

NOTICE: This is the author’s version of a work accepted for publication by

World Scientific. Changes resulting from the publishing process, including peer

review, editing, corrections, structural formatting and other quality control

mechanisms, may not be reflected in this document. A definitive version was

subsequently published in the International Journal of Software Engineering and

Knowledge Engineering, Volume 21, Issue 7, pp. 891−929, November 2011.

International Journal of Software Engineering and Knowledge Engineering
c© World Scientific Publishing Company

THE DSAW ASPECT-ORIENTED SOFTWARE DEVELOPMENT

PLATFORM

FRANCISCO ORTIN∗

LUIS VINUESA†

Computer Science Department, University of Oviedo
Calvo Sotelo s/n, Oviedo, 33007, Spain

JOSE M. FELIX‡

Principality of Asturias, Computer Science Department

C/ Coronel Aranda 2, Oviedo, 33005, Spain

Received (9 October 2009)

Revised (19 July 2010)

Accepted (7 April 2011)

Aspect-Oriented Software Development (AOSD) provides systematic means to modular-

ize crosscutting concerns in software development. Common AOSD benefits are a higher

level of abstraction, concern reuse, better legibility, and software maintainability im-
provement. In AOSD, static weaving implementations commonly obtain better runtime

performance, whereas dynamic weaving provides runtime application adaptiveness and
a valuable aid in software development. Since both approaches provide benefits, we have

developed a Dynamic and Static Aspect Weaving (DSAW) platform that supports both

kinds of weavers: a full dynamic one to offer high dynamic adaptiveness and a static
one to obtain better runtime performance when the application is deployed. Further-

more, both weaving techniques can even be used simultaneously in the same application.

Depending on the adaptiveness requirements and the life cycle stage, the programmer
could change from one type of weaving to the other without performing any modifi-

cation in the source code of either components or aspects. Therefore, DSAW provides

the separation of the dynamism (weaving-time) concern in the aspect-oriented software
development process. Moreover, our platform also supports a wide set of join-points and

is language and platform neutral. A detailed assessment has revealed that the DSAW

platform provides a competitive alternative to develop aspect oriented software.

Keywords: Aspect-Oriented Software Development, Static Weaving, Dynamic Weaving,
Separation of Concerns, Dynamism, Computational Reflection, Language Neutrality

∗ortin@lsi.uniovi.es
http://www.di.uniovi.es/∼ortin

†vinuesa@uniovi.es
http://www.di.uniovi.es/∼vinuesa

‡jmanuelfr@princast.es

1

2 F. Ortin, L. Vinuesa & J.M. Felix

1. Introduction

Aspect Oriented Software Development (AOSD) [1] is a concrete approach of the

Separation of Concerns (SoC) principle [2]. AOSD offers a direct support to mod-

ularize different concerns that cut across system software. The modularization of

crosscutting concerns prevents tangling of the application source code, making it

easier to debug, maintain and modify [3]. Typical examples of cross-cutting concerns

are persistence, authentication, logging and tracing [4].

The process of integrating aspects into the main application code is called weav-

ing and an aspect weaver (or simply weaver) is the tool that performs it [1]. The

weaving process can be performed statically (compile time or load time) or dynam-

ically (at runtime).

Numerous programming environments that support AOSD only employ static

weavers. Once the final application has been compiled, woven and executed, it is

not possible to add new aspects or remove existing ones at runtime. However, there

are specific scenarios where it is necessary to adapt running applications in response

to runtime emerging requirements. For example, dynamic weaving has been used

in handling Quality of Service (QoS) requirements in CORBA distributed systems

[5], managing web cache prefetching [6], balancing the load of RMI applications [7],

and changing the control policy of distributed systems [8]. In these cases, dynamic

weavers are a powerful tool for building runtime adaptable software.

Both dynamic and static weavers have pros and cons. One of the main benefits

of static weaving is runtime performance. Since the combination of components and

aspects is performed prior to application execution, there is little performance cost

compared to traditional object-oriented development [9, 10]. In contrast, runtime

weaving (and unweaving) performed by dynamic AOSD tools commonly implies a

runtime performance penalty, but it provides higher flexibility in the development of

software. Applications can be adapted at runtime by dynamically adding or remov-

ing aspects that customize the application behavior. Moreover, the dynamic adapta-

tion mechanism is preferable while developing aspect-oriented applications, because

it facilitates interactive debugging following an edit-and-continue development. The

edit-and-continue (also known as fix-and-continue [11]) debugging scheme refers to

the ability to detect an error at runtime, modify the original code of aspects, re-

compile them, weave the running application, and continue the execution of the

adapted system [12].

