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Abstract

Context: Dynamic languages have turned out to be suitable for developing specific applica-
tions where runtime adaptability is an important issue. Although .NET and Java platforms have
gradually incorporated features to improve their support of dynamic languages, they do not pro-
vide intercession for every object or class. This limitation is mainly caused by the rigid class-based
object model these platforms implement, in contrast to the flexible prototype-based model used by
most dynamic languages.

Objective: Our approach is to provide intercession for any object or class by defining a hybrid
class- and prototype-based object model that efficiently incorporates structural intercession into
the object model implemented by the widespread .NET and Java platforms.

Method: In a previous work, we developed and evaluated an extension of a shared-source
implementation of the .NET platform. In this work, we define the formal semantics of the proposed
reflective model, and modify the existing implementation to include the hybrid model. Finally, we
assess its runtime performance and memory consumption, comparing it to existing approaches.

Results: Our platform shows a competitive runtime performance compared to 9 widespread
systems. On average, it performs 73% and 61% better than the second fastest system for short-
and long-running applications, respectively. Besides, it is the JIT-compiler approach that con-
sumes less average memory. The proposed approach of including a hybrid object-model into the
virtual machine involves a 444% performance improvement (and 65% less memory consumption)
compared to the existing alternative of creating an extra software layer (the DLR). When none of
the new features are used, our platform requires 12% more execution time and 13% more memory
than the original .NET implementation.

Conclusion: Our proposed hybrid class- and prototype-based object model supports structural
intercession for any object or class. It can be included in existing JIT-compiler class-based plat-
forms to support common dynamic languages, providing competitive runtime performance and
low memory consumption.

Keywords: Structural intercession, duck typing, prototype-based object model, reflection, virtual
machine, dynamic languages
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1. Introduction

Dynamic languages have recently turned out to be suitable for specific scenarios such as Web
development, rapid prototyping, developing systems that interact with data that change unpre-
dictably, dynamic aspect-oriented programming, and any kind of runtime adaptable or adaptive
software. The main benefit of these languages is the simplicity they offer to model the dynam-
icity that is sometimes required to build high context-dependent software. Common features of
dynamic languages are meta-programming, reflection, mobility, and dynamic reconfiguration and
distribution.

Taking Web engineering as an example, Ruby [1] has been successfully used together with the
Ruby on Rails framework to create database-backed Web applications [2]. This framework has
confirmed the simplicity of implementing the DRY (Don’t Repeat Yourself) [3] and the Conven-
tion over Configuration [2] principles with this kind of languages. Nowadays, JavaScript [4] is be-
ing widely employed to create interactive Web applications with AJAX (Asynchronous JavaScript
And XML) [5], while PHP (PHP Hypertext Preprocessor) is one of the most popular languages
for developing Web-based views. Python [6] is used for many different purposes; two well-known
examples are the Zope application server [7] (a framework for building content management sys-
tems, intranets and custom applications) and the Django Web application framework.

Due to the recent success of dynamic languages, statically typed languages –such as Java and
.NET– are gradually incorporating more dynamic features into their platforms. Taking Java as
an example, the reflection API became part of the Java platform with its release 1.1. This API
offers introspection services to examine the structures of object and classes at runtime, plus ob-
ject creation and method invocation –involving a substantial performance overhead. The dynamic
proxy class API was added to Java 1.3. It allows defining a class at runtime that implements
any interface, funneling all its method calls to an InvocationHandler. The Java instrument
package (included in Java SE 1.5) provides services that allow Java agents to instrument programs
running on the JVM. This package has been used to implement JAsCo, a fast dynamic AOP plat-
form [8]. Together with other tools such as BCEL [9] and Javassist [10], these agents have also
been successfully used in the implementation of application servers such as Spring Java and JBoss,
obtaining good runtime performance. The Java Scripting API added to Java 1.6 permits dynamic
scripting programs to be executed from, and have access to, the Java platform [11]. Finally, the
Java Specification Request 292 [12] has been incorporated to the Java 1.7 Standard Edition. It adds
the new invokedynamic opcode to the Java Virtual Machine (JVM) and the java.lang.invoke
package to the platform [12], making it easier to implement dynamically typed languages in the
Java virtual machine. Its main advantage is a user-defined linkage mechanism to postpone method
call-sites resolution until runtime.

This trend has also been observed in the .NET platform. The Dynamic Language Runtime
(DLR) has been included as part of the .NET framework 4.0 [13]. The DLR adds to the .NET
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platform a new layer that provides services to facilitate the implementation of dynamic languages
over the platform [14]. Moreover, Microsoft has included the new dynamic type to C# 4.0, allow-
ing the programmer to write dynamically typed code in a statically typed programming language.
With this new characteristic, C# 4.0 offers direct access to code in IronPython, IronRuby and the
JavaScript code in Silverlight, making use of the DLR services.

The DLR is built over the .NET virtual machine (the CLR, Common Language Runtime) to
provide dynamic typing features over a statically-typed and class-based platform. It offers the
common primitives provided by dynamic languages, such as structural intercession and duck typ-
ing, that the CLR does not support; it also simulates the prototype-based object model imple-
mented by many reflective dynamic languages [15]. This extra layer over the virtual machine
involves some drawbacks. The first one is that the specific features of dynamic languages are not
provided for every object or class in the system. A C# programmer can only change the structure
of ExpandoObject instances (see Section 2.3). Another limitation is that the introspective ser-
vices of the platform do not take effect with ExpandoObjects. An additional major disadvantage
is that this new software layer commonly involves a runtime performance penalty (see Section 4).

In order to overcome these limitations, we propose the addition of the specific features pro-
vided by most dynamic languages (such runtime structural intercession and duck typing) at the
virtual machine level, supplying these services for any object or class. Therefore, the benefits of
widely-used statically-typed platforms such as Java and .NET will be complemented with the run-
time adaptiveness of dynamic languages. The use of the very same virtual machine for both types
of languages will also facilitate the future interoperation between them.

The main contribution of this paper is the definition of a hybrid class- and prototype-based
model valid to support structural intercession and duck typing at the virtual machine level of
class-based platforms such as Java and .NET, offering these new features for any object or class.
In a previous work, we extended a shared source implementation of .NET (the SSCLI, also known
as Rotor) to provide some of the introspection services provided by most existing reflective lan-
guages [16]. In this work, we have extended that implementation to include the proposed hybrid
class- and prototype-based model, validated with a lightweight formalization tool. Runtime per-
formance and memory consumption of that implementation has been evaluated and compared with
other existing approaches. We refer to our platform as Reflective Rotor or zRotor.

The rest of the paper is structured as follows. Section 2 presents the existing approaches to
provide structural intercession, and our proposed model is formalized in Section 3. Section 4
presents an evaluation of runtime performance and memory consumption. Section 5 discusses the
related work, and Section 6 concludes and presents future work.

2. Existing Approaches to Provide Structural Intercession

There are two main approaches to provide structural intercession: the class-based and the
prototype-based object models. The .NET platform implements a hybrid approach, but its reflec-
tive services are not offered for every object or class (Section 2.3). As we will see, this limitation is
mainly caused by the rigid class-based object model this platform actually implements in contrast
to the flexible prototype-based model used by most dynamic languages. This section first defines
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the basis of reflection; afterwards, the existing approaches to provide structural intercession are
analyzed.

Reflection is the capability of a computational system to reason about and act upon itself, ad-
justing itself to changing conditions [17]. In a reflective language, the computational domain is
enhanced with its self-representation, offering its structure and semantics as computable data at
runtime. Reflection has been recognized as a suitable tool to aid the dynamic evolution of running
applications, being the primary technique to obtain meta-programming, adaptiveness, and dynamic
reconfiguration features of dynamic languages [18]. Computational reflection is the activity per-
formed by a computational system when doing computation about (and by possibly affecting) its
own computation [17].

Introspection is the reflection level that allows the inspection, but not the modification, of the
program self-representation. Both Java and .NET platforms offer introspection by means of the
java.lang.reflect package and the System.Reflection namespace, respectively. With these
services, the programmer can obtain information about classes, objects, methods and fields at
runtime. On the other hand, intercession is the ability of a program to modify its own execution
state, including the customization of its own interpretation or meaning. Adding or removing object
fields at runtime is a typical example of intercession.

Both introspection and intercession are classified as structural reflection when the system
structure is the information reflected (offered to the programmer as data). In case the program
structure is modified (i.e., structural intercession), changes will be reflected at runtime. An exam-
ple of this kind of reflection is inspecting (or modifying) the structure of a class by the program
itself. Behavioral reflection is concerned with the ability to access to the system semantics. For
instance, MetaXa (formerly called MetaJava [19]) is a Java extension that offers the programmer
the dynamic modification of the method dispatching mechanism.

2.1. Structural Intercession in Class-Based Languages
SmallTalk and CLOS are two examples of class-based languages that provide structural inter-

cession. Their class-based model does not provide a consistent support for every structural inter-
cession primitive. This fact was first noticed and partially solved in the field of object-oriented
database management systems [20]. In this area, objects are stored but their structure, and even
their types (classes), can be altered afterwards as a result of software evolution.

Schema evolution is a database example that reflects the first problem of using structural in-
tercession in the class-based model. When modifying the structure of a class, the structure of all
its instances should also be updated. Class instances could be modified as soon as their class has
evolved (eager) or when the object is about to be used (lazy) [21]. Dynamic evolution of class
structures can produce situations such as accessing fields or methods that do not exist at a spe-
cific execution point; these situations can be detected with dynamic type checks, in order to make
sure that no incorrect behavior is produced. This is how dynamic languages such as Smalltalk
and CLOS provide runtime modification of classes. This mechanism has also been referred to
as type re-classification in class-based languages, meaning that it is possible to change the class
membership of an object while preserving its identity [22, 23].

The second scenario is more difficult to be modeled in class-based languages. A common
intercession primitive is modifying the structure of a single object. In the class-based model, the
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Figure 1: Structural intercession in the prototype-based object model.

modified object should be the instance of a class describing this new object structure without alter-
ing the rest of the existing instances. This problem was detected in the development of MetaXa, a
reflective Java platform implementation [19]. The approach they chose was also adopted by some
object-oriented database management systems: schema versioning [24]. A new version of the class
(called “shadow” class in MetaXa) is created whenever an object structure is reflectively modified.
This new class is the type of the customized object. The schema versioning approach causes dif-
ferent problems such as maintaining the class data consistency, class identity, using class objects
in the code, garbage collection, inheritance reliability, and memory consumption, involving a re-
ally complex and difficult to manage implementation [25]. One of the conclusions of the MetaXa
research project was that the class-based object-oriented model does not fit well with object-level
intercession. They finally stated that the prototype-based model would express reflective features
better than class-based ones [25].

2.2. Structural Intercession in Prototype-Based Languages
The prototype-based object model suppresses the existence of classes, being the object the

main abstraction of this computational model [15]. Although this model is simpler than the class-
based one, there is no loss of expressiveness; i.e., any class-based program can be translated into
the prototype-based model [26].

In the prototype-based model, the common behavior shared by a group of objects (i.e., methods
of each class in the class-based model) is typically represented by traits objects [27]. These objects
only collect a group of methods shared by their derived objects. The Point and Circle objects in
Figure 1 can be identified as traits objects. Instead of inheritance, they provide delegation: when
an object receives a message it cannot respond to, the object forwards the message to its traits
object [28].

Common object structures can be represented in different ways. The first approach was that
provided by the Self programming language, which uses prototypes [29]. A prototype is an ob-
ject that holds a set of initialized fields representing a common structure (pointPrototype and
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circlePrototype objects in Figure 1). Their translation to the class-based model is the set of in-
stance fields declared in a class. Therefore, the creation of a new instance is performed by cloning
a prototype object (Figure 1). Another approach, used by dynamic languages such as Python or
Ruby, is providing a method that, using structural intercession, adds the fields of the common
structure to the object passed as a parameter.

The prototype-based object-oriented computational model represents structural intercession
primitives in a consistent way. Intercessive languages such as Moostrap [30], Self [29] or Lua [31]
have successfully employed this model, overcoming the schema versioning problem stated in the
previous section [32]. The structure (fields and methods) of a single object can be modified di-
rectly, because any object maintains its own structure and even its specialized behavior. More-
over, since shared behavior is placed in traits objects, their customization implies type adaptation
(schema evolution).

