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Abstract

The concepts of abstract and virtual machines have been used for many different
purposes to obtain diverse benefits such as code portability, compiler simplification,
interoperability, distribution and direct support of specific paradigms. Despite of
these benefits, the main drawback of virtual machines has always been execution
performance. Consequently, there has been considerable research aimed at improv-
ing the performance of virtual machine’s application execution compared to its
native counterparts. Techniques like adaptive Just In Time compilation or efficient
and complex garbage collection algorithms have reached such a point that Microsoft
and Sun Microsystems identify this kind of platforms as appropriate to implement
commercial applications.

What we have noticed in our research work is that these platforms have het-
erogeneity, extensibility, platform porting and adaptability limitations caused by
their monolithic designs. Most designs of common abstract machines are focused on
supporting a fixed programming language and the computation model they offer is
set to the one employed by the specific language. We have identified reflection as a
basis for designing an abstract machine, capable of overcoming the previously men-
tioned limitations. Reflection is a mechanism that gives our platform the capability
to adapt the abstract machine to different computation models and heterogeneous
computing environments, not needing to modify its implementation. In this paper
we present the reflective design of our abstract machine, example code extending
the platform, a reference implementation, and a comparison between our implemen-
tation and other well-known platforms.
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1 Introduction

An abstract machine is the specification of a computational processor without
intending to implement it in hardware. Common to most abstract machines are
a program store and state, usually including a stack and registers, and they
are defined by means of its programming-language’s operational semantics.
The term virtual machine is commonly used to denote a specific abstract
machine implementation (sometimes called emulator, interpreter or runtime),
in similar way as we use the term program for implementations of an algorithm.

The employment of specific abstract machines implemented by different vir-
tual machines has brought many benefits to different computing systems. The
most relevant are platform neutrality, compiler simplification, application dis-
tribution, direct support of high-level paradigms and application interoper-
ability [4]. These benefits of using abstract machines were firstly employed in
an exclusive way. As an example, UNCOL [15] was designed to be used as the
universal intermediate code of every compiler, but it was never employed as a
distributed platform.

Java designers employed many benefits of using abstract machines in order
to build a platform for delivering and running portable, dynamic and secure
object-oriented applications on networked computer systems [10]. However,
its design is focused on supporting the Java programming language, making it
a difficult target for languages other than Java [12] (e.g. functional or logical
applications).

Microsoft .NET platform is a system based on an abstract machine whose
common language infrastructure (CLI, ECMA-335) has been designed from
the ground up claiming to be a target for multiple languages, obtaining the
previously mentioned benefits. Implementations of this abstract machine have
been included in the new Windows Server 2003 family operating systems [25].
However, the design of .NET CLI and Java virtual machine have been per-
formed in a monolithic manner, causing different drawbacks:

• Fixed computational model. There is a lack of an adaptability mechanism for
the computing system. The abstract machine definition describes whether a
garbage collector exits or not, but it does not offer the possibility to specify
or adapt one. This way, real support to the C++ computational model
could not be offered. It happens the same to other features like persistence
or thread scheduling.
• Extensibility and heterogeneity. Instead of defining an extensibility tech-

nique capable of adapting the abstract machine to heterogeneous environ-
ments, Java and MS.NET defines different monolithic implementations de-
pending on where the computing system will be deployed (JME, JSE and
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JEE in Java’s case, and .NET Compact Framework and .NET Framework
for MS.NET).
• Ease of porting. Porting an abstract-machine based platform means making

it work on a new operating system or/and hardware. In Java, not only the
virtual machine implementation must be recompiled and adapted to the
new platform, but also we need to port implementation of native methods.
In the .NET Framework this port should be performed implementing the
Platform Adaptation Layer (PAL) [14]. The PAL exposes a collection of 242
interfaces that provides an abstraction layer between the runtime and the
operating system; these interfaces must be natively implemented on each
target platform.
• Direct application interaction. Java and .NET virtual machine implementa-

tions execute a different virtual-machine instance to run each program. This
is commonly justified by security reasons or system resources protection,
which might be performed by untrusted malicious code or simply erroneous
programs. The main drawback of this scheme is that different applications
cannot directly interact with one another, being necessary to use a specific
middleware or component architecture.

The main reason that causes these disadvantages might be security. As we
have pointed out, a virtual machine should be a language-independent com-
puting engine of the (operating) system —not just a specific language runtime.
Following this point of view, security restrictions should be applied to appli-
cation adaptation and interaction at the operating system level, in an integral
way —but not restricting these features in the whole computing system.

In the design of our abstract machine, called nitrO, we have overcome the
platform limitations pointed out by using reflection techniques [17]. The ni-
trO abstract machine offers an adaptable and extensible computing system,
in which the virtual machine implementation is reduced to a minimum set of
primitives. The platform can be extended by means of its own language, thus
offering the possibility to adapt itself to heterogeneous environments —not
needing to implement different platform versions. Great heterogeneity is of-
fered by its reduced set of primitives and a high ease of porting is achieved by
extending the platform on its own language, using reflection.

The rest of this paper is structured as follows. In the next section, we present
the architecture of the system. The abstract machine design is presented in
Section 3 and Section 4 shows an example of a scenario extending the plat-
form with its own language. Subsequently, we describe specific concerns of our
virtual machine implementation and how interaction with the platform is per-
formed. Finally, we compare runtime performance and resource consumption
with other well-known platforms, reporting the ending conclusions.
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2 System Architecture

As we have pointed out in Section 1, adaptability, extensibility, heterogeneity,
and application interaction are the main lack of most of current platforms
based on abstract machines. We will now explain those principles followed in
the nitrO abstract machine design, in order to avoid these deficiencies.

