with multiple different structures such as ASTs, 
CFGs, PDGs, type graphs, and data-flow graphs. Besides, these graphs also overlap, since some nodes 
may belong to different structures at the same time. A structured representation of programs 

representing this information must be carefully defined, since it will be the knowledge base of the 

system.  
3) Efficient storage. The program representation described above should be stored in a database to 

perform efficient queries. Both Wiggle and Joern use the Neo4j graph database. In Wiggle, storing 12 
Java well-known projects took between 2 and 10 times longer than compiling it with javac. 

4) Knowledge representation. The knowledge representation is based on queries against the program 

representation. Therefore, a powerful and efficient query language must be used to retrieve this 
knowledge. Besides, that language should also support knowledge inference and graph transformations. 
Wiggle and Joern use, respectively, the Cypher and Gremlin query languages.  

5) Embedding in vector space. The graph structures identified in the second point of this enumeration 

represent a rich source of information. However, most of the machine learning algorithms cannot be 
applied directly to this type of data, since they commonly use numerical vectors. A key issue is how 
these graph structures are transformed into vectors, since they need to capture the structure of the 

programs. The MLSEC group has experimented with different transformations for generalizing 

vulnerability extrapolation [6]. 
6) Algorithm selection and runtime performance. Another issue to tackle is the algorithm to be used for 

each problem. Besides the problem of selecting the appropriate algorithm, we also have to deal with the 
computation requirements of each algorithm. Similar to big data, the information gathered by statically 

analyzing massive codebases can produce impressive large datasets for training predictive models.  

7) Identifying high-quality software. In the previous section, we propose different fields of application 
where the learning algorithm should be trained with high-quality software. A difficult task to undertake 
is identifying those programs with the expected level of quality.  

5. Conclusions 

We have analyzed how the emerging big code research field can create new opportunities for building 

programming tools and services to improve software reliability and construction. We think this research line 
will be active in the following years, and we identify different fields of applications based on the works that 
have recently emerged. 

We are currently working on improving decompilation using machine learning [11], and predicting the 

performance gain of adding type annotations to variables in a gradually typed program [12]. We also plan to 
build a web-based collaborative system to support a rule-based expert system based on the knowledge 

extracted from static program analysis, stored in graph databases. 
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