Figure 1 shows an example use of intercession in the prototype-based model. Initially, there are
two traits objects (Point and Circle) providing a draw method, and two instances representing
the common structure of each type (pointPrototype and circleProtototype). The two point
and point3D objects are created by copying pointPrototype. Using structural intercession, a
new toString message can be provided to all the points by adding it to the base Point object.
Then, a new z field and its corresponding draw3D method can be inserted in the single point3D
object, without providing this functionality to the rest of points. Finally, we can override the
behavior of the draw message for the particular point3D object by adding a new draw method, so
that this specific instance will invoke draw3D when draw is called.

Many dynamic languages that support structural intercession also provide classes. However,
the concept of class some of them use (e.g., Python and Ruby) is not exactly the same as the one
used by class-based languages (such as Java, C# and Smalltalk). Classes in the former group of
languages do not represent both shared behavior and structure of objects. Structures of objects can
be modified at runtime without changing their classes (object-level intercession). That is, classes
simply model shared behavior, the same as traits objects in the prototype-based model. Objects are
responsible for storing their own structure, and they can also contain specific behavior (methods),
following the prototype-based computational model.

2.3. Structural Intercession in the .NET Hybrid Model
The .NET Framework 4.0 has included new reflective services to its platform. The new

dynamic type added to C# 4.0 is a static type to postpone type checks until runtime. Besides,
the new ExpandoObject class provides object-level structural intercession when a dynamic refer-
ence is used. The .NET approach to support structural intercession is hybrid because the platform
is class-based, while ExpandoObject offers object-level reflection.

Figure 2 shows an example program of these dynamic features added to C# 4.0 and supported
by the DLR. The first feature is duck typing: it is possible to send the draw message to the figure
dynamic reference (line 22), even though Point and Circle do not have a common base in-
terface or class except Object. Checking that the object provides a public draw method with
the appropriate signature is postponed until runtime. In case no draw method is provided, the
RuntimeBinderException is thrown by the DLR.
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01: class Point { 
02:   private int x, y;  
03:   public void draw() { 
04:     Console.WriteLine("({0}, {1})",  

                      x, y);  
05:     } 
06: } 
07:  
08: class Circle { 
09:   private int x, y, radius;  
10:   public void draw() { 
11:     Console.WriteLine("Circle in ({0}, 

            {1}) and radius {2}.",  
            x, y, radius); 

12:     } 
13: } 
14:  
15: class Program { 
16:   static void Main() { 
17:     dynamic figure;  
18:     if (new Random().Next(0,2) == 0)  
19:       figure = new Point(); 
20:     else 
21:       figure = new Circle(); 
22:     figure.draw(); 
23:  
24:     dynamic point=new ExpandoObject(); 
25:     point.x = point.y = 0;  
26:     point.draw = (Action)(() => {  
           Console.WriteLine("({0}, {1})", 
           point.x, point.y);  
           }); 
27:     point.draw(); 

28:     point.ToString = (Func<string>)(() => 
            String.Format("({0}, {1})",  
                          point.x, point.y)); 
29:     Console.WriteLine(point);  
30:  
31:     point.z = 0;  
32:     point.move = (Action<int,int,int>) 
33:          ((x,y,z) => { 

              point.x = x;  
              point.y = y;  
              point.z = z; 
          }); 

34:     point.move(1, 2, 3);  
35:  
36:     ((IDictionary<string, object>)point) 

                  .Remove("draw"); 
37:     point.draw(); // Exception 
38:  
39:     showFields(figure);  
40:     showFields(point);  
41:     } 
42:  
43:   static void showFields(object obj){  
44:     var fields = obj.GetType().GetFields( 

            BindingFlags.NonPublic | 
            BindingFlags.Instance); 

45:     foreach (var field in fields)  
46:       Console.WriteLine("{0}: {1}", 

            field.Name,  
            field.GetValue(obj)); 

47:     } 
48: } 
 

 

Figure 2: Example of intercession and duck typing in C# 4.0.

The second feature is object-level structural intercession: it is possible to change the structure
of an object at runtime. The point object does not hold any field upon its creation (line 24). The x
and y fields are then added by means of structural intercession (line 25). A draw method that uses
these two fields is also added (line 26), and it is later invoked (line 27). The program makes the
point three-dimensional by adding both the z field (line 31) and the corresponding move method
(line 32). The draw method is deleted (line 36) because it does not show the new z coordinate.
A RuntimeBinderException is thrown when draw is invoked (line 37), since it does not exist
anymore.

As mentioned before, the DLR is a new software layer that provides duck typing and structural
intercession services over a class-based virtual machine. Not including these services as part of
the object model (i.e., at the virtual machine level) involves the following limitations:

1. Only the structure of ExpandoObjects can be modified. For instance, the structure of the
object held by the figure reference in line 22 (whose type is either Point or Circle)
cannot be modified with intercession because it is not an instance of ExpandoObject.
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2. Class structures cannot evolve. In dynamic languages such as Smalltalk and CLOS, the
structure of any class (e.g., Point or Circle) can be modified by means of intercession.
That is not possible in the DLR.

3. Inconsistencies between duck typing and dynamic binding. In a dynamic language, the
sentence in line 29 will call the new ToString method added to point in line 28. In C#, the
ToString method in the ExpandoObject class is called instead. This is because dynamic
binding was not implemented considering that an object may hold references to methods (as
many dynamic languages do).

4. Introspection services do not work with ExpandoObjects. When a .NET C# programmer
develops an introspective algorithm, that algorithm does not have the expected behavior
when handling instances of ExpandoObject. In our example in Figure 2, the showFields
method in line 43 displays the fields of any object (e.g., figure in line 39) using introspec-
tion. However, this behavior is not obtained when the type of the object is ExpandoObject
(e.g., point in line 40): it shows the fields of the ExpandoObject class.

5. Deletion of members by casting objects to dictionaries. There is no mechanism to delete
members of any object or class. Only members of ExpandoObjects can be removed, casting
them to IDictionary<string, object> (line 36).

6. The extra layer introduced by the DLR involves a significant runtime performance penalty
(a detailed evaluation is presented in Section 4).

2.4. Supporting Hybrid Class- and Prototype-Based Structural Intercession
We have seen how implementing the DLR as an extra layer over the class-based virtual ma-

chine has prevented .NET from offering structural reflection for any object or class, causing the
problems mentioned above. In contrast, Figure 3 shows how our proposal is aimed at including
structural intercession inside the zRotor virtual machine implementation. The SSCLI class-based
virtual machine has been extended with the prototype-based semantics to provide the intercession
services of both object models. We have extended the SSCLI object model maintaining classes to
take advantage of the existing optimizations, and because it implies a lower implementation effort.

Figure 3 shows how each programming language implementation must select the appropriate
intercession services depending on its object model. Hybrid class- and prototype-based languages
(such as C#) may select services of both models. zRotor provides an efficient implementation of
all the intercession primitives, but it is the responsibility of each specific compiler or interpreter to
select the appropriate operations. For example, the semantics of changing the type of an object is
different in the two object models (detailed in Section 3.3).

The virtual machine allows calling all the intercession and duck typing services without per-
forming static type checks. At runtime, if the requested operation cannot be provided, the cor-
responding exception is thrown (Section 3.3). Each programming language may implement its
corresponding type system, following a pluggable type system approach [33]. Figure 3 illustrates
different examples: an Eiffel compiler may implement its static class-based type system to pro-
vide earlier type error detection; likewise, a JavaScript interpreter can include its prototype-based
dynamic type system in its own implementation on zRotor, or implement a powerful static de-
pendent type system as the one described in [34].
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Figure 3: Supporting hybrid class- and prototype-based structural intercession.

Supporting both the class- and prototype-based models allows the execution of dissimilar pro-
gramming languages over the same virtual machine. Sharing the same platform for the implemen-
tation of different languages is a valuable instrument to provide language interoperation. However,
the interaction between class- and prototype-languages, and dynamically and statically typed ones,
would require the use of advanced type systems. For example, gradual typing is an approach to
allow the interoperation of dynamic and static typing, replacing type equality with type consis-
tency [35]. Gradual typing also provides a robust mechanism to provide compile-time errors when
hybrid statically and dynamically typed code is used. In fact, C# 4.0 includes gradual typing to
support its new dynamic type [36]. In this article, we focus on describing the semantics of the pro-
posed intercessive hybrid model; defining a sound type system to allow language interoperation is
planned as future work (Section 6).

3. The zRotor Hybrid Class- and Prototype-Based Model

This section defines a hybrid class- and prototype-based model suitable to add structural inter-
cession to existing class-based object-oriented platforms such as Java and .NET. For this purpose
we define the syntax (Section 3.1) and semantics (Section 3.3) of the proposed object model,
its properties (Section 3.4), and a summary of how we have implemented it as part of an existing
class-based virtual machine (Section 3.5). The formal specification describes our hybrid class- and
prototype-based intercessive model precisely, helping to discuss about it more clearly and avoiding
the ambiguity of textual descriptions. The formalization describes the new features that extend the
original model, avoiding the specification of these features that remained unchanged. The model
has been mechanized in PLT Redex, testing its specification and properties (Section 3.4).
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Class definition expression e ::= CD
Expression sequence | e; e;
Local variable expression | x
Implicit object expression | this
Null expression | null
New object expression | new C ( e )
Class expression | C
Field access expression | e. f
Method access expression | e.m
Method invocation expression | e.m( e ) | e ( e , e )
Variable and member assignment | ( x | e.m | e. f ) = e
Member deletion expression | del ( e.m | e. f )
Exception throwing expression | throw e
Exception handling expression | try e catch(C x) e
Dynamic inheritance expression | e.super ((=class |=proto) e)?

Restore stack expression | ⇑ e S
Class definition CD ::= class C (: C)? { f M }
Method definition M ::= m(x) { e }

Figure 4: Abstract syntax of the language core.

3.1. Syntax
The set of features provided by our model is an extension of the features included in Feather-

weight Java (FJ), the minimal Java core defined in [37]. We have added to the FJ core language
the following features: class and object structural intercession (method and field addition, update
and deletion), duck typing, local variables, null references, assignment expressions, multiple
statements, the this reference, dynamic inheritance, exception handling, and not predefined con-
structors (in FJ, constructors can only initialize the object state). The cast operator was removed
because we do not define a static type system. As FJ, we omit the following features of Java that do
not appear to interact with structural intercession in significant ways [37]: overloading, interfaces,
the super reference, built-in types, abstract methods and classes, static members and access
control.

The abstract syntax of the language core is depicted in Figure 4. A program is a sequence of
at least one expression, including class definitions. The meta-variables C and D range over class
names; m and n range over method names and f and g over field names1; and x and y range over
variables. As in FJ, e is shorthand for a possibly empty sequence e1 . . .en (and similarly for CD,
f , M, etc.). The length of a sequence x is written #(x).

A class definition is evaluated as an expression. Each class can optionally extend another one
(? means optionally matching the previous element), and its definition consists of a collection of
fields and methods. Since our main objective is to define the dynamic semantics of a hybrid class-

1We separate methods and fields because classes evolve in different ways depending on the sort of member being
added/modified/deleted.
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class Point { 

 x 

 y 

 Point(x, y) { 

  this.x = x; 

  this.y = y; 

 } 

 move(x, y) { 

  this.x = x; 

  this.y = y; 

  this; 

 } 

} 

class Methods { 

 draw() { 

  Shows (x,y) in the console 

  this; 

 } 

 move3D(x, y, z) { 

  this.x = x; 

  this.y = y; 

  this.z = z; 

  this; 

 } 

} 

class Point3D : Point { 

 z 

} 

point = new Point(0, 0); 

point.move(1, 2); 

 

Point.draw = Methods.draw; 

point.draw(); 

 

Point.color = null; 

color = point.color; 

 

point3D = new Point(3, 4); 

point3D.z = 5; 

zCoordinate = point3D.z; 

 

point3D.move = Methods.move3D; 

point3D.move(0, 0, 0); 

 

del point3D.z; 

 

// MissingField exception 

try 

  zCoordinate = point3D.z; 

catch(MissingField e) 

  point3D.super =class Point3D; 

 

zCoordinate = point3D.z; 

 

Figure 5: Structural intercession sample program.

and prototype-based reflective object model, we have not included the explicit type declaration of
variables and fields (the same as most dynamic languages). The value returned by a method is the
value of the last expression executed in its body.