2.1 Minimum Set of Primitives

The design of the nitrO abstract machine has been performed trying to min-
imize the set of computational primitives used in its design, achieving two
major benefits:

(1) Reducing the virtual machine implementation facilitates its deployment
on heterogeneous systems. Therefore, devices with reduced computing
and memory resources, as well as applications interested in interpreting
nitrO abstract machine code (e.g. Internet browsers), could implement a
virtual machine easily.

(2) If the abstract machine specification is undersized, porting its implemen-
tation to different operating systems will be straightforward.

2.2 Extensibility Mechanism

The reduced set of primitives gives the platform the benefits mentioned above,
but the low-level abstraction of its programming-language makes it difficult to
develop applications at a higher level of abstraction. Therefore, an extension
mechanism should be offered to avoid this limitation.

We have identified and used reflection as the main technique to achieve system
extensibility and adaptability. Reflection is the capability of a computational
system to reason about and act upon itself, adjusting itself to changing condi-
tions [11]. The computational domain of a reflective system is enhanced by its
own representation, offering its semantics and structure as computable data.

From the wide range of types of reflection [16], we have employed runtime
introspection and structural reflection as a dynamic extensibility technique.
Both have been employed to offer the platform the ability to extend itself on its
own programming language. Basic and advanced computing features (from it-
eration loops or type systems to garbage collectors or persistence frameworks)
can be developed using the reflective capabilities of nitrO. This capacity has
two advantages:
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(1) Any code implemented to extend the system is completely platform-
independent —since it has been expressed in the abstract machine lan-
guage.

(2) Its heterogeneous feature is not decreased. As an example, Java virtual
machine has a native interface (Java Native Interface, JNI) that can be
used to extend the platform (e.g., to modify the garbage collector). This
native code is platform-dependent and, therefore, is part of the virtual
machine implementation; otherwise, extending nitrO does not imply any
virtual machine modification (i.e., the garbage collector can be imple-
mented in its own language, or a new type can be added).

2.3 Object-Oriented Prototype-Based Computational Model

The computational model defined by the abstract machine will be used in the
overall system, thus the abstraction level must be carefully specified:

• A high abstraction level would reduce the platform heterogeneity feature.
• A low abstraction level would make it difficult the interoperation of applica-

tions implemented in different programming languages —the programmer
should be capable of easily accessing any application regardless of its pro-
gramming language.

We have used the object-oriented paradigm to define the abstract-machine’s
computational-model, in order to facilitate program interaction. However, we
have reduced the computation model to a minimum, suppressing the existence
of classes. Thus we selected the object-oriented prototype-based model, in
which the main abstraction is the object [1]. The use of this model provides
different benefits to our platform:

(1) Suppressing the class abstraction simplifies the computational model, de-
creasing the size of the virtual machine and making its design more het-
erogeneous.

(2) Although this computational model is simpler than the one based on
classes, there is no loss of expressiveness; i.e. any class-based program
can be translated into the prototype-based model [23]. A common trans-
lation from the class-based object-oriented model is by following the next
scheme (Figure 1):
• Similar object’s behavior (methods of each class) is represented by trait

objects. Their only members are methods. Thus, their derived objects
share the behavior they define.
• Similar object’s structure (attributes of each class) is represented by

prototype objects. This object has a set of initialized attributes that
represent a common structure.
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Fig. 1. Translation between the two object-oriented models.

• Copying prototype objects (constructor invocation) is the same as cre-
ating instances of a class. A new object with a specific structure and
behavior is created.

(3) Class-based languages like Java [9], Smalltalk [5] or Python [22] offer ob-
jects that represent classes at runtime (e.g., instances of Java java.lang.Class
are objects representing classes). This demonstrates that, besides not ex-
isting loss of expressiveness, the translation of the model is intuitive and
facilitates application interoperability, no matter whether the program-
ming language uses classes or not. This is the reason why this model has
been previously considered as a universal substrate for object-oriented
languages [26].

(4) Our computational model has reflective capabilities. The dynamic adap-
tation of classes and objects structure by means of reflection causes the
problem of scheme evolution [21]. How can an object’s structure be mod-
ified without altering the rest of its class’s instances?

Modeling this in class-based languages is complicated because its com-
putational model does not fit well. This problem was detected in the
development of MetaXa, a reflective Java platform implementation [6].
The solution they employed was a complex shadow classes mechanism
where classes were duplicated when one of its instances was reflectively
modified. One of the conclusions of their research was that prototype
based languages express reflective features better than class-based ones:
it is easy to derive an object from another object and change its fields or
methods without affecting the original [6].
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2.4 Adaptability

As the virtual machine is the substrate for the whole system, its computational
features should be capable of being adapted depending on different require-
ments of heterogeneous environments. From basic language capabilities (such
as operators, types or multiple inheritance), to complex computing features
(like persistence, thread scheduling or garbage collection), the platform should
offer the possibility to customize its features. Reflection is the main technique
employed to achieve adaptability. It might be used at two levels:

(1) System level. Without changing the application code, structural and com-
putational reflection offers system-level adaptability. As an example, fol-
lowing the Separation of Concerns principle [20,7], a persistence system
can dynamically adapt system’s behavior and structure making objects
persist, not needing to modify the application code [19].

(2) Application level. Programs developed in the system are platform inde-
pendent and can be executed in different environments, since the platform
is highly heterogeneous. Therefore, applications must have a mechanism
to dynamically inspect its environment and take decisions according to
this information. Platform introspection (reflection) offers the applica-
tions this capability.

2.5 Direct Application Interaction

Java and .NET virtual machine implementations create different processes
each time a program is run. One instance of the virtual machine program is
executed per application. Justified by security reasons, this approach reduces
their adaptability and extensibility features, for the reason that only an appli-
cation may adapt or extend itself. Moreover, application interoperability has
to be performed by using a middleware such as RMI.

The nitrO abstract machine and its implementations have been designed to
run as a unique process of the operating system. This gives applications the
ability to directly interact with any running program using reflection, whatever
its source programming language might be.