Previous works have identified the appropriateness of integrating both kinds

of weavers in the same development environment [13, 9, 14], obtaining the benefits

of both approaches in the software development process. Moreover, if the AOSD

platform is appropriately designed, aspects could be changed from dynamic to static

and vice versa, without changing their source code. Dynamic weaving could be used

when the system is being tested to make software development easier [12]. Upon

deployment, aspects that do not need to be adapted at runtime can be woven

statically to improve the runtime performance of the whole system. Those that

The DSAW Aspect-Oriented Software Development Platform 3

require dynamic (un)weaving can be used together with static ones.

In this paper we present DSAW (Dynamic and Static Aspect Weaver), an aspect

platform that supports both static and dynamic weaving. DSAW offers the runtime

performance of static weaving, and the dynamism and interactive development of

full dynamic weaving. The main contributions of this work are:

(1) The creation of an AOSD platform that offers the benefits of both dynamic and

static weaving in a transparent way.

(2) An extension of the Common Aspect Semantics Base (CASB) [15] to specify a

hybrid dynamic and static aspect weaving system.

(3) A qualitative and quantitative evaluation of existing static- and dynamic-

weaving aspect-oriented platforms.

In DSAW, aspects and components can be developed regardless of the dynamism

they require, making possible the transition from dynamic to static weaving (and

the other way around), without any change in their source code. At first stages

of the software development process, dynamic weaving could be used to facilitate

interactive application debugging. At deployment, if no runtime adaptation is re-

quired, aspects can be statically woven to obtain a better runtime performance.

Dynamic aspects can also be used in the released application if the system requires

dynamic adaptiveness. Therefore, DSAW applies the Separation of Concerns prin-

ciple: the dynamism concern has been separated from the aspect-oriented software

development process.

DSAW is a language neutral system, allowing the programmer to use any high-

level programming language. It is also platform independent, because its weaver does

not rely on specific features of a particular operating system. In addition, we specify

its semantics in order to describe its behavior independently of any implementation

issue.

The set of join-points offered by DSAW is wider than most existing dynamic

weaving tools, and its runtime performance is competitive in both static and dy-

namic weaving scenarios. Finally, our platform is based on the standard specifica-

tion of a virtual machine. This makes DSAW portable, being able to be run on any

standard implementation.

The rest of this paper is structured as follows. In the next section we present the

basis of Aspect-Oriented Software Development and dynamic AOSD is described

in Section 3. The semantics of DSAW is depicted in Section 4 and its architecture

is presented in Section 5. Afterwards, the system design is described (Section 6).

DSAW is qualitatively and quantitatively evaluated in Section 7, and the related

work is analyzed Section 8. Finally, Section 9 presents conclusions and future work.

2. Aspect-Oriented Software Development

In many cases, significant concerns in software applications are not easily expressed

in a modular way. Examples of such concerns are transactions, security, logging or

4 F. Ortin, L. Vinuesa & J.M. Felix

persistence. With the classical object-oriented paradigm, the code that addresses

these concerns is often spread out over many parts of the application. The Separa-

tion of Concerns principle [3, 2] manages the complexity of software development,

separating concerns whose implementation would otherwise be scattered over sev-

eral modules and tangled with the code of other concerns. Major benefits of the

Separation of Concerns principle are a higher level of abstraction, concern reuse,

higher legibility of each concern in isolation, and software maintainability improve-

ment [2].

Figure 1 shows a credit card processing application that will be used as a mo-

tivating example throughout the paper. This figure illustrates part of the initial

source code, where different concerns are tangled with the core application. Three

different concerns are identified: the core functionality (the payment, which first

validates the card and then performs the transfer), a logging concern (using Apache

log4net [16]), and a profiling concern (that measures the time needed to execute

the method). Each concern is shown in a different color. In this object-oriented pro-

gram, source code of the logging and profiling concerns is tangled with the business

logic, and spread out over many parts of the application –e.g. the profiler code that

calculates how long it takes to execute a method is repeated in many methods.

public bool payment(CreditCard card, double ammount) {

double startTime = DateTime.Now.Ticks;

ILog logger = LogManager.GetLogger(

MethodBase.GetCurrentMethod().DeclaringType);

logger.Info("Entering the payment method");

logger.Debug("Arguments: {card="+card+",

ammount="+ammount+"}");

bool correct = validateCard(card.Number, card.ExpDat e,

card.CardType);

if (correct) {

CardCompany company=CardCompany.getCardCompany(card. CardType);

correct = company.transfer(card, this.myAccount, am mount);

}

logger.Debug("The payment has been "+

(correct?"successful": "erroneous"));

logger.Info("Exiting the payment method");

profiler.measure(MethodBase.GetCurrentMethod().Name ,

(DateTime.Now.Ticks–startTime) /

TimeSpan.TicksPerMillisecond);TimeSpan.TicksPerMillisecond);

return correct;

}

Fig. 1. Source code with three different concerns tangled.