Local variables do not need to be declared. As it will be described in Section 3.3, they are
dynamically created (added to the topmost stack frame) by first assigning a value to them. this
and null are ordinary references. An object is created using the new keyword, whenever a suitable
constructor has been created. Classes are first-class objects; and so are object and class methods
and fields: they can be passed as parameters, returned from a method, or assigned to local vari-
ables. Methods can be invoked with the typical dot operator syntax. Since they are first-class
objects, they can also be called by passing to a method expression the implicit object and the
method arguments as parameters. Methods and fields of both classes and objects can be added
and updated with the assignment operator; they can also be removed using the del keyword. Ex-
ceptions are thrown with the throw keyword, and handled with try/catch expressions. The type
of an object and the base class of another class are obtained with the super field. Dynamic in-
heritance is supported with the modification of super (=class and =proto represents the class- and
prototype-based semantics, respectively). The non-surface ⇑ expression cannot be written by the
programmer directly. It is an expression for restoring the stack, used to define the semantics of
method and constructor evaluation (Section 3.3) –S is defined in Figure 6.
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Figure 5 shows an example program in the proposed language. For the sake of brevity, we
assume a predefined Integer class; the integer literals in the source code are instances of this
class. A Point class is declared first. It defines two x and y fields, a constructor, and a two-
dimensional move method. Afterwards, the Methods class define a draw method (its body is
obviated) and a three-dimensional version of move. The Point3D class (derived from Point) is
then declared with a z field.

The program creates a two-dimensional point in the origin of coordinates, and moves it to
a new position. Then, a new draw method is added to the Point class, making it possible from
now on to send this message to any Point object. By adding a new color field to the Point
class, all its existing instances will have this new field (schema evolution), making point.color
a correct expression. Another point3D instance is created, adding a new z coordinate only to this
object (the other point instance stays unchanged). Then, a new specific three-dimensional move
method is added to point3D, and it is subsequently invoked. Its z coordinate is deleted, throwing
a MissingField exception when its value is requested. This exception is handled, and the type of
the point3D object is changed to Point3D following the semantics of class-based languages. This
type change involves adding the z field to point3D, allowing the last access to the z coordinate.

3.2. Well-Formedness
As we have seen, explicit type declaration of variables and fields has been avoided to come

closer to the representation of existing dynamic languages. Class and object members can be
added and removed at runtime. Therefore, we have reduced static checking to a set of well-
formedness tests, performing most type checks at runtime. Static type systems could eventually
be added to provide earlier type error detection for a specific language, following the pluggable
type systems approach [33].

Sequences of field declarations, parameter names, and method declarations are assumed to not
contain duplicate names; neither do class-names. In the class declaration class C :D { f M },
D should be declared prior to C. At the same time, C should have field names distinct from D
(as in FJ, we omit the Java and C# ability to allow instance variables redeclaration). On the other
hand, the methods of C (M) may either override methods with the same names that are already
present in D, or add new functionality to C.

3.3. Operational Semantics
The structure of states during program evaluation is defined in Figure 6. We indicate finite

mappings through ⇀, and undefined through none. We abbreviate association lists, i.e. list of
pairs, in the obvious way, writing m 7→ σ for {m1 7→ σ1, . . . ,mn 7→ σn}, where n is the number
of pairs in the association list. When the list has only one element, we omit the curly braces
(e.g., m 7→ σ); the empty association list is represented through {}. If H is a finite mapping, then
H(m 7→ σ) is a new mapping identical to H except that m is overridden/added by σ. Similarly,
H Bm represents another mapping similar to H except that it holds that m /∈ dom(H Bm).

A runtime state (Figure 6) is defined by an expression (e), a heap (H) and a stack (S)2. A
heap maps: a) object addresses to objects, where object addresses are ι; b) class names to classes,

2As it will be explained, the final runtime state of an uncaught exception does not contain a stack to avoid infinite
recursive evaluation.
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RS ∈ Runtime State = 〈 e, H, S 〉
H ∈ Heap = ( ι ⇀ Ob ject ) ∪ ( C ⇀ Class ) ∪ ( σ ⇀ M )
S ∈ Stack = ( this ∪ x )⇀ v
‖C, f 7→ ιn, m 7→ σn‖ ∈ Ob ject = C × f ⇀ ιn × m ⇀ σn

JCn, f 7→ ιn, m 7→ σnK ∈Class = Cn × f ⇀ ιn × m ⇀ σn

v ∈ Value = ι ∪ σ ∪C ∪ none
ι ∈ Object Address, σ ∈Method Address
ιn ∈ ι∪none, σn ∈ σ∪none, Cn ∈C∪none

Figure 6: Structure of the runtime state.

F = [ ] | v; F; e;| new C( v F e ) | F. f | F.m | F.m( e ) | v.m( v F e ) | F( e , e ) |
v( F , e ) | v( v , v F e ) | x = F | F.m = e | v.m = F | F. f = e | v. f = F |
del F.m | del F. f | throw F | F.super | F.super (=class |=proto) e |
v.super (=class |=proto) F | ⇑ F S

E = [ ] | v; E; e; | new C( v E e ) | E. f | E.m | E.m( e ) | v.m( v E e ) | E( e , e ) |
v( E , e ) | v( v , v E e ) | x = E | E.m = e | v.m = E | E. f = e | v. f = E |
del E.m | del E. f | throw E | E.super | E.super (=class |=proto) e |
v.super (=class |=proto) E | ⇑ E S | try E catch(C x) e

Figure 7: Evaluation contexts.

where class names are C; and c) method addresses to methods, where method addresses are σ

and methods are M (Figure 4). S denotes the topmost stack frame, which maps local variables
(including this) to values. Values are object or method addresses, none or class names. ιn, Cn

and σn are object addresses, class names, and method addresses, respectively, that may hold the
none value.

Objects are triples with the name of its class, a mapping from field identifiers to object refer-
ences, and another one from method names to method references. Classes are similar triples, but
the first optional value is the name of the base class –it is none when it has no super-class. We rep-
resent objects in memory through ‖C, f 7→ ιn,m 7→ σn‖ and classes through JCn, f 7→ ιn,m 7→ σnK.

The one-step reduction relation (−→) is of the form 〈e,H,S〉 −→ 〈e’,H’,S’〉, meaning that the
expression e is reduced to e’, where H and S compose the initial state and H’ and S’ the state after
the reduction. We write ∗−→ for the reflexive and transitive closure of −→.

For conciseness, we use Felleisen-Hieb evaluation contexts [38]. Evaluation contexts (E and
F in Figure 7) are expressions with one hole ([ ]) at the place of a subexpression. The expression
E[e] stands for the result of putting the expression e into the hole of the context E. As shown in
Figure 7, we use two kinds of evaluation contexts: F , for the execution of expressions without
exception handling; and E, for expressions that may contain try/catch expressions. As it will be
discussed, the separation of these two evaluation contexts facilitates the formalization of exception
propagation (Figure 17).

We include class representations in the heap because their structure may evolve at runtime by
means of structural intercession. This is the reason why the evaluation judgment considers the
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evaluation of class definitions. When a class definition is evaluated (NE-CLASS in Figure 8), its
dynamic representation is included in the heap. We also add its methods to the heap because, as we
have mentioned, methods are first-class objects and some expressions are evaluated to method ad-
dresses (e.g., right hand side of the point3D.move = Methods.move3D assignment in Figure 5).
Default values of fields are none.

(NE-CLASS)

Dn ∈ dom(H1)∪none M = M1, . . . ,Mn Mi = mi(xi){ei} i∈1...n
σi is fresh in Hi

i∈1...n

Hi+1 = Hi(σi 7→ mi(xi){ei}) i∈1...n Hn+2 = Hn+1(C 7→ JDn, f 7→ none,m 7→ σnK)
〈E[class C:Dn { f M}],H1,S〉 −→ 〈E[C],Hn+2,S〉

Figure 8: Evaluation of classes.

The null reference is evaluated to none (NE-NULL in Figure 9), modifying neither the heap
nor the stack. NE-VAR describes how a variable is evaluated to its dynamically bound value in the
topmost stack frame (S), where local variables, method parameters and this are stored (see NE-
INV in Figure 12). NE-THIS performs the same operation when the this keyword is evaluated.
A sequence of expressions that throw no exception is evaluated to the value returned by the last
expression (NE-BLOCK).

(NE-NULL)

〈E[null],H,S〉 −→ 〈E[none],H,S〉

(NE-VAR)
x ∈ dom(S)

〈E[x],H,S〉 −→ 〈E[S(x)],H,S〉

(NE-THIS)
this ∈ dom(S)

〈E[this],H,S〉 −→ 〈E[S(this)],H,S〉

(NE-BLOCK)

〈E[v1; . . .vn;],H,S〉 −→ 〈E[vn],H,S〉

Figure 9: Evaluation of null, this, local references and expression sequences.

When a new object is created (Figure 10), a fresh ι reference is added to the heap, associating
it with a new object whose fields are taken from the C class (considering inheritance). The con-
structor –the only method with the same name as the class– is taken from the heap, and it must
have the same number of parameters as the arguments. The constructor body (em) is the follow-
ing expression to be evaluated, binding the this reference to the new object in the topmost stack
frame, and the formal parameters to the argument values.

In the reduced runtime state, a ⇑ ι S expression is added after the constructor body. Its aim is
restoring the stack to the state before the execution of a method (S), returning the value e is evalu-
ated to (NE-RSTACK). This expression facilitates the definition of imperative method invocation
in small-step operational semantics [39] –substitution is not used due to the destructive assignment
provided by the language.
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In the proposed model, classes do not contain the list of all their inherited fields and methods.
Therefore, when an object is created (Figure 10), the f ields metafunction collects all the fields
to be added to the new instance, including the inherited ones. We do not include the inherited
members in class representations because it facilitates the implementation of intercession and
dynamic inheritance [40].

(NE-NEW)
H1(C) = JDn, f 7→ ιn,{. . . ,C 7→ σ, . . .}K H1(σ) =C(x){em}

#(v) = #(x) ι is fresh in H1 H2 = H1(ι 7→ ‖C, f ields(H1,C), ‖)
〈E[new C(v)],H1,S〉 −→ 〈E[em; ⇑ ι S;],H2,{this 7→ ι,x 7→ v}〉

where

f ields(H,none) = { }

H(C) = JDn, f 7→ ιn
f ,m 7→ σnK

f ields(H,Dn) = {g 7→ ιn
g}

f ields(H,C) = { f 7→ ιn
f ,g 7→ ιn

g}

(NE-RSTACK)

〈E[⇑ v Sr],H,S〉 −→ 〈E[v],H,Sr〉

Figure 10: Object creation.

Figure 11 shows the evaluation of member access expressions. NE-CMACCESS and NE-
OMACCESS entail the interpretation of methods as first-class objects. The NE-CMACCESS rule
applies when accessing a method on a class. The classMethod metafunction provides a delegation-
based inheritance strategy, valid for both models [41]. If a class does not implement a method, it
is then searched in its base type.

(NE-CMACCESS)
σ

n = classMethod(H,C,m)

〈E[C.m],H,S〉 −→ 〈E[σn],H,S〉

(NE-OMACCESS)
σ

n = method(H, ι,m)

〈E[ι.m],H,S〉 −→ 〈E[σn],H,S〉
where

H(C) = JDn, f 7→ ιn,{. . . ,m 7→ σ
n, . . .}K

classMethod(H,C,m) = σ
n

H(C) = JD, f 7→ ιn,n 7→ σnK m /∈ n
classMethod(H,D,m) = σ

n

classMethod(H,C,m) = σ
n

H(ι) = ‖C, f 7→ ιn
f ,{. . . ,m 7→ σ

n, . . .}‖
method(H, ι,m) = σ

n

H(ι) = ‖C, f 7→ ιn
f ,n 7→ σn‖ m /∈ n

classMethod(H,C,m) = σ
n

method(H, ι,m) = σ
n

(NE-CFACCESS)
f ields(H,C) = {. . . , f 7→ ι

n, . . .}
〈E[C. f ],H,S〉 −→ 〈E[ιn],H,S〉

(NE-OFACCESS)
H(ι) = ‖C,{. . . , f 7→ ι

n, . . .},m 7→ σn‖
〈E[ι. f ],H,S〉 −→ 〈E[ιn],H,S〉

Figure 11: Evaluation of member access.
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In the proposed model, objects can hold methods. Even though methods are not placed in ob-
jects when they are created with the new operator (Figure 10), they can be added at runtime as in
prototype-based languages such as Python, Ruby or JavaScript (Figure 13). This object represen-
tation is not appropriate for (non-hybrid) class-based languages, where methods are always placed
in classes. NE-OMACCESS in Figure 11 specifies how object-level methods are accessed. The
method metafunction starts searching the method in the object; if the object does not provide that
method, it is then searched in its type, considering inheritance.