We define the abstract machine as the system’s language-independent com-
puting engine. This way, security restrictions should be applied to application
interaction at the operating system level, in an integral way —following tech-
niques like access-control lists or the .NET code access security.
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3 Abstract Machine Design

In this section, we introduce the design of the nitrO abstract machine. This de-
sign specifies the machine primitives, the programming language syntax, and
its semantics; then, it will be explained how to use its extensibility and adapt-
ability facilities. This design does not show the development of the virtual
machine —i.e. an abstract machine implementation. Implementation matters
will be presented in Section 6.

3.1 Object Concept

Objects are the basic abstraction of the abstract machine. At runtime, the
system is composed of objects constituting different applications. The way a
programmer should employ services offered by an object is by using a reference.
Consequently, a reference is the unique mechanism to obtain and use an object.

The object concept is defined in a recursive way: an object is either a set
of references to objects (members) or a primitive object. References between
different objects may denote several meanings such as generalization, aggre-
gation or composition. At runtime, the programmer may dynamically inspect
and modify any object member by means of reflection primitives.

Following the scheme described in Section 2.3, the object concept, in addition
to reflection primitives, are employed to describe every element of common
class-based object-oriented languages [23].

3.2 Primitive Objects

Initially, the abstract machine offers a reduced set of primitive objects as well
as the necessary references to access them. We use these objects and reflection
to extend the platform abstraction level. There are four primitive objects
(although it is not a must, we distinguish trait objects by naming them with
a starting uppercase character):

(1) The nil object. This is the ancestor object —the root object of the
inheritance tree. Its services will be inherited by every object; as a result,
it holds the basic functionalities every object must offer (e.g. reflection
routines).

(2) String objects. These objects represent information in our system; not
only data but also computation —code that can be evaluated. Their
behavior is grouped into the String trait object.
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(3) The Extern object. This object offers the mechanism to locate and en-
hance the implementation of platform-dependent routines.

(4) The System object. It offers the capability of locating every existing ob-
ject at runtime. It is a dynamic collection of objects. It is used to extend
the platform (e.g., implementing a garbage collector or a persistence sys-
tem.

3.2.1 The nil Object

As we have mentioned, it is the ancestor object. This primitive object is ac-
cessible throughout the platform by means of the nil reference. Like every
object in the system, it has two member references:

• id: This is a reference to a string object that uniquely distinguishes the
object identity. In this case, the id string value is nil.
• super: A reference to its super-object —the object from which the object

is derived. As nil is the ancestor, this reference refers to itself.

3.2.2 String Objects

String objects represent information that can symbolize either data (arith-
metic, logical or human-understandable information such as messages) or com-
putation (code to be evaluated by the abstract machine). There is no difference
in how information is represented; any kind of data or computation is charac-
terized by string objects. The user should treat it in different ways depending
on what she wants to represent.

Since string objects may represent code, and code statements might have
nested statements inside, we represent this information with a context-free
language instead of using a regular language —classical quoted strings would
not be valid. We define < as the starting character of any string and > as the
ending one. As they are different characters, strings can be nested.

Strings objects are automatically created when the programmer uses a refer-
ence to them —they are also automatically released when their last reference’s
scope finishes. A reference to a string object is represented by the string itself.
Table 1 shows example string references denoting different type of meanings.

As we have explained above, every object has the id and super member
references. In this case, every string object has its super reference pointing
to the String trait object and its id reference to itself. Figure 2 shows an
example of some existing objects snapshot at runtime. There are two string
references: <String> and <nil>. Both have its super member pointing to the
String trait object and their id reference pointing to themselves. There are
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Table 1
Example String References and their meaning.

String Reference Meaning

<Hello world!> Human readable message (data)

<true> Boolean constant (data)

< return ← nil:<new>(); > Method or statement code (computation)

<-2.5E+10> Real constant (data)

id
super

id
super

id
super

id
super

nil

String

<String>

<nil>

Fig. 2. Snapshot of existing objects and references at runtime.

two more references: String and nil. The objects they refer to have the id
members pointing to <String> and <nil> respectively. System and Extern

primitive objects have not been shown.

3.2.3 The Extern Object

We can classify system primitives into three groups:

• Computational primitives: These constitute the semantics of the abstract-
machine programming-language, namely, the meaning of each programming
language statement. Examples of this kind of primitives are member access
or method invocation.
• Primitive objects: Objects that exist in the system when it starts up and

offer specific functionalities. String and nil are both primitive objects.
• Operational primitives: Native primitive implementations that can be en-

hanced and modified, depending on specific platform requirements. These
functionalities cannot be obtained from the two previous primitives groups,
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<nil>id
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<Extern>id

super
nil

String

Extern
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Implementations

Operating System

Standard code-
reutilization 
mechanism of 
the operating 

system

Virtual Machine

Fig. 3. Standard implementation of the operational primitives.

but are needed to develop specific programs or services.
We have designed the abstract machine taking into account that, instead

of creating as many primitive objects as we might think necessary, we define
the minimum required set in addition to a mechanism capable of enhancing
them —that is what we call operational primitives. An example of two
operational primitives is reading and writing to disk functionalities, needed
to extent the platform with a persistence system.

The last primitive group, operational primitives, is located in the Extern ob-
ject. As we will see, the invoke method of this object is responsible of execut-
ing the operational primitives. The implementation of operational primitives
must be performed with a standard code-reutilization mechanism, which may
depend on the operating system the virtual machine has been deployed in
(e.g., a dynamic link library or a component architecture). Therefore, the
modification of the operational primitives (machine-dependent code) will sim-
ply be carried out by the replacement of this module —the abstract machine
implementation will not suffer any modification.