When accessing a class field, inheritance is also considered by the f ields metafunction in NE-
CFACCESS (Figure 11). However, the access to an object field is performed by simply consulting
the object (NE-OFACCESS) because, in both models, object attributes are stored in the object
itself.

Figure 12 shows the two ways a method can be called. NE-INV specifies the typical object-
oriented syntax. The m method of the ι object is searched in the heap. Following the duck typing
semantics implemented by reflective languages, the method is first searched in the object and
then in the class hierarchy. This functionality is provided by the method metafunction defined in
Figure 11. It is worth noting how this semantics overcomes the duck typing and dynamic binding
problem mentioned in Section 2.3. If we add an m method to an object whose class declares a
virtual m method, the new m method in the object will be called whenever this message is sent to
the object. Once the appropriate method is found, the method invocation expression is reduced
to the method body, mapping this to the object that receives the message, and the parameter
variables to the actual values of the arguments. S will be restored after the evaluation of e.

The NE-MINV rule invokes a method that has been obtained from a previous evaluation, since
methods are first-class objects. The first mandatory parameter is the object on which the method is
invoked. Since method access expressions (NE-CMACCESS and NE-OMACCESS in Figure 11)
do not capture the object used to access the method, the object on which the method is called
must be passed as the first parameter. Therefore, e.m(e) is equivalent to (e.m)(e,e) instead of
(e.m)(e).

(NE-INV)
σ = method(H, ι,m) H(σ) = m(x){e} #(v) = #(x)
〈E[ι.m(v)],H,S〉 −→ 〈E[⇑ e S],H,{this 7→ ι,x 7→ v}〉

(NE-MINV)
H(σ) = m(x){e} #(v) = #(x)

〈E[σ(ι,v)],H,S〉 −→ 〈E[⇑ e S],H,{this 7→ ι,x 7→ v}〉
Figure 12: Evaluation of method invocation.

Figure 13 shows the inference rules for assignments of local variables, methods and fields. The
NE-VASSIGN rule adds a new x local variable (mapped to the v value) to the topmost stack frame,
or overrides its value if it had been previously placed in it.

The NE-OMASSIGN rule adds (or modifies) a method to a single object without modifying its
class. This functionality can be used by both hybrid and prototype-based languages –class-based
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languages do not support object-level methods, not defined in the object type. These object-level
methods are considered by the method invocation rules (NE-INV and NE-MINV in Figure 12),
overriding the methods defined in the object class, and providing the same mechanism for both
kinds of languages. The NE-CMASSIGN rule, used in both types of languages, is similar to
NE-OMASSIGN except that it adds (or modifies) a method to an existing class. We do not need
to modify the derived classes because the defined semantics uses a delegation-based inheritance
strategy (e.g., NE-INV in Figure 12).

Adding an object field by means of structural intercession (NE-OFASSIGN) simply modifies
the structure of the object. If the object already has that field, its value is overwritten. As happens
with methods (NE-OMASSIGN), this functionality is only applicable to hybrid and prototype-
based languages. NE-CFASSIGN in Figure 13 shows how the behavior with classes is different.
We first modify the structure of the class, mapping the f field to the ιn reference. Afterwards,
all the existing instances of the modified class and its derived classes are updated the same way:
if the object has no f field, it is added and mapped to the ιn reference; if the object already has
an f field, it maintains its value. This functionality is provided by the addField metafunction in
Figure 13. The C ≤H D relation denotes that C is a subclass of D in the H heap. This is how we
have included the semantics of schema evolution [42] in our platform.

(NE-VASSIGN)

〈E[x=v],H,S〉 −→ 〈E[v],H,S(x 7→ v)〉

(NE-OMASSIGN)
H1(ι) = ‖C, f 7→ ιn,n 7→ σn

n‖
H2 = H1(ι 7→ ‖C, f 7→ ιn,{n 7→ σn

n}(m 7→ σ
n
m)‖)

〈E[ι.m=σ
n
m],H1,S〉 −→ 〈E[σn

m],H2,S〉

(NE-CMASSIGN)
H1(C) = JDn, f 7→ ιn,n 7→ σn

nK
H2 = H1(C 7→ JDn, f 7→ ιn,{n 7→ σn

n}(m 7→ σ
n
m)K)

〈E[C.m=σ
n
m],H1,S〉 −→ 〈E[σn

m],H2,S〉

(NE-OFASSIGN)
H1(ι1) = ‖C,g 7→ ιn,m 7→ σn‖

H2 = H1(ι1 7→ ‖C,{g 7→ ιn}( f 7→ ι
n
2),m 7→ σn‖)

〈E[ι1. f=ι
n
2],H1,S〉 −→ 〈E[ιn

2],H2,S〉

(NE-CFASSIGN)
H1(C) = JDn, f 7→ ιn

f ,m 7→ σnK
H2 = H1(C 7→ JDn,{ f 7→ ιn

f }( f 7→ ι
n),m 7→ σnK) H3 = addField(H2, f , ιn,C)

〈E[C. f=ι
n],H1,S〉 −→ 〈E[ιn],H3,S〉

where {ι1, . . . , ιn}= {ι | H1(ι) = ‖D,g 7→ ιn
g,m 7→ σn

m‖ ∧ D≤H1 C∧ f /∈ g}
H1(ιi) = ‖Di,gi 7→ ιn

gi
,mi 7→ σn

mi
‖i∈1...n

Hi+1 = Hi(ιi 7→ ‖Di,{gi 7→ ιn
gi
}( f 7→ ι

n),mi 7→ σn
mi
‖)i∈1...n

addField(H1, f , ιn,C) = Hn+1

and C ∈ dom(H)

C ≤H C
H(C) = JD, f 7→ ιn,m 7→ σnK

C ≤H D
C ≤H D D≤H E

C ≤H E

Figure 13: Assignment of local variables, methods and fields.
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Member deletion rules in Figure 14 perform the opposite action of member addition. Deleting
a method (EN-OMDEL) or a field (EN-OFDEL) from an object (not applicable in the class-based
model) is performed by simply removing the member from its representation in the heap; the same
happens when a method is erased from a class in both models (EN-CMDEL). However, when a
field is removed from a class (EN-CFDEL), the field is also removed from all the instances of
that class and its derived classes (schema evolution). For this purpose, the removeField(H, f ,C)
metafunction returns another heap similar to H except that the f field is removed from all the
instances of type C, considering inheritance.

(NE-OMDEL)
H1(ι) = ‖C, f 7→ ιn

f ,m 7→ σn
m‖

{m 7→ σn
m}= {. . . ,m 7→ σ

n, . . .}
H2 = H1(ι 7→ ‖C, f 7→ ιn

f ,{m 7→ σn
m}Bm‖)

〈E[del ι.m],H1,S〉 −→ 〈E[σn],H2,S〉

(NE-CMDEL)
H1(C) = JDn, f 7→ ιn,m 7→ σn

mK
{m 7→ σn

m}= {. . . ,m 7→ σ
n, . . .}

H2 = H1(C 7→ JDn, f 7→ ιn,{m 7→ σn
m}BmK)

〈E[delC.m],H1,S〉 −→ 〈E[σn],H2,S〉

(NE-OFDEL)
H1(ιo) = ‖C, f 7→ ιn

f ,m 7→ σn‖
{ f 7→ ιn

f }= {. . . , f 7→ ι
n, . . .} H2 = H1(ιo 7→ ‖C,{ f 7→ ιn

f }B f ,m 7→ σn‖)
〈E[del ιo. f ],H1,S〉 ⇒ 〈E[ιn],H2,S〉

(NE-CFDEL)
H1(C) = JDn, f 7→ ιn

f ,m 7→ σnK { f 7→ ιn
f }= {. . . , f 7→ ι

n, . . .}
H2 = H1(C 7→ JDn,{ f 7→ ιn

f }B f ,m 7→ σnK) H3 = removeField(H2, f ,C)

〈E[delC. f ],H1,S〉 −→ 〈E[ιn],H3,S〉
where

{ι1, . . . , ιn}= {ι | H1(ι) = ‖D,g 7→ ιn
g,m 7→ σn

m‖ ∧ D≤H1 C ∧ f ∈ g}
H1(ιi) = ‖Di,gi 7→ ιn

gi
,mi 7→ σn

mi
‖i∈1...n

Hi+1 = Hi(ιi 7→ ‖Di,{gi 7→ ιn
gi
}B f ,mi 7→ σn

mi
‖)i∈1...n

removeField(H1, f ,C) = Hn+1

Figure 14: Evaluation of member deletion.

We refer to both the inheritance tree change and the type reassignment operations shown in
Figure 15 as dynamic inheritance. As specified in the abstract syntax (Figure 4), each object
is created by specifying a class (traits object in the prototype-based model) upon construction.
The type of an object can be consulted at runtime by accessing the super field of the object
(NE-OSUPER). In case the super message is sent to a class, its superclass is returned instead
(NE-CSUPER).

NE-CCSUPER specifies how to change the inheritance tree in the class-based model. If the
superclass of C1 is changed from Dn to Cn

2 , all the fields in Dn not in Cn
2 (including the inherited
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ones) are removed from all the instances of C1. Likewise, all the fields in Cn
2 not in Dn are added

to all the objects whose type is C1. Finally, the inheritance relationship is changed in the heap. In
the prototype-based model (NE-PCSUPER), objects are not modified because they are responsible
for keeping their own fields; only the inheritance relation is updated.

Similarly, NE-COSUPER describes how to change the type of an object from D to C in the
class-based model. The fields in D not in C (including inheritance) are removed from the object,
and the fields in C not in D are added. The type of the object is finally changed in the heap.
As above, the prototype-based model only requires updating the type information in heap (NE-
POSUPER).

(NE-OSUPER)
H(ι) = ‖C, f 7→ ιn,m 7→ σn‖

〈E[ι.super],H,S〉 −→ 〈E[C],H,S〉

(NE-CSUPER)
H(C) = JDn, f 7→ ιn,m 7→ σnK

〈E[C.super],H,S〉 −→ 〈E[Dn],H,S〉

(NE-CCSUPER)
Cn

2 �H1 C1 H1(C1) = JDn, fc1 7→ ιn
c1
,mc1 7→ σn

c1
K

{ fr1, . . . , frn}= dom( f ields(H1,Dn))−dom( f ields(H1,Cn
2))

Hi+1 = removeField(Hi, fri,C1)
i∈1...n

{ fa1 7→ ι
n
a1
, . . . , fam 7→ ι

n
am
}= f ields(Hn+1,Cn

2)− f ields(Hn+1,Dn)

Hn+i+1 = addField(Hn+i, fai, ι
n
ai
,C1)

i∈1...m

Hn+m+2 = Hn+m+1(C1 7→ JCn
2 , fc1 7→ ιn

c1
,mc1 7→ σn

c1
K)

〈E[C1.super=class Cn
2 ],H1,S〉 −→ 〈E[Cn

2 ],Hn+m+2,S〉

(NE-PCSUPER)
Cn

2 �H1 C1 H1(C1) = JDn, f 7→ ιn,m 7→ σnK
H2 = H1(C1 7→ JCn

2 , f 7→ ιn,m 7→ σnK)
〈E[C1.super=proto Cn

2 ],H1,S〉 −→ 〈E[Cn
2 ],H2,S〉

(NE-POSUPER)
H1(ι) = ‖D, f 7→ ιn,m 7→ σn‖

H2 = H1(ι 7→ ‖C, f 7→ ιn,m 7→ σn‖)
〈E[ι.super=proto C],H1,S〉 −→ 〈E[C],H2,S〉

(NE-COSUPER)
H1(ι) = ‖D, f 7→ ιn,m 7→ σn‖ { fr1, . . . , frn}= dom( f ields(H1,D))−dom( f ields(H1,C))

Hi+1 = Hi(ι 7→ ‖D, objectFields(Hi, ι)B fri,m 7→ σn‖)i∈1...n

{ fa1 7→ ι
n
a1
, . . . , fam 7→ ι

n
am
}= f ields(Hn+1,C)− f ields(Hn+1,D)

Hn+i+1 = Hn+i(ι 7→ ‖D,objectFields(Hn+i, ι)( fai 7→ ι
n
ai
),m 7→ σn‖)i∈1...m

Hn+m+2 = Hn+m+1(ι 7→ JC,objectFields(Hn+m+1, ι),m 7→ σnK)
〈E[ι.super=class C],H1,S〉 −→ 〈E[C],Hn+m+2,S〉

where H(ι) = ‖C, f 7→ ιn
f ,m 7→ σn‖

objectFields(H, ι) = { f 7→ ιn
f }

Figure 15: Dynamic inheritance.
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The rules above assume that during evaluation everything fits together. In contrast, many
exceptional situations may arise, which we deal with by raising an exception (e.g., accessing a
member of a null expression). That is, the expression does not evaluate to a normal value but
to an exception object. For instance, the EE-VAR rule in Figure 16 throws an exception when a
local variable is used and no value has been previously assigned to it. Similarly, EE-INV raises
an exception when the invoked m method is not provided by the object that receives the mes-
sage. The premises of EE-VAR and EE-INV guarantee the existence of the VarNotDefined and
MissingMethod exception classes (these classes derive from Exception in the real implementa-
tion) in the heap, and create a new object of that type to throw it as an exception. The programmer
may throw any object as an exception with the throw keyword and an expression evaluated to
an object reference (Figure 4). For the sake of brevity, we do not include the rest of exception
evaluation rules –all of them are detailed in [43].

(EE-VAR)
x /∈ dom(S)

H2 = H1(CVarNotDefined 7→ Jnone, ,K)
ι is f resh in H2

H3 = H2(ι 7→ ‖CVarNotDefined, ,‖)
〈E[x ],H1,S〉 −→ 〈E[throw ι],H3,S〉

(EE-INV)
@ σ.σ = method(H1, ι,m)

H2 = H1(CMissingMethod 7→ Jnone, ,K)
ιe is f resh in H2

H3 = H2(ιe 7→ ‖CMissingMethod, ,‖)
〈E[ι.m(v)],H1,S〉 −→ 〈E[throw ιe],H3,S〉

Figure 16: Two examples of exception evaluation inference rules.

Once an exception is thrown, it can be propagated up to the final evaluation of the program,
or handled by a try/catch expression. The EP-UNCAUGHT rule in in Figure 17 shows how
exceptions are propagated, causing the final evaluation of the program. F [throw ι] represents
any expression without a try/catch that has throw ι as one of its subexpressions. The whole
expression is reduced to throw ι, representing the final evaluation of the program. Notice that the
final state does not contain S to avoid the infinite recursive evaluation of this rule.

(EP-UNCAUGHT)

〈F [throw ι],H,S〉 −→ 〈throw ι,H〉

Figure 17: Exception propagation.

After defining how exceptions are thrown and propagated, rules in Figure 18 show the se-
mantics of try/catch. If the expression in the try block throws no exception, the try/catch
statement returns the value returned by the try expression, and the catch block is not evaluated
(NE-NOEXCEPT). Otherwise, if the type of the object thrown is a subtype of the type declared
in the catch block, the exception is handled (NE-CATCH). Notice how the E and F evaluation
contexts are used: the whole try/catch expression that has a throw subexpression as part of its
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try block is reduced to the catch block (e), mapping x to the address of the exception thrown (ι).
Finally, if the subtype condition is not satisfied, the exception is propagated (EP-NOCATCH).

(NE-NOEXCEPT)

〈E[try v catch(C x)e],H,S〉 −→ 〈E[v],H,S〉

(NE-CATCH)
H(ι) = ‖D, f 7→ ιn,m 7→ σn‖ D≤H C

〈E[try F [throw ι] catch(C x)e],H,S〉 −→ 〈E[⇑ e S],H,S(x 7→ ι)〉

(EP-NOCATCH)
H(ι) = ‖D, f 7→ ιn,m 7→ σn‖ D�H C

〈E[try F [throw ι] catch(C x)e],H,S〉 −→ 〈E[throw ι],H,S〉

Figure 18: Exception handling.

3.4. Validation with PLT Redex
The proposed hybrid model has been validated using the PLT Redex lightweight formalization

tool [44]. The process of mechanizing has helped us find errors in our semantics, particularly in
the use of none memory addresses. Using Redex, we have tested the following two properties of
our model:

Property 1 (One-Step Confluence). If 〈e,H,S〉 −→ 〈e1,H1,S1〉 and 〈e,H,S〉 −→ 〈e2,H2,S2〉
then e1 = e2, H1 = H2 and S1 = S2.

The way fresh addresses are chosen must be deterministic depending on the heap. Be-
sides, the runtime state 〈e,H,S〉 must be well-formed. We elide the definition of the well-
formedness conditions, as the supplemental material (the Redex implementation) contains
the details.

Property 2 (Progress). If 〈e,H,S〉 is well-formed, then either:
– e ∈ v, or
– 〈e,H,S〉 −→ 〈e’,H’,S’〉, or
– 〈e,H,S〉 −→ 〈throw ι,H’〉 and ι ∈ dom(H’).

The last alternative represents the evaluation of an uncaught exception, where the final state
has no S to avoid infinitive recursive reductions (see EP-UNCAUGHT in Figure 17).

Each property has been tested with two rounds of 15,000 random tests: the first one with initial
empty stack and heap, and the second one with random heap and stack. For the second kind of
scenarios, the initial random runtime state is checked for well-formedness and converted into a
well-formed one to increase the test coverage. Besides, we have manually coded 585 additional
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tests. The average coverage of normal evaluation (NE-*), exception propagation (EP-*) and ex-
ception evaluation (EE-*) rules were 986, 7,031 and 526, respectively, with a minimum coverage
of 2.

3.5. Implementation
We have implemented the semantics of the proposed hybrid model as part of a widespread

class-based virtual machine. We have chosen the virtual machine of the Microsoft .NET platform
because of its design focused on supporting a wide number of languages [45, 46], and its support
of dynamic languages by means of the DLR [13]. Extending the .NET platform to provide a direct
support for dynamically typed languages facilitates future interoperation with existing languages
and any .NET application and component. Since one of our objectives is to show the efficiency
of the proposed model, we looked for a production JIT-based virtual machine implementation.
We took the SSCLI (Shared Source Common Language Infrastructure) implementation of the Mi-
crosoft .NET platform because, although there exist other implementations (such as Mono [47] or
DotGNU Portable.NET [48]), the SSCLI is closer to the commercial virtual machine implementa-
tion: the CLR. Therefore, it could give us an estimate of the runtime performance obtained if the
semantics is included in the commercial version (see Section 4.4), and compare it with the DLR
–the existing approach to support dynamic languages on .NET.

We have modified our previous extension of the SSCLI that supported several structural in-
trospection services [16], including the hybrid object model specified in Section 3. These intro-
spective services have been added to the Base Class Library (BCL) in a new namespace called
System.Reflection.Structural. All of them were modified to include the proposed model.
These are the most significant reflective primitives added to that namespace (all of them are static
methods of the NativeStructural utility class):

– addField and addMethod: Provide the addition of fields and methods to an object (NE-
OMASSIGN and NE-OFASSIGN) or class (NE-CMASSIGN and NE-CFASSIGN).

– removeField and removeMethod: Delete fields and methods from objects (NE-OFDEL

and NE-OMDEL) and classes (NE-CFDEL and NE-CMDEL).

– getField and getMethod: Return a field and method of an object (NE-OFACCESS and
NE-OMACCESS) or class (NE-CFACCESS and NE-CMACCESS), considering the hybrid
object model defined.

– invoke: Performs the dynamic invocation of methods as described in NE-INV and NE-
MINV. The new RuntimeStructuralMethodInfo class (derived from MethodInfo) has
also been added to allow the representation of methods as first-class objects.

– setSuper: Overloaded method that implements the type change primitive (NE-COSUPER

and NE-POSUPER) and the modification of the inheritance tree (NE-PCSUPER and NE-
CCSUPER) for both object models.

Additionally, we have extended the semantics of some virtual machine opcodes, changing the
binary code that the JIT compiler generates at runtime:
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– ldfld and ldflda load object fields onto the stack (NE-CFACCESS), and ldsfld and
ldsflda push class fields (NE-OFACCESS).

– Method pointers of classes (NE-CMACCESS) and objects (NE-OMACCESS) are loaded
onto the stack with the ldftn and ldvirtftn opcodes.

– call and callvirt implement method invocation, following the semantics described in
NE-INV.

– stfld assigns fields to objects (NE-OFASSIGN) and stsfld to classes (NE-CFASSIGN).

– The type of an object is dynamically obtained with refanytype (NE-OSUPER).

– Extending the original object model has also demanded the modification of other opcodes
such as castclass (casts an instance to type), isinst (checks the type of an object) and
ldtoken (loads the reflective representation of a method, field or type).

The existing Reflection namespace has been modified to take into account the hybrid object
model proposed in this paper. New optimizations such as caching member pointers to reduce the
cost of delegation inheritance, reducing the use of strings, and inlining those functions frequently
called by the JIT-compiled code, have also been added to [16]. Finally, the implementation has
been highly refactored to facilitate the inclusion of new functionalities. The detailed information
about the implementation can be consulted in [43, 16].

4. Evaluation

This section is aimed at evaluating whether the proposed model can be included in a JIT-
compiler virtual machine, obtaining competitive runtime performance and memory consumption
for both short- and long-running applications. The first subsection outlines the experimental
methodology used. For each kind of benchmark, we present and discuss data of the runtime
performance and memory consumption (the whole evaluation data can be consulted in [43]).

4.1. Methodology
The methodology comprises a description of the language implementations and the benchmark

suites used in the evaluation, together with a description of how data is measured and analyzed.

4.1.1. Selected Language Implementations
We have considered some programming languages and platforms to be compared with our im-

plementation. Since our proposed semantics focuses on object-oriented reflective languages, we
have selected different implementations of the Python, Ruby and JavaScript dynamic languages
because of their wide popularity and utilization at present. Distinct implementations of each lan-
guage have been selected, including existing JIT-compiler versions. We have also used the last
version of C# (4.0) that exploits the DLR services. These are the specific implementations:
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– CPython 2.7.3 and 3.2.3 for Windows (commonly referred as simply Python). These are the
most widely used Python implementations; they are called CPython because they have been
developed in C. There are two parallel versions because of compatibility issues.

– Jython 2.5.2 over the Java HotSpot VM 1.7 update 3 64 bits for Windows. A 100% pure
Java implementation of the Python programming language. It is seamlessly integrated with
the Java platform.

– IronPython 2.7.2.1 over the .NET Framework 4.0 for 32 bits. It is an open-source imple-
mentation of the Python programming language which is tightly integrated with the .NET

Framework, targeting the DLR. It compiles Python programs into IL (Intermediate Lan-
guage) bytecodes that run on both Microsoft’s .NET and the Mono open source platform.

– PyPy 1.9 for Windows (32 bits), an alternative implementation of Python that provides JIT
compilation, memory usage optimizations, and full compatibility with CPython 2.7.2. PyPy
implements a tracing JIT compiler to optimize program execution at runtime, generating dy-
namically optimized machine code for the hot code paths of commonly executed loops [49].
Since PyPy is a Python interpreter written in Python, tracing JIT compilation is applied to
the Python interpreter itself.

– Ruby 1.9.3-p194 for Windows. Ruby is a dynamic open-source programming language
with a focus on simplicity and productivity. Its 1.9 version has changed the C interpreter
implementation to a compiler that generates code for the YARV (Yet another Ruby VM)
virtual machine, involving an important performance benefit. YARV does not implement
JIT compilation.

– IronRuby 1.1.3 over the .NET Framework 4.0 for 32 bits. It is an open-source implementa-
tion of Ruby 1.9 that obtains the benefits of the DLR platform.

– V8 JavaScript Engine 3.15. V8 is the Google’s open source JavaScript engine used in
Google Chrome, which can run standalone or embedded into any C++ application. V8 im-
plements a runtime adaptive JIT compiler that dynamically reoptimizes the generated code
based on heuristics of the code execution profile.

– C# 4.0/DLR. The last version of C#, making use of its new features provided by the DLR:
dynamic references and ExpandoObjects. This language allows writing both dynamically
and statically typed one.