This platform-specific functionality implementation is quite similar to the one
adopted by Java with its Java Native Interface. It is not necessary to modify
the virtual machine implementation any time we need to add a new platform-
specific primitive. Nevertheless, our approach places all the platform-specific
code in a unique separate component, employing a standard code-reutilization
mechanism -not spread out all over the library’s native methods. Therefore, the
grouping of platform-dependent code improves the porting of the platform’s
source code.
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Figure 3 shows that the id and super members of the Extern object points
to <Extern> and nil respectively. The invoke member, using a standard
operating-system code-reutilization technique, access to specific operational
primitives developed in the host operating system.

3.2.4 The System Object

The last primitive object is System. It has an objects member that refers to
a collection of every existing object at runtime: it has as many members as
objects are executing in the system. The name of each member is the respective
unique object id.

3.3 Statements

We have seen the objects offered at the beginning. We are about to show
how they could be used to program and extent the platform. The syntax we
have employed is closed to Self [24], because of its simplicity and reflective
capabilities. The nitrO language is also stack-based but uses dynamic scope
as Lisp, APL or SNOBOL.

There are four basic statements:

3.3.1 Reference Creation

A reference is the sole mechanism to access objects. If the programmer wants
to create a new reference in the stack, she just has to write the→ token before
the reference. These are two examples:

→ newReference ;

→ anotherReference ;

As we have mentioned, string references —and their respective objects— do
not need to be explicitly created.

3.3.2 Reference Assignation

By means of the← token, an existing reference could point to the object being
referred by another one. The assignment direction is the one indicated by the
arrow.

newReference ← anotherReference ;
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3.3.3 Member Access

The programmer can access any object member by using a reference to an
object. The syntax is objectReference:memberId. As we have explained,
an object is a collection of references to other objects; memberId is a string
reference that represents the member name. The following two sentences assign
the <nil> string object to the newReference:

newReference ← nil:<id> ;

newReference ← <nil>:<id> ;

3.3.4 Code Evaluation

Our platform can dynamically generate code to be evaluated. This capabil-
ity is used to extend and adapt the platform by means of its own language.
The code to be evaluated is represented as string objects. Syntactically, the
evaluation is denoted by a comma-separated list of references to parameters
inside a pair of parenthesis. The evaluation could be performed synchronously
or asynchronously, depending on the order of parenthesis.

→ code ;

code ← < → fooReference; > ;

code(newReference,anotherReference) ;

code)newReference,anotherReference( ;

The previous code creates a string object representing useless code and evalu-
ates it synchronously and asynchronously respectively —passing two references
as parameters. Asynchronous code evaluation cannot return any reference, but
synchronous evaluation can.

Code evaluation may return a reference and receive parameters. Therefore,
any code being evaluated synchronously has always two references: params
and return —asynchronously evaluation does not have the return reference.
What is assigned to the return reference at code execution is what the eval-
uation will give back. The params reference points to a numbered collection
object: an object that collects the n-parameters in its <0>, <1> <n-1> mem-
bers. The next example of code evaluation, returns its first parameter:

→ code ;

code ← < return←params:<0>; > ;

newReference ← code(anotherReference) ;

The result is that newReference points to the object referenced by anotherReference.
In our platform, any kind of data and code information is represented by string
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objects. The programmer distinguishes code from data by evaluating the for-
mer. Following this point of view, method invocation is defined as the process
of evaluating a string that is member of an object. The next statement stands
for the perimeter method call of a rectangle object, passing a metric unit
as a parameter:

result ← rectangle:<perimeter>(<cm>) ;

The method-evaluation mechanism offers an inheritance feature based on the
super object member. If the programmer tries to evaluate a method that is
not member of the object accessed, the system looks for the method on its
super object. This process is performed in a recursive way, finishing when the
super object is itself —i.e., the nil object. The abstract machine inheritance
mechanism is dynamic, meaning that the super reference may change at run-
time. Sometimes this feature is referred to as delegation [24]. The inheritance
mechanism enhances the string evaluation semantics. Therefore, method code
has one more reference than string evaluation: sender. This reference points
to the object used in method invocation (the implicit object, the same as
this or self in other languages). Because of inheritance, sender does not
necessarily point to the object where the method is defined.

3.4 Methods of the nil Object

The basic functionalities every object offers are set as primitive members of
the nil object (Table 2 ).

The has, firstKey and nextKey members give the programmer introspective
capabilities. At runtime, dynamic information about object structure may
be retrieved. Moreover, set and remove members offer structural reflection.
Comparing to the class-based model, we would be able to dynamically modify
class’s attributes and methods. We could even modify the structure of only
one of its instances.

The two last members provide explicit support for synchronization. Each ob-
ject has a monitor associated with it, not defining any specific thread schedul-
ing policy.

4 Extending the Platform

The platform abstraction level will be extended using reflection primitives,
following the Smalltalk, Self and Forth scheme of loading an image file (foot-
print) at startup. As an example part of the image, we are going to create
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Table 2
Methods of the nil object.

Method Description

new Creates a new object returning a reference to it. The object created
has two members: super (pointing to nil) and its unique id. In
order to prevent duplicated ids in other distributed virtual machines,
we use the globally unique identifiers (GUID) specification of the
OSF/DCE [13].

delete Releases the implicit object.

getRefCount Returns the number of exiting references to the implicit object.

set Assigns a new member to the implicit object.

has Returns whether the implicit object has a member or not.

firstKey Returns a reference to the first lexicographically ordered member.

nextKey Returns a reference to the next lexicographically ordered member.

remove Removes the member reference, which has the same name as the
parameter passed.

enter The thread gains ownership of the sender monitor. If another thread
already owns it, the current thread waits until it is unlocked.

exit The thread releases the sender monitor. If there are threads blocked
by this monitor, one of them may acquire it.

a trait Object, which groups any common behavior we think objects should
share.

→ Object;

Object ← nil:<new>();

If we want that every object (except nil) should inherit from Object, we can
change the inheritance tree by means of structural reflection.

String:<set>(<super>,Object);

Extern:<set>(<super>,Object);

System:<set>(<super>,Object);

The current problem is that, any time a new object is created, its parent will
be nil —not Object. We may extend this behavior, implementing the next
newChild method in Object:

Object:<set>(<newChild>,<

return ← nil:<new>();

return:<set>(<super>,sender);

>);
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Now, any time we want to create a derived object from another one, we just
have to invoke the newChild method of the latter. Note that, using reflection,
we could have taken the nil:<new> object and replace it with the new imple-
mentation —this is what we did in the implementation of garbage collectors
[16].

As an example of adding native operational primitives, we will define string
comparison:

String:<set>(<==>,<

→ param;

param ← params:<0>;

return ← Extern:<invoke>(<String>,<==>,sender,param);

>);

The invoke member has four parameters: a string representing where the
native method is located, the method name, the implicit object, and a method
parameter. The virtual machine, any time the invoke method of the Extern

object is called, executes a routine implemented in the standard reutilization-
code mechanism explained in Section 3.2.3. The <==> external function shown
above implements a native lexicographical string comparison.

At this time, we can compare any object with their ids:

Object:<set>(<==>,<

→ param;

→ paramID;

→ senderID;

param ← params:<0>;

paramID ← param:<id>;

senderID ← sender:<id>;

return ← paramID:<==>(senderID);

>);

It is also possible to include logical information using the existing primitives:

→ Boolean;

Boolean ← Object:<newChild>();

→ true;

true ← Boolean:<newChild>();

→ false;

false ← Boolean:<newChild>();

true:<set>(<ifTrue>,<

→ trueCode;

trueCode ← params:<0>;
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return ← trueCode();

>);

true:<set>(<ifFalse>,<>);

false:<set>(<ifTrue>,<>);

false:<set>(<ifFalse>,<

→ falseCode;

falseCode ← params:<0>;

return ← falseCode();

>);

Boolean:<set>(<if>,<

→ code;

code ← params:<0>;

return ← sender:<ifTrue>(code);

>);

Boolean:<set>(<ifElse>,<

→ ifCode;

→ elseCode;

ifCode ← params:<0>;

elseCode ← params:<1>;

sender:<ifTrue>(ifCode);

sender:<ifFalse>(elseCode);

>);

The code creates the trait object Boolean and their derived objects true

and false. By means of polymorphism, we define the logical semantics of
our specific platform. In this scenario, the code to be evaluated in the condi-
tional clause is passed as a parameter. Next code shows an example of these
conditional methods:

→ oneObject;

oneObject ← Object:<newChild>();

→ bool;

bool ← oneObject:<==>(oneObject);

→ result;

result ← bool:<if>(< return ← <the same>; >);

Evaluating the previous code, the result reference points to the <the same>

string object, because the comparison performed returns true.

Following this scheme, platform extension can be done easily. Boolean opera-
tors, arithmetic integer and real types —with its typical operations—, loops
and object cloning that simulates class instantiation, are examples of what
has been developed using the abstract-machine language itself.
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We state that these are examples extensions because the platform can be
built differently, following specific programmer requirements. For instance,
new Rational, Real and Integer trait objects could be added to represent
additional types of the language, and their typical operations could be devel-
oped as operational primitives. This type enhancement would produce a bigger
but faster implementation —this was precisely the technique applied to define
a typed Smalltalk, improving the typeless performance of Smalltalk-80 [2].

With the sample code shown, we demonstrate how the platform abstraction
level may be enhanced with its own language. The consequence is that the
user customizes the programming language, without modifying the virtual
machine.

More advanced computational features such as garbage collection, persistence
and distribution systems, as well as customizable thread schedulers have been
developed using reflection [16,18]. An example garbage collector we have de-
veloped adapts the new member of the nil object replacing it with a new
routine (using structural reflection). The recent new method, besides creating
the object, counts the number of objects produced. Then, if this counter ex-
ceeds a customizable value, the garbage collector will be executed. By means
of analyzing every runtime object (offered by System), the introspective anal-
ysis of object members and their reference counters (getRefCount member),
inaccessible objects will be found and deleted [16]. More sophisticated im-
plementations of garbage collectors, such as two-space compactors or genera-
tional ones [8] could be developed with different implementations of the new

and delete operational primitives (implemented in C++, inside the Extern

object).

5 Virtual Machine Implementation

In this section, we will briefly show different issues of a specific implementation
of the abstract machine we have developed. It will also be presented the de-
scription of a simple porting process to a Linux platform we have performed,
proving its heterogeneity feature. We will suppress UML designs and code
concerns, focusing on deployment matters. More detailed information can be
obtained in [16].

The virtual machine must be developed as a unique operating-system process,
offering the illusion that another microprocessor exists. By using a standard
inter-process communication protocol of the selected operating system, pro-
grammers will forward the application code they want to execute to the virtual
machine, receiving the results after the evaluation. Any application can inter-
operate with the standard protocol selected, using seven messages: creating
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a new reference (newReference), getting an object’s member (getMember)
or evaluating members and strings both synchronously and asynchronously
(evaluateMember{Sync,Async} and evaluateString{Sync,Async}).

We have first developed a virtual machine in C++, to be hosted in a Win-
dows NT-based operating system as a system service. Then we have ported
it to Linux (Section 5.1). When the computer turns on, the virtual machine
process starts up and loads its footprint file image.nitrO. This image file ex-
ecution produces the platform abstraction-level extension and configuration,
depending on the specific system requirements.

Both the standard process-intercommunication protocol and code-reutilization
mechanism of the operating system we have selected in our first implementa-
tion, were Microsoft COM. Therefore, any programming language (from basic
scripting to advanced compiled ones), compiler or interpreter, may program
and interact with the nitrO platform. The earliest applications we developed
were a nitrO programming IDE developed in Visual Basic and a simple cal-
culator in C#.