We also considered Objective-C because it provides both static and dynamic typing, introspec-
tion, and it is commonly natively compiled. However, we finally did not include it in our evaluation
because of its limited support of intercession services (included in its runtime library): instance
variables cannot be added to existing classes, only to new ones (class_addIVar); new methods
can be added to neither classes nor objects (class_addMethod); members cannot be erased; ob-
ject structure modification is not provided; modifying a superclass does not change the structure
of classes and objects (class_setSuperclass); and changing the object type removes the values
of instance variables (object_setClass).
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These implementations have been evaluated together with zRotor compiled in the free op-
eration mode, without debug information and with the highest degree of code optimization. The
source code has been written in C#, using the new intercession services provided by the Structural
namespace (Section 3.5). When a suitable IL instruction can be used instead, we replace the BCL
invocation with the corresponding IL opcode to obtain better runtime performance –a compiler
that performs this operation automatically has not been implemented yet.

4.1.2. Selected Benchmarks
We have used different benchmark suites to evaluate the efficiency of our implementation. The

benchmarks have been divided into three different sets, regarding the features we want to measure:

– Structural Intercession. We have developed a set of micro-benchmarks to measure the ef-
ficiency of the structural intercession primitives provided by most dynamically typed lan-
guages. We have also measured the execution of two existing Python benchmarks (some
tests of the Pybench benchmark and the Parrot benchmark) that make extensive use of struc-
tural intercession.

– Dynamic Typing. These tests are aimed at evaluating the performance of the dynamic typing
features we have incorporated into the .NET virtual machine. We have measured four differ-
ent benchmarks where all the variables are dynamically typed, but no structural intercession
is used at all. Two of them (Pystone and Pybench) are specific for dynamic languages.
The third one (Shootout) is used to measure performance of both statically and dynamically
typed languages. Lastly, we have taken a fourth benchmark designed for statically typed
languages (Bruckschlegel) and modified it to become dynamically typed (all the references
are declared as dynamic). By using this four different types of benchmarks, we have tried to
measure a wide set of dynamic typing scenarios.

– Statically Typed Code. We have compared our implementation with the original SSCLI,
the CLR and the DLR. The objective is twofold: first, to evaluate the cost of our extension
compared with the original SSCLI; second, to estimate the current performance penalty in
the .NET Framework when using dynamically typed references vs. statically typed ones, and
contrast it with our approach. For this evaluation, we have taken four existing benchmarks
(Java Grande, Ben Zorn, Shootout and Bruckschlegel) where neither reflection nor duck
typing is used.

The purpose of using different benchmarks and languages is to compare the performance of
the same operations in different implementations, not to estimate which language performs better.
For this purpose, we have taken either Python (Pystone, Parrot and Pybench) or C# (Java Grande,
Ben Zorn, Shootout and Bruckschlegel) programs, and manually translated them into the rest of
languages. Although this translation might introduce a bias on the runtime performance of the
translated programs, we have thoroughly checked that the same operations are executed in all
the implementations. In those cases that the source program uses a specific language feature, we
have replaced its source code to ensure that every version performs the same operations. Only the
Python Parrot benchmark has been slightly modified to avoid the use of lambda functions and the
yield statement.

25



4.1.3. Data Analysis
We have followed the methodology proposed in [50] to evaluate the runtime performance of

applications, including those executed on virtual machines that provide JIT compilation. In this
methodology, two approaches are considered: 1) start-up performance is how quickly a system
can run a relatively short-running application; 2) steady-state performance concerns long-running
applications, where start-up JIT compilation does not involve a significant variability in the total
running time, and hot-spot dynamic optimizations have been applied.

To measure start-up performance, a two-step methodology is used:

1. We measure the execution time of running multiple times the same program. This results in
p (we have taken p = 30) measurements xi with 1≤ i≤ p.

2. The confidence interval for a given confidence level (95%) is computed to eliminate mea-
surement errors that may introduce a bias in the evaluation. The confidence interval is
calculated using the Student’s t-distribution because we took p = 30 [51]. Therefore, we
compute the confidence interval [c1,c2] as:

c1 = x− t1−α/2;p−1
s√
p c2 = x+ t1−α/2;p−1

s√
p

Being x the arithmetic mean of the xi measurements, α = 0.05(95%), s the standard devia-
tion of the xi measurements, and t1−α/2;p−1 defined such that a random variable T , that fol-
lows the Student’s t-distribution with p−1 degrees of freedom, obeys Pr[T ≤ t1−α/2;p−1] =
1−α/2. The data provided is the mean of the confidence interval plus the confidence inter-
nal.

In the start-up methodology, the xi measurements represent the execution time of the whole
process. Therefore, this evaluation method includes the start-up execution time of the language
processor itself, helping to analyze the appropriateness of each processing technique (e.g., JIT-
compilation) for executing short-running applications. In contrast, the steady-state methodology
only considers the execution time of the benchmark, not the whole process. The steady-state
methodology comprises the following four steps:

1. Each application (program) is executed p times (p = 30), and each execution performs at
least k (k = 10) different iterations of benchmark invocations, measuring each invocation
separately. We refer xi j as the measurement of the jth benchmark iteration of the ith appli-
cation execution.

2. For each i invocation of the benchmark, we determine the si iteration where steady-state
performance is reached. The execution reaches this state when the coefficient of variation
(CoV , defined as the standard deviation divided by the mean) of the last k iterations (from
si−k+1 to si) falls below a threshold (2%).
To avoid an influence of the previous benchmark execution, a full heap garbage collection is
done before performing every benchmark invocation. Garbage collection may still occur at
benchmark execution, and it is included in the measurement. However, this method reduces
the non-determinism across multiple invocations due to garbage collection kicking in at
different times across different executions.
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3. For each application execution, we compute the xi mean of the k benchmark iterations under
steady state:

xi =

si

∑
j=si−k+1

xi j

k

4. Finally, we compute the confidence interval for a given confidence level (95%) across the
computed means from the different application invocations using the Student’s t-statistic
described above. The overall mean is computed as x = ∑

p
i=1 xi/p. The confidence interval

is computer over the xi measurements.

4.1.4. Data Measurement
To measure execution time of each benchmark invocation (in the steady-state methodology),

we have instrumented the applications with code that registers the value of high-precision time
counters provided by the Windows operating system. This instrumentation calls the native function
QueryPerformanceCounter of the kernel32.dll library. This function returns the execution
time measured by the operating system Performance and Reliability Monitor [52]. We measure
the difference between the beginning and the end of each benchmark invocation to obtain the
execution time of each benchmark run.

The memory consumption has been measured following the start-up methodology, determin-
ing the memory used by the whole process. For that purpose, we have used the maximum size
of working set memory employed by the process since it was started (the PeakWorkingSet prop-
erty). The working set of a process is the set of memory pages currently visible to the process
in physical RAM memory. These pages are resident and available for an application to be used
without triggering a page fault. The working set includes both shared and private data. The shared
data comprises the pages that contain all the instructions that the process executes, including those
from the process modules and the system libraries. The PeakWorkingSet has been measured with
explicit calls to the services of the Windows Management Instrumentation infrastructure [53].

All the tests were carried out on a 2.67 GHz Intel I7 920 system with 8 GB of RAM running
an updated 64-bit version of Windows 7 Professional SP1. The benchmarks were executed after
system reboot, removing the extraneous load, and waiting for the operating system to be loaded
(until the CPU usage falls below 2% and remains at this level for 30 seconds). If the L1 and L2
languages run the same benchmark in T and 1.5×T milliseconds, respectively, we say that L1 is
50% (or 1.5 times) faster than L2, runtime performance of L1 is 50% (or 1.5 times) higher than
L2, L2 requires 50% (or 1.5 times) more execution time that L1, or the performance benefit of L1
compared to L2 is 50% –the same for memory consumption. To compute average percentages,
factors and orders of magnitude, we use the geometric mean.

4.2. Structural Intercession
To evaluate the efficiency of intercession, we have created a synthetic micro-benchmark that

executes the typical intercession primitives. We invoke each primitive in a loop of 10,000 iter-
ations. The objective of this micro-benchmark is to evaluate the efficiency of the primitives we
have added to the .NET platform in isolation, so that we can compare our implementation with
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existing approaches. Afterwards, we measure two existing applications that combine the usage of
intercession with non-reflective code to obtain a specific purpose.

Table 1 and 2 show the execution times of our micro-benchmark in milliseconds, using the
start-up and steady-state methodologies respectively. This micro-benchmark consists of 22 reflec-
tion tests: tests 1-10, 15-16, and 19-20 are relative to intercession, tests 11-14 and 17-18 measure
duck typing, and tests 21 and 22 evaluate changing the inheritance tree and the type of an ob-
ject, respectively (see [43] for a description of each test). As shown in both tables, the DLR
does not provide intercession and duck typing when dealing with classes: only single instances
(of ExpandoObjects) can be modified; likewise, dynamic can be used to send messages only to
objects (not to classes). The DLR and Ruby do not support dynamic inheritance (tests 21 and 22).

Test zRotor CPy2 CPy3 Jython IronPython PyPy Ruby IronRuby V8 DLR
1 129.44 161.77 166.67 14,283.53 6,284.39 1,261.77 223.55 1,462.22 178.77 1,396.73
2 111.47 168.12 173.73 13,547.63 6,590.91 1,366.83 427.66 3,327.52 146.17 1,222.40
3 54.54 152.00 162.70 15,127.50 5,899.14 496.53 247.51 2,262.20 129.60
4 50.44 169.25 173.00 13,463.33 5,779.26 458.77 265.55 2,577.68 168.67
5 65.80 278.00 302.00 30,332.17 19,072.09 744.63 318.84 2,923.54 290.77
6 64.00 300.00 287.03 30,695.63 18,660.07 703.50 350.59 3,384.19 399.03
7 59.40 145.92 139.58 12,370.33 6,469.64 14,925.67 61.00 727.87 132.20 560.22
8 59.37 145.17 147.07 15,523.67 6,604.84 14,750.33 87.84 863.85 109.00 556.40
9 65.17 141.38 141.33 16,227.70 6,378.83 334.00 114.41 878.95 167.33
10 61.67 164.20 137.75 15,846.57 6,816.46 336.57 115.61 873.45 137.90
11 0.33 138.77 116.70 12,881.53 12,925.08 310.43 1,102.06 2,876.66 110.00 4,776.00
12 249.35 193.07 140.25 12,636.07 1,605.43 313.50 725.04 3,756.38 125.00 1,295.50
13 39.37 183.63 152.93 15,716.77 1,005.76 905.83 117.61 1,032.46 125.00 509.75
14 44.14 126.80 119.82 17,717.83 12,129.69 342.33 74.00 905.84 134.37
15 39.74 50.22 45.00 4,006.30 281.75 203.75 53.30 370.02 109.00 67.76
16 38.87 64.20 59.60 3,624.70 1,639.09 148.75 53.60 387.62 109.00
17 27.13 50.00 46.83 3,318.13 273.88 156.00 30.64 688.71 31.67 77.13
18 19.10 30.00 33.92 1,849.40 4,801.07 115.20 144.91 744.88 63.00 77.17
19 8.00 39.00 40.57 3,147.00 257.05 15,706.87 32.00 338.35 26.37 33.00
20 6.00 32.37 38.73 2,928.37 1,533.68 70.47 22.00 238.68 15.00
21 47.93 153.90 6,845.17 169.50 87.84 10.00 1,350.80
22 13.00 85.80 63.97 299.10 62.40 8.40 124.33

Total 1,254 2,973 9,534 255,712 125,157 53,670 4,567 30,621 4,182 10,572

Table 1: Start-up execution time (ms) of the micro-benchmark.

Table 1 shows how zRotor is, on average, the fastest implementation in the start-up method-
ology: 3.24, 3.69, 200, 70, 12.3, 3.7, 30.9, 3.51 and 12.1 times faster than CPython 2, CPython 3,
Jython, IronPython, PyPy, Ruby, IronRuby, V8 and the DLR, respectively (Figure 19). In all the
primitives, except for the 12th one (accessing class fields) and the two dynamic inheritance opera-
tions (21st and 22nd primitives), zRotor obtains the lowest start-up execution time. When access-
ing static members (12th primitive), runtime performance of the SSCLI is significantly slower
than its counterparts [16]. PyPy is the only implementation that performs better than zRotor
for dynamic inheritance primitives, due to the runtime program optimizations implemented by its
tracing JIT compiler [49].

In the steady-state methodology (Table 2), zRotor also obtains the best average runtime per-
formance: 6.09, 6.87, 295, 31.1, 17.4, 9.21, 60.3, 1.42 and 15.52 times faster than CPython 2,
CPyhon 3, Jython, IronPython, PyPy, Ruby, IronRuby, V8 and the DLR, respectively. However,
V8 performs better than zRotor in 10 tests. This improvement is due to the suitability of its
adaptive JIT-compiler for long-running applications. The JIT-compiler of the SSCLI does not per-
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form dynamic optimizations of the code generated, and thus the improvement for long-running
applications is not as high as the one obtained by V8.