As an example, the next VBScript code interacts with the nitrO virtual ma-
chine service in order to execute an example program by means of the COM
interface. This code can be executed in any application that uses the Windows
Scripting Host, such as Internet Explorer or even Microsoft Office.

Dim vm, result, code
Set vm=CreateObject(”nitrO.VM.1”)
’ Create references
vm.newReference(”Person”)
vm.newReference(”mike”)
vm.newReference(”age”)
’ Creates a trait (class) Person
result = vm.evaluateMemberSync(”Object”, ”<newChildWithId>”,

”<Person>”, ”Person”)
’ Trait (class) method: getAge
code = ”<Person:<set>(<getAge>,<”
code = code + ”return ← sender:<age>;”
code = code + ”>);>”
result = vm.evaluateStringSync(code, ””, ”age”)
’ Trait (class) method: birthday
code = ”<Person:<set>(<birthday>,<”
code = code + ”newAge ← sender:<age>;”
code = code + ”newAge ← newAge:<+>(<1>);”
code = code + ”sender:<set>(<age>,newAge);”
code = code + ”>);>”
result = vm.evaluateStringSync(code, ””, ”age”)
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’ Creates an object (Person instance)
result = vm.evaluateMemberSync(”Person”, ”<newChildWithId>”,

”<person>”, ”mike”)
’ Set age to 20
result = vm.evaluateStringSync(”<mike:<set>(<age>,<20>);>”,””, ”age”)
result = vm.evaluateMemberSync(”mike”, ”<getAge>”, ””, ”age”)
MsgBox (”Age before its birthday: ” + result)
’ Birthday
result = vm.evaluateMemberSync(”mike”, ”<birthday>”, ””, ”age”)
result = vm.evaluateMemberSync(”mike”, ”<getAge>”, ””, ”age”)
MsgBox (”Age after its birthday: ” + result)

The previous code defines a COM reference to the nitrO virtual machine and
creates three references using the newReference message. Then, it constructs
a new child of Object (using the evaluateMemberSync message) and inserts
the getAge and birthday methods (by means of evaluateStringSync). This
object may represent a class because it does not offer a state, only behav-
ior. Afterwards, we create an object with a specific age, representing a class
instance. Its state is modified by the birthday method inherited. This way,
we can program and interact with the system using any COM-compliant lan-
guage.

Thinking in a testing environment, the nitrO virtual machine is also obtainable
as an instance per application system (each program runs on a separate virtual
machine instance, as Java does), protecting system resources as well as the
rest of platform applications. Once a piece of code has been tested, it will be
possible to introduce it in the system using the COM interface, or even be
incorporated into the image file.

5.1 Linux Port

Once we developed and tested our implementation with Windows NT-based
systems, we have ported it a to Debian 2.4.20 Linux distribution running in
a HP NetServer with dual PII processor. Due to its heterogeneous design,
the porting process has been done in a straightforward way. The following
enumeration lists the different components of the nitrO platform and how
they have been ported to Linux:

• The virtual machine. An ANSI/ISO C++ program consisting of 6,791 lines
of code. This virtual machine component interprets the semantics of the
reduced set of computational primitives. This port only required recompi-
lation.
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• Operational primitives placed in the Extern object. As we have mentioned
in Section 3.2.3, this code should be developed using a standard operating-
system code-reutilization mechanism. Although the semantics of each prim-
itive does not change, the interaction technique requires a porting effort.
We employed Microsoft COM in the Windows implementation –327 lines of
code. This mechanism was substituted by 32 C++ lines that encapsulate
the Extern object in a Linux dynamic linked library —also known as shared
objects.
• The same happens with the virtual machine deployment. In the Windows

implementation it was developed as a system service offering a COM in-
terface. In the Linux port, we background the nitrO virtual machine pro-
cess, allowing any client application interact with the platform by means
of a pipe named nitrOVMpipe, a standard Inter-Process Communication
(IPC) mechanism. This change involved the substitution of the 1,795 lines
of code employed in Windows operating system for 274 lines to implement
the named pipe IPC.
• Platform definition. The abstract machine has been designed to define its

own specific platform using its programming language. Therefore, the main
part of the system is completely platform-independent and do not need to
be ported.

The source code, binaries of the two ports, sample applications, and UML
design diagrams of these implementations can be downloaded from:

http://http://www.di.uniovi.es/reflection/lab/

6 Results

In order to compare different virtual machine implementations, we have se-
lected —apart from the nitrO virtual machine— two well-known platforms:
JavaTMfrom Sun Microsystems and Microsoft .NET. Looking for a rich com-
parison, we have tested two different editions of each platform: a small embedded-
oriented implementation and a standard edition. These are the specific imple-
mentations tested:

• K Virtual Machine (KVM). The reference implementation of Sun’s Con-
nected Limited Device Configuration (CLDC) specification. CLDC is the
foundation for the Java Micro Edition (JME) runtime environment tar-
geted at small, resource-constrained devices, such as mobile phones, pagers,
and mainstream Personal Digital Assistants (PDA).
• JSDK Java Virtual Machine (JVM). The reference implementation of Sun’s

Standard Edition of the Java Platform. It has been implemented using a
hotspot Just in Time (JIT) compiler, which enables managed code to run
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in the machine language of the target platform.
• Microsoft .Net Framework’s Common Language Runtime (CLR). The pro-

fessional Common Language Infrastructure (CLI, ECMA-335) implemen-
tation of Microsoft, released with the .Net Framework. As the JVM, this
implementation employs a JIT native code generation.
• The mono interpreter (mint). Our first idea was to use the .Net Compact

Framework edition of the Microsoft platform. The main problem was that
the emulator of Windows CE and Pocket PC offered by Visual Studio 2003,
uses the .Net Framework’s CLR. Developing software for these two oper-
ating systems just means reducing the class library of the platform. Once
the application has been tested on the desktop computer, a smart device
development system deploys it on the target PDA or PocketPC with .Net
Compact Framework.