Test zRotor CPy2 CPy3 Jython IronPython PyPy Ruby IronRuby V8 DLR
1 82.22 155.70 143.90 14,044.78 796.40 1,073.67 246.38 1,497.35 42.40 1,239.02
2 72.29 171.46 151.05 13,412.10 830.85 1,086.88 387.16 3,397.18 54.40 1,186.82
3 42.23 160.77 141.70 13,951.60 789.26 369.50 349.40 2,346.16 15.00
4 37.10 165.27 153.35 13,314.20 855.46 380.63 340.52 2,878.73 22.00
5 50.50 278.45 267.00 26,068.23 1,537.24 646.05 424.99 3,356.04 281.20
6 45.72 295.05 281.88 26,097.20 1,603.79 664.40 502.33 3,914.99 50.20
7 40.35 140.97 134.00 12,371.32 872.23 8,103.63 59.45 793.51 65.40 573.05
8 43.07 143.60 137.18 11,724.13 847.60 8,444.13 84.78 905.85 53.00 559.05
9 37.50 140.65 136.72 12,629.36 841.65 334.40 133.64 968.08 26.60

10 41.17 143.63 137.15 11,622.30 844.25 334.85 137.61 994.61 30.80
11 0.33 121.35 114.27 12,239.63 1,359.51 294.21 1,229.74 3,464.57 9.00 522.91
12 235.60 147.18 137.16 13,267.55 1,339.34 309.70 843.95 231.31 79.80 4.50
13 30.56 160.47 147.35 13,352.30 812.23 812.50 156.93 1,171.39 59.80 516.51
14 27.20 122.95 116.97 11,913.67 750.63 296.54 84.34 1,056.48 14.20
15 20.21 46.38 43.60 3,288.52 212.09 172.36 64.51 428.37 7.20 64.67
16 19.26 59.93 55.43 3,224.88 226.55 129.92 57.98 445.04 3.40
17 0.70 48.25 44.30 3,587.85 218.58 149.50 35.47 771.02 3.00 34.88
18 0.10 30.79 33.39 1,515.80 1,271.86 98.38 140.89 260.19 3.00 64.67
19 5.82 38.88 36.87 3,202.12 234.24 6,838.95 38.50 405.69 5.00 30.10
20 5.18 30.60 30.27 3,219.10 209.67 69.17 26.61 255.47 6.00
21 57.67 129.06 6,620.60 20.37 63.96 5.86 1,395.00
22 12.00 72.68 62.40 30.64 53.82 0.40 26.20

Total 907 2,804 9,127 224,098 16,571 30,616 5,345 29,542 2,253 4,796

Table 2: Steady-state execution time (ms) of the micro-benchmark.

Together with our micro-benchmark that evaluates the efficiency of reflective primitives, we
have also evaluated two existing programs that make use of intercession. The first one is the
Parrot benchmark [54], a complex program created to measure the corners of the Python lan-
guage, using the dynamic object model of this language to implement a Python interpreter. It
implements a parser for a subset of Python, instrumenting and uninstrumenting the tree traversal
algorithms at runtime by means of structural intercession. The second program we have selected
is Pybench [55], a Python benchmark designed to measure the performance of standard Python
implementations. Pybench is composed of a collection of tests that measures different aspects of
the Python programming language. In this section, we have measured the 6 tests that make use of
intercession (the rest are evaluated in Section 4.3).

Figure 19 shows the average execution time, relative to zRotor, of these two benchmarks
(together with the average execution time of the micro-benchmark) –when a value is much higher
than the rest, its representation has been cut to improve the visualization of the figure, and values
are displayed over each bar. zRotor provides the best runtime performance in all the benchmarks
with the exception of PyBench, for which V8 requires 66% the execution time used by zRotor
(both start-up and steady-state). V8 uses an advanced adaptive JIT compiler, which optimizes code
at runtime based on profiling information.

Figure 20 displays the average memory usage relative to zRotor for the benchmarks analyzed
in this section –together with those analyzed in the following one. In the three benchmarks that
use structural intercession, memory consumption of the interpreted implementations is lower than
the JIT-compilation approaches. On average, CPython 2, CPython 3 and Ruby consume 58.86%,
75% and 73.43% the memory used by our platform. V8 requires 85.46% the memory of zRotor;
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Figure 19: Execution time of the intercession benchmarks relative to zRotor.

the second JIT-compiler platform (after V8) with the lowest memory requirements. Jython, Iron-
Python, PyPy, IronRuby and the DLR consumes 1,431%, 244%, 222%, 237% and 11.68% more
memory than zRotor.
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Figure 20: Memory consumption of the intercession and dynamic typing benchmarks relative to zRotor (confidence
intervals are not shown because all of them are below 2%).

In this first evaluation section, we have seen how our implementation obtains the best average
performance in the micro-benchmark that synthetically measures the common intercession prim-
itives. In this scenario, the interpreted-based approaches and V8 perform better that the rest of
JIT-compiler implementations. However, when non-intercessive code is added (i.e., PyBench and
the Parrot benchmarks), the relative performance of JIT-compiler approaches increases. Therefore,
zRotor and V8 show how JIT-compilation be used to optimize both kinds of code. This differ-
ence with the rest of JIT-based approaches may be due to the fact that zRotor and V8 include the
intercession primitives in the JIT-compiler, whereas the rest of approaches simulate intercession
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with an extra layer.

4.3. Dynamic Typing
Apart from structural intercession, we have also added support for dynamic typing to the .NET

virtual machine, providing the corresponding services to any .NET language. In order to evaluate
the efficiency of these services, we have measured the following four applications that make wide
use of duck typing but no structural intercession:

– Pystone. This benchmark is the Python version of the Dhrystone benchmark [56] and is
commonly used to compare different implementations of the Python programming language.
Pystone is included in the standard CPython distribution. We have translated it into Ruby
and C# 4.0 to use the DLR (every reference has been declared as dynamic).

– Pybench [55]. A Python benchmark designed to measure the performance of standard
Python implementations. Pybench is composed of a collection of 52 tests that measure
different aspects of the Python programming language. We have suppressed those tests that
use structural intercession (already measured in the previous subsection); those that em-
ploy particular features of Python not provided by the other languages (i.e., tuples, dynamic
code evaluation, and Python-specific built-in functions); and those that use any input/output
interaction. Therefore, 24 tests of the Pybench benchmark were measured in this section.

– Shootout. The third existing benchmark we have used to evaluate our platform is the
Shootout benchmark (also known as the Computer Language Benchmarks Game) [57]. This
benchmark is composed of different well-known algorithms implemented in both statically
and dynamically typed programming languages. We have run those tests that do not perform
any I/O interaction, which are: nbody, predicts the motion of a group of celestial objects that
interact with each other gravitationally; fannkuch redux, involves operations (mostly permu-
tations) on vectors of numbers; spectral norm, calculates the spectral norm (eigenvalue) of
a square matrix using the power method; mandelbrot, computes a particular instance of the
Mandelbrot fractal set; and binary trees, allocates, walks, and deallocates many bottom-up
binary trees. As mentioned, we take the C# implementations and translate them into the
other languages, ensuring that the same operations are executed in every language.

– Bruckschlegel. A benchmark designed by Thomas Bruckschlegel to evaluate the character-
istics of Java, C#, and C++ on Windows and Linux [58]. It is composed of a set of 12 tests
that use fundamental data processing and arithmetic operations. Since this last benchmark
was designed for statically typed languages, we have removed every type annotation to make
it dynamically typed.

Figure 21 shows the average execution time relative to zRotor when running these four bench-
marks. We can see how zRotor is the fastest implementation for short-running applications
(start-up). On average, PyPy is the closest implementation, requiring only 1.58% more execution
time; V8, the third one, employs 76.81% more time. For long-running applications (steady-state),
zRotor is the second fastest system after PyPy, which requires 60% the execution time of zRotor.
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V8, the third fastest implementation, uses 89.55% more execution time than our platform. Most
of the tests where zRotor shows a low runtime performance are related to (Unicode) string han-
dling. This is because our platform has low runtime performance when dealing with strings. For
instance, running the string concat test of the Bruckschlegel benchmark, the DLR is 2.49 (start-
up) and 3.67 (steady-state) times faster than zRotor. This limitation has been inherited from the
original SSCLI implementation: as we analyze in the following subsection, where we compare
(among others) the CLR and the SSCLI, the SSCLI runs the same test in 16 times more execution
time than the CLR [43].
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Figure 21: Execution time of the dynamic typing benchmarks relative to zRotor.

Regarding memory consumption, zRotor shows the lowest memory requirements (Figure 20).
Ruby requires 5% more memory than our platform, and the memory consumption of both CPython
implementations is 19% higher. Apart from zRotor, JIT-compilation implementations use the
highest memory resources: 2,052% (Jython), 277% (IronPython), 121% (PyPy), 215% (Iron-
Ruby), 38% (V8) and 78.56% (the DLR) more than zRotor. Comparing these results with the
ones presented in the previous section, it can be observed how JIT-compilation approaches offer
better runtime performance when running non-intercessive code, but their relative memory con-
sumption is also increased. Nevertheless, zRotor reduces its relative memory resources, showing
the best runtime performance in start-up, and the second one in steady-state.

This second evaluation section has shown how adding support of dynamic typing to a JIT-
compiler virtual machine provides runtime performance benefits, and it can be implemented with
even lower memory resources than interpreted-based approaches. The utilization of JIT-compilation
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for implementing the hybrid model shows a higher benefit in these tests compared to intercessive
applications. Besides, the evaluation shows that adaptive runtime code optimization and tracing
JIT-compilation are two suitable techniques to obtain better runtime performance, especially for
long-running applications.

4.4. Statically typed code
In this last group of tests we have measured statically typed applications. The objective of this

evaluation is to determine the cost of adding the proposed hybrid model to the SSCLI. For that
purpose, we have compared the original SSCLI implementation with zRotor, measuring exactly
the same applications (written in C#). We have run a set of benchmarks that do not use any feature
of the new object model.

We also include the DLR in this evaluation, changing the original C# application (CLR) to
another one with all the references declared as dynamic. The purpose of measuring execution
time of this source code is to assess the current performance cost in the .NET Framework of using
dynamically typed references vs. statically typed ones. Therefore, our approach of modifying the
underlying virtual machine can be compared with the one that creates an extra layer over the CLR.

We have selected four different benchmarks. First two are those used in the previous section
that measure runtime performance of statically typed languages: Shootout and Bruckschlegel. We
have also used three real C# applications collected by Ben Zorn [59], and a C# port of a subset of
the Java Grande benchmark [60].

The three real applications collected by Ben Zorn consist of a collection of managed code
programs available for performance studies of CLI implementations. These programs are:

– LCSCBench. Based on the front end of a C# compiler, it uses a generalized LR (GLR)
parsing algorithm. This benchmark is computationally and memory intensive, requiring
hundreds of megabytes of heap for the largest input file provided (a C# source file with
125,000 lines of code).

– AHCBench. Based on compressing and uncompressing input files using Adaptive Huffman
Compression, the AHCBench size is 1,267 lines computationally intensive code, requiring
a relatively small heap.

– SharpSATBench. Based on a clause-based satisfiability solver where the logic formula is
written in Conjunctive Normal Form (CNF), SharpSATbench is computationally intensive,
requiring a moderate-sized heap. Its source code has 10,900 lines of code.

The last benchmark used in this section is a subset of the Java Grande benchmark ported to C#
by Chandra Krintz [61]:

– Section 1 (low-level operations). Arith, execution of arithmetic operations; Assign, variable,
object and class variables, and array assignment; Cast, casting between different primitive
types; Create, object and array creation; and Loop, loop overheads.
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– Section 2 (Kernels). FFT, one-dimensional forward transformation of N complex num-
bers; Heapsort, the heap sort algorithm over arrays of integers; and Sparse, management of
an unstructured sparse matrix stored in compressed-row format with a prescribed sparsity
structure.

– Section 3 (Large Scale Applications). RayTracer, a 3D ray tracer of scenes that contain 64
spheres, and are rendered at a resolution of 150×150 pixels.