As we want to measure every implementation on the same computer we
have rejected the MS Compact Framework, selecting the Mono open imple-
mentation of Microsoft .NET platform, on its interpreter release. Mint lacks
of a JIT compiler, but is more suitable for resource-constrained devices.
• nitrO virtual machine. Our reflective heterogeneous and extensible virtual

machine.
• nitrO virtual machine enhanced with native routines. As we are going to

measure the virtual machine performance and its size, this virtual machine
modification increases the number of native routines (located in the Extern

object). Each part of the algorithms to be measured is developed in native
code, making it faster and bigger, but much less portable. It will be com-
pared with the two others JIT-based platforms in order to obtain an idea
of future JIT implementations of the nitrO platform.

What has been compared at first is the size of each virtual machine imple-
mentation. Table 3 and Figure 4 show different sizes of the executables and
the RAM employed to run a simple Hello World application on each platform.
This measurement gives us an idea of which platform may be suitable for using
in small devices (KVM, mint and nitrO editions of each platform). The rest
of implementations offer bigger sizes, but better performance.

The nitrO virtual machine implementation is the smallest one (224 Kbytes)
and it requires the least amount of memory to run a simple program. KVM is
also a small one and needs 7 times less memory than the CLR to execute the
same program.

Although native nitrO implementation is just one kilobyte bigger than the
reflective nitrO, it is not significant: we have just implemented natively dif-
ferent parts of the specific programs to be measured. A commercial standard
edition may implement much more routines on native code —or all of them if
it incorporates a JIT compiler.
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Table 3
Sizes of executable files.

Virtual Machine Executable Size RAM Employed

KVM 268 Kbytes 800 Kbytes

JVM 1,768 Kbytes 4,676 Kbytes

CLR 3,075 Kbytes 6,816 Kbytes

mint 1,859 Kbytes 3,142 Kbytes

nitrO 224 Kbytes 552 Kbytes

native nitrO 225 Kbytes 553 Kbytes

KVM JVM CLR mint nitrO native
nitrO
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Fig. 4. Executable sizes and RAM employed.

Concerning to performance, we have used a selection of programs from the
standard Java Grande benchmark suite [3]. The metric employed was execu-
tion time. All tests were carried out on a lightly loaded 1.0 GHz iPIII system
with 256 Mb of RAM running WindowsXP.

We have selected a typical low-level operation (Loop) and two kernel bench-
marks (LuFact and HeapSort) chosen to represent code likely to appear in any
real application [3]. We have also implemented one of the representative real
applications of the Java Grande Benchmark, in which any I/O and graphical
component are removed [3]. By providing these different types of benchmarks,
we could observe the behavior of most complex applications and interpret the
results.

The metric employed was execution time: the wall clock time required to
execute the portion of benchmark code that comprises the interesting compu-
tation. These are the codes employed:

• Loop. Low-level operation that measures loops overheads, for a simple for
loop, a reverse for loop and a while loop. We have measured one million
iterations of each kind of loop.
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• LUFact. Kernel benchmark that solves a 100x100 linear system using LU
factorization followed by a triangular solve. This is an evolution of the well-
known Linpack benchmark. Memory and floating-point intensive.
• HeapSort. Classical kernel benchmark that sorts an array of 5,000 integers

using a heap sort algorithm. It is memory and integer intensive.
• MolDyn. An application benchmark that models the behavior of 2,048 ar-

gon atoms interacting under a Lennard-Jones potential in a cubic spatial
volume with periodic boundary conditions. The solution is advanced for 100
timesteps. Performance is reported in units of timesteps per seconds.

We will first evaluate the low-level and kernel benchmarks separate from the
MolDyn application. Since the memory employed in this application is much
more extensive than the others, we will analyze it apart from them in Sec-
tion 6.1 –the scales employed are extremely different.

Figure 5 shows the averaged relative performance for each of the tested systems
on the first three benchmarks used. The reference platform implementation
(relative performance equals to 1) was the K Virtual Machine.

The most relevant feature of these results is that the standard implementations
(JVM, CLR and native nitrO) give much higher performance that its resource-
constrained editions (average of 4.6, 4.74, and 80.42 respectively). On the
other hand, the evaluation of embedded systems, including nitrO, was similar
to KVM: 0.93 (mint) and 0.88 (nitrO).

The native nitrO relative performance of the Loop benchmark has been cut
down. Although its real value was 238 times faster than KVM, it has not
been represented to make Figure 5 more legible. Despite the biggest average
performance of the native nitrO platform, this way of implementing a virtual
machine is the least portable. Every routine developed in native code must
be ported and recompiled to every different target platform. Although JIT-
based platforms are not generally faster than native code, they offer platform
independency because translation to native code is performed at runtime —if
native code performance were needed, then the C language would be a better
choice than any virtual machine.

If we compare the size of the virtual machine with its relative performance,
we may notice that the bigger its size is, the better performance is offered.
Therefore, depending on the kind of platform we need (standard or resource-
constrained) we may select one implementation or another. It is a trade-off
between resource consumption and runtime performance.

To gauge how an implementation makes the most of its resources, we have also
measured relative performance by size, which is the multiplication of the time
employed to execute a benchmark by the amount of memory needed to run
it (relative to the KVM platform). This measurement represents the runtime
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Fig. 5. Relative performance of KVM and relative performance by size of KVM.

performance relative to the resources used on each execution. Figure 5 shows
the results.

The expected results were confirmed. This metric indicates that standard im-
plementations are not faster than embedded ones, taking into account the
memory employed to run each program. Native nitrO is the fastest (but it is
not portable at all). Afterwards goes KVM and, with quite alike values, JVM
(0.78) and nitrO (0.72). CLR and Mint implementations obtain 0.55 and 0.15
respectively.

The results obtained imply that the two Java platforms make better use of
computing resources than .NET ones. Nitro virtual machine is in the mid-
dle, quite near to Java (0.81). However, we must also measure a qualitative
feature: heterogeneity, the capability to adapt the computing engine to differ-
ent computing environments, not needing to modify its implementation. Java
platform has many routines implemented natively (they can also be enhanced
by using JNI). In contrast, nitrO has an extremely reduced set of primitives
and they are extended by means of reflection. This extension is expressed in
its own language, and so, maximum portability of the platform is achieved.

6.1 Real Application Assessment

The Molecular Dynamics (MolDyn) application models N-body particles inter-
acting under a Lennard-Jones potential in a cubic spatial volume with periodic
boundary conditions. Performance is reported in interactions per second. The
number of particles is give by N. We have chosen N with the standard value of
2,048 [3]. The application has been coded in Java, C# and nitrO. The program
consists of 3,360 lines of code written in the nitrO virtual machine language
—1,057 and 1,037 lines in C# and Java, respectively.

Figure 6 shows the performance and performance by size measurements rel-
ative to the K virtual machine. It also illustrates the memory employed on
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Fig. 6. Measurements of the MolDyn application execution.

each MolDyn application execution. Since the range of values of the two first
rows (KVM relative values) is completely different from the RAM employed
on each execution (Kbytes), we have separated both scales. Therefore, the
values of the first two rows are shown on the left of the figure, whereas the
last one appears on the right.

As happened with previous benchmarks, JIT-based platforms employ much
more memory that the interpreter-based ones: the execution of the application
in KVM requires a footprint of 1,236 Kbytes, while the same program run by
the JVM implementation uses 5,325 Kbytes. At the same time, the three
virtual machines that execute native code are much faster than the ones that
interpret it –average relative performance of 89 vs. 1.14 in the standard and
embedded Java implementations, respectively.

New results can be observed in this assessment. The performance by size met-
ric shows that, opposite to to low-level and kernel analysis, standard imple-
mentations of the virtual machines make better use of systems resources than
their resource-constrained counterparts. As an example, the execution of the
MolDyn application over the standard JVM is more that 20 times faster than
KVM, employing the same resources. The deduction of this second assessment
is that, when the system has enough resources, the deployment of a virtual
machine with a JIT is worth. Although a JIT compiler requires more systems
memory, it makes better use of resources when it could be employed.

This time, the interpreter nitrO performance by size measurement is 1.43
times better than KVM and 3.3 in comparison with mint. This fact and the
good results shown by the native nitrO implementation make us believe that
future inclusion of a JIT compiler in the nitrO virtual machine will obtain
good results. It could be deployed in systems that have enough resources to
run it.

After this evaluation report, we can conclude that reflection offers high hetero-
geneity, platform portability, and good exploitation of computing resources.
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If better performance is needed and there are enough system resources, the
most suitable technique (employing more resources, but not loosing platform
portability) would be a good JIT compiler. At the same time, our platform
can be used as a 224 Kbytes implementation for small resource-constrained
devices.

7 Conclusions

Abstract machines have been widely employed to design programming lan-
guages because of the many advantages they offer. Different examples of such
benefits are code portability, compiler simplification, interoperability, distribu-
tion and direct support of specific paradigms. Although performance was the
main drawback of employing virtual machines in the past, modern techniques
like adaptive (hotspot) Just In Time compilation have overcome this weakness.
Nowadays, well-know abstract-machine-based platforms such as JavaTMor Mi-
crosoft .NET are commercially used.

We have pointed out that the main limitations of existing abstract machines
are caused by their monolithic designs. Most of existing designs are focused
on supporting a specific programming language, being difficult to adapt the
platform to different computing models. Therefore, common lacks of current
abstract machines are heterogeneity, extensibility, adaptability, platform port-
ing, and direct application interaction.

The computational model employed to design our abstract machine, called
nitrO, has been the prototype-based object-oriented one. In order to facilitate
language-independent program interaction, we have chosen the most reduced
object-oriented computational model. Different works have demonstrated that
any abstraction modeled with a class-based object-oriented language can be
easily and intuitively translated into the prototype-based computational model
[23,26]. It is also more suitable in reflective environments [6].

Reflection has been the key technique selected to define our flexible abstract
machine, overcoming the previously mentioned drawbacks. By using its own
language, reflection gives the platform extensibility, adaptability and appli-
cation interaction features, being capable of deploying it in extremely het-
erogeneous environments. Different programming language features could be
customized without modifying the virtual machine implementation.

We first select a reduced set of primitives that offers the basic group of com-
puting routines needed to develop any program. The resulting small size (224
Kbytes) makes it very suitable for employing it on resource-constrained de-
vices. However, the compact set of primitives offers a very limited computing
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platform. By means of reflection, the abstraction level could be increased on its
own language, not needing to modify the virtual machine implementation, nor
deploying different platform editions. As an example, we have shown the ex-
tension of computing features such as a Boolean algebra or objects comparison;
more advanced features, such as an adaptable garbage collector framework,
have also been developed.

The extension of the abstraction level, expressed in its own language, facilitates
the port of the whole platform to new target systems. Therefore, the migration
of the Windows implementation to a Linux system has been performed in a
straightforward way: the necessary changes were just the encapsulation of the
Extern object and the selection of an inter-process communication protocol.

We have also confirmed that our reflective implementation makes good use of
computing resources. However, runtime performance is the typical drawback of
developing a virtual machine as an interpreter. When we have enough resources
and better performance is needed, a JIT compiler is the better alternative to
execute applications in a faster way, without loosing the benefits of using
reflection. Future work will be directed at developing a JIT compiler for the
nitrO platform.

As a result, we identify reflection as a technique to dynamically extend and
adapt a platform without modifying the virtual machine implementation, and
not loosing portability of the whole system. This makes a system very hetero-
geneous, being able to use it in different environments —from small resource-
constrained devices or embedded in different applications, to full-featured ap-
plication servers making use of a JIT compiler.
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