Figure 22 shows the difference between zRotor and the SSCLI when none of the new features
are used. On average, our platform requires 12% more execution time. Although the new hybrid
model added to the platform requires more dynamic checks, its runtime performance is close to
the original SSCLI because, when none of the new features have been used, most of the original
services are used instead (i.e., many runtime checks are not performed because they are not nec-
essary). zRotor consumes 13% more memory than the SSCLI (Figure 23). The execution time of
the CLR is 12% (start-up) and 15% (steady-state) of zRotor, while this value is only a percentage
point higher when compared to the SSCLI. However, the CLR requires 47% more memory than
zRotor (Figure 23).
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Figure 22: Execution time of the statically-typed benchmarks relative to zRotor.

Running this kind of applications, the DLR offers better runtime performance than execut-
ing reflective code, requiring 212% (start-up) and 167% (steady-state) more execution time than
zRotor (Figure 22), and consuming 107% more memory (Figure 23). The DLR performs bet-
ter than zRotor only in 2 tests out of 29 [43]. The first one is the JGFCreate benchmark of the
Java Grande suite, which creates loads of objects and assigns them to dynamic references. In
this test, the DLR performs even better than the CLR (it seems that, for this test, assignments to
dynamic references are faster than to statically typed ones): 69% in start-up, and 105% in steady-
state. The second program where the DLR is faster is string concat, a string intensive test of the
Bruckschlegel benchmark. As we have mentioned in the previous subsection, the worse runtime
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performance of zRotor is an effect of the way the SSCLI implements strings: the DLR is 2.63 and
3.45 times faster than the SSCLI, while this difference rises to more than 16 times comparing the
SSCLI with the CLR.

The comparison between the DLR and the CLR shows that the use of dynamic involves a
performance cost between 1.26 and 1.41 orders of magnitude (19.29 and 27.08 factors) and 41%
more memory. These data contrast with the average penalty we have introduced: 12% more
execution time and 13% more memory than the SSCLI.
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Figure 23: Memory consumption of the statically-typed benchmarks relative to zRotor (confidence intervals are not
shown because all of them are below 2%).

5. Related Work

In this section we analyze the existing work related to ours. We first describe previous work on
specifying the semantics of structural intercession. Afterwards, we discuss the virtual machines
that provide runtime structural intercession, generating binary code with JIT compilation.

5.1. Formal Specification of Structural Intercession
Abadi and Cardelli defined the ζ-calculus, a pure object-based (prototype-based) calculus

where objects are the only computational structures [62]. Although the ζ-calculus is pure prototype-
based, it can also be used for defining classes as object generators that are self-contained –
including inheritance. An object is a collection of named methods; attributes (fields) are modeled
as methods that return a value. Methods can be updated, allowing the modification of attribute
values. The update operation produces a new copy of the original object where an existing method
is replaced with the new one. However, the ζ-calculus does not provide operations to add and to
remove methods from objects because these operations are harder to handle in a type-theoretical
development [62].

Rémy extended the ζ-calculus with the extension primitive, so that objects could be extended
with new methods [63]. The structure of objects was refined to carry more precise information,
allowing the definition of width and depth subtyping. This work includes the extension operation
of records into the ζ-calculus without including the restriction operation (i.e., removing fields from
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a record) [64]. This approach is similar to existing works on changing the class membership of an
object while retaining its identity, such as F ickle [22] and wide classes [65].

δ is a simple calculus that provides a formal foundation for an imperative prototype-based
system with structural intercession and delegation [66]. They define the operational semantics of
reflective languages that support the addition, update and deletion of object methods at runtime
–attributes are modeled as methods, following the approach defined by Abadi and Cardelli in their
ζ-calculus [62]. Additionally to the list of methods, an object contains a collection of addresses
pointing to its parents. When a message sent to an object is not understood, it is automatically
forwarded to its parents.

BabyJ is an adaptation of δ to model a subset of the JavaScript semantics [67]. The objective of
BabyJ is to convert object-based weakly typed applications into class-based strongly typed ones.
Therefore, they modified δ to represent a subset of the JavaScript semantics, although the dynamic
removal of members was not provided (i.e., full structural intercession was not supported). They
also defined BabyJT as a typed extension of BabyJ for which a static type system was created.
Finally, a semantics preserving transformation of BabyJT programs to Java programs provide the
generation of class-based applications from prototype-based ones.

EGO is a prototype-based language that offers a type-safe system supporting imperative method
addition, removal, and dynamic changes of object inheritance [68]. Its objective is to offer the pow-
erful intercession features of the Self programming language [29], without losing the robustness
of a sound static type system. As in ζ-calculus, object members are unified in methods, but their
dynamic semantics is more based on λ-calculus. The type system tracks the linearity of object and
method references in order to ensure that objects whose interfaces change are not aliased. They
provide a foundation for languages that combine the power of dynamic languages with the benefits
of static typing.

5.2. Virtual Machines that Provide Structural Intercession
The Smalltalk virtual machine could be identified as the first example of a widely-known dy-

namically typed object-oriented reflective virtual machine [69]. It provides structural intercession
and duck typing for a class-based object model. The initial implementations of Smalltalk (Dol-
phin, GNU Smalltalk, ObjectStudio or Berkeley Smalltalk) were based on bytecode interpreters.
Afterwards, different optimizations have used dynamic JIT compilation to native code [70] involv-
ing important performance improvements (VisualWorks, VisualAge Smalltalk and Digitalk).

Self is a prototype-based object-oriented language for exploratory programming. Unlike Small-
talk, Self uses the prototype-based model to support runtime structural (and partially behavioral)
reflection [29]. The prototype-based model allows Self to consistently provide object-level inter-
cession. Its implementation is based on a virtual machine that provides JIT compilation. One of
the most important features of Self is the efficient execution of its dynamically typed code [71].
The Self compiler transparently specializes functions for specific argument types based on profil-
ing and gathered statistics (i.e., runtime adaptive optimization).

Parrot is an open source virtual machine designed to efficiently compile and execute bytecode
for dynamic languages [72]. The virtual machine is register-based rather than stack-based, and
uses continuations as the core means of flow control. Data types in Parrot are defined by means
of Polymorphic Containers (PMCs), which model the structure and behavior of each non-built-in
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type. The Parrot platform implements two object-oriented PMCs: Object PMC and Class PMC.
With these PMCs, Parrot provides a class-based object model that provides structural intercession
and duck typing. However, a strong limitation is imposed: these operations throw an exception
if the current class has been instantiated [73]. The intercession primitives do not allow changing
the structure of a class when the class has any running instance. In order to change this constraint,
existing PMCs should be modified.

MetaXa, formerly called MetaJava, is an extension of the Java platform with a reflective meta-
level architecture [19]. Structural and behavioral intercession is provided by means of a Meta-
Object Protocol (MOP) [74]. The MetaXa approach is quite similar to the one presented in this
paper: intercession support added to a production statically-typed class-based virtual machine
(integrated into its JIT compiler) to obtain significant performance benefits [75]. The main dif-
ference was that MetaXa followed the class-based computational model of the Java programming
language. As described in Section 2.1, the class-based object-oriented model of Java does not sup-
port object-level reflection in a consistent way [25]. In fact, this model is not the one implemented
by most of the dynamically typed object-oriented reflective languages.

The Java Specification Request (JSR) 292 is aimed at supporting dynamically typed languages
over the Java platform [12]. Although the JVM has already been used to support dynamic lan-
guages such as Groovy or Jython, its runtime performance was not as good as that provided by
other implementations (e.g., CPython). A key part of the JSR 292 is the new invokedynamic
opcode added to the JVM. This instruction has been designed to support the implementation of
the message passing mechanism provided by dynamically typed object-oriented languages (duck
typing). It provides a dynamic linkage mechanism that helps language implementers to generate
bytecode that runs faster in the JVM [76]. The invokedynamic specification of the JSR 292 has
been included as part of Java 1.7.

The JSR 292 specification also investigates support for hot-swapping: the ability to modify
the structure of classes at runtime. Although this feature was also expected to be delivered in
Java SE 1.7 [12], it was not finally included. However, the Da Vinci Machine (also called the
Multi Language Virtual Machine) project [77] has the objective, among others, to provide hot-
swapping to the OpenJDK implementation. This project is aimed at prototyping a number of
enhancements to the JVM, so that it can run non-Java languages (especially dynamic ones) with a
performance level comparable to that of Java itself. This approach is similar to ours in the sense
that we extended the semantics of a virtual machine instead of creating a new software layer (as
does the DLR). Working at the virtual machine level provides better runtime performance, taking
advantage of the JIT-compiler optimizations.

The Dynamic Language Runtime (DLR) [13] is a set of services that run on the top of the CLR,
offering a new level of support for dynamic languages on .NET [14]. The DLR is shipped with
the .NET Framework 4.0 and it is used to support IronPython, IronRuby, SilverLight, and even C#
4.0, i.e., its new dynamic type [36]. Basically, the DLR is a redesign of the object model used in
IronPython, allowing any other dynamic language to seamlessly work together, sharing libraries
and frameworks. The DLR is a new software layer over the CLR: no modification of the virtual
machine was performed to support dynamic languages. It provides duck typing and object-level
intercession by means of its ExpandoObject class.

The implementation presented in this paper is based on a previous extension of the SSCLI [16].
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In that previous work, we described how to include common structural intercession primitives to
the SSCLI, obtaining the runtime performance benefits provided by JIT-compilation. Although
object-level intercession was supported, the implementation did not provide the hybrid class- and
prototype-based model proposed in this paper. The new version allows combining both models in
the same application, following the semantic rules described in Section 3. New features such as
changing the type of an object at runtime, providing introspective services for the hybrid model,
dynamically updating the inheritance tree, and overcoming the inconsistencies between duck typ-
ing and dynamic binding described in Section 2.3, have been included. Finally, as mentioned, this
new version has been highly refactored and provides new optimizations (Section 3.5).

6. Conclusions

This paper proposes a hybrid class- and prototype-based object model to provide the structural
intercession and duck typing services of existing reflective languages, supporting the adaptation of
any object or class. This model has been implemented as part of a production JIT-compiler virtual
machine, obtaining competitive runtime performance and low memory consumption.

We have formalized the semantics of the proposed object model, which allows the dynamic
addition, deletion and updating of methods and fields. Any class and object can be adapted, sup-
porting a hybrid class- and prototype-based object-oriented model. Duck typing is also provided
to make the most of the new structural intercession services.

We have modified a previous implementation that provides structural intercession in a shared-
source version of .NET, including the proposed hybrid class- and prototype-based model. The
direct support of the model inside the JIT-compiler virtual machine provides significant perfor-
mance benefits compared to widely-used approaches. Computing the geometric mean of all the
tests, zRotor performs 73% (start-up) and 61% (steady-state) better than the second fastest sys-
tem. Only two language implementations perform better than zRotor when running one bench-
mark. These two systems implement advanced JIT-compilation techniques, such as tracing JIT-
compilation and runtime adaptive code optimization, especially suitable for long-running appli-
cations. On average, zRotor is the JIT-compiler implementation that requires lower memory
resources.

Our approach of extending the semantics of the virtual machine performs better and consumes
less memory than the existing alternative of creating an extra software layer (the DLR). The aver-
age runtime benefits are 435% for intercessive code, 297% when running dynamic typing bench-
marks, and 680% for statically typed programs (444% if we compute the geometric mean of these
three values). On average, the DLR consumes 63% more memory than zRotor. Finally, when
none of the new features are used, zRotor requires 12% more execution time and 13% more
memory than the original SSCLI implementation.

Future work will be focused on retargeting the existing implementation of the StaDyn pro-
gramming language [78] to use zRotor as a new back-end. StaDyn is a research programming
language that supports both static and dynamic typing, extending the semantics of C# [79]. The
current implementation generates CLR code, making use of the introspective services offered by
the .NET Framework [80]. Future versions will provide structural intercession, generating both
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zRotor and DLR code. The StaDyn type system [80] will provide both static and dynamic typing
for the semantics proposed in this paper, and we plan to proof its soundness.

We are also planning to use zRotor as a new back-end for the DSAW dynamic aspect-weaving
platform [81]. Structural reflection can be used to obtain flexible dynamic aspect-oriented ser-
vices [82], and we think zRotor may involve a notable runtime performance improvement.

The PLT Redex model implementation, the manual and random tests, the source code of the
zRotor virtual machine, a binary executable version for the Windows platform, and all the exam-
ples and benchmarks used in this paper are freely available at:

http://www.reflection.uniovi.es/rrotor/download/2012/ist
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