AOSD [1] provides explicit language support for modularizing application con-

cerns that cut across the application code. AOSD is an approach to obtain a better

separation of concerns than object orientation. Aspects express functionality that

The DSAW Aspect-Oriented Software Development Platform 5

cuts across the system in a modular way, thereby allowing the developer to design a

system out of orthogonal concerns, providing a single focus point for modifications.

The modularization of crosscutting concerns avoids application source tangling, be-

ing easier to debug, maintain and modify [3].

In AOSD, final applications are built by means of its components plus their

specific crosscutting concerns. This task is performed by the aspect weaver. Figure 2

shows the difference between the traditional modularization scheme of the object-

oriented paradigm and the AOSD one. With the aspect-oriented approach, each

module can represent a separate aspect, overcoming the code tangling and code

spreading disadvantages mentioned above. Aspect weavers perform the transition

from aspect modularization to the traditional one.

Traditional

modularization

AOSD-based

modularization

Core Functionality Concern

Profiling Concern

Logging Concern

Aspect Weaving

Fig. 2. AOSD-based and traditional modularization of concerns.

Considering when aspects are woven, AOSD platforms can be classified into

static and dynamic. Static tools perform aspect weaving prior to application exe-

cution (at compile-time or load-time), whereas dynamic tools provide application

aspectation at runtime.

3. Dynamic AOSD

3.1. Existing Dynamic AOSD Systems

Dynamic AOSD tools perform aspect weaving at runtime, achieving dynamic adap-

tation of application aspects. Many AOSD tools do not support aspect adaptation at

runtime, because they use static (or load-time) weavers. Once the final application

has been generated (woven), the system will not be capable of adapting its aspects

at runtime. There are certain cases in which the adaptation of application concerns

should be done dynamically, in response to changes in the runtime environment

–e.g. some examples were given in Section 1 .

Unlike static weaving systems, dynamic ones offer some kind of runtime adapta-

tion because aspects can be (un)woven while applications are running. Well-known

examples are PROSE [8, 17], JBoss AOP [18] and JAsCo [19]. However, dynamic

AOSD systems commonly have some limitations:

6 F. Ortin, L. Vinuesa & J.M. Felix

(1) Limited runtime adaptiveness. Many dynamic AOSD systems do not offer a

high level of adaptiveness at runtime, requiring the static specification of which

join-points the aspects are going to use at runtime (e.g., Rapier-LOOM.Net [20]

and Spring AOP [21]). Others offer dynamic addition of new aspects but they

do not support dynamic deletion (e.g., Wicca [22]).

(2) Limited set of join-points. The set of join-points that most dynamic weavers

offer is significantly smaller than that offered by static ones [13, 23]. As an

example, JAsCo is a dynamic weaving platform that offers an excellent runtime

performance, but it only allows interception of the methodcall join-point.

(3) Limited portability and interoperability. Some implementations of dy-

namic weavers obtain an extraordinary runtime performance (quite near to

static ones) by modifying the implementation of a virtual machine. An example

is the Steamloom approach that modifies the Jikes research virtual machine to

detect join-point shadows and perform runtime advice weaving [24]. However,

the modification of a specific virtual machine involves portability and interop-

erability limitations [25]. This means that it is not possible to use, for example,

any standard implementation of the Java virtual machine.

(4) Platform dependency. There are dynamic weavers that can only be used

in a specific operating system or hardware. The Arachne dynamic weaver for

C applications is an example of this kind of systems. Arachne rewrites binary

code of executable files at runtime as long as these files conform to the mapping

defined by the Unix standard between C and the x86 assembly language [26].

Although the runtime performance obtained is extraordinary high, this dynamic

weaving technique makes Arachne dependent on a specific platform [14].

Our platform overcomes these limitations (see Section 7). It implements a full

dynamic weaver that allows runtime addition and deletion of aspects, even at join-

points that were not woven before application execution. Both the static and the

dynamic weavers offer the same number of join-points, quite similar to AspectJ.

Additionally, DSAW is platform and language independent.

3.2. Static weaving where possible, dynamic weaving when needed

Although existing implementation of static weavers commonly offer runtime perfor-

mance benefits, they also have some limitations. As an example, if the programmer

develops a statically woven application that requires logging or testing aspects, the

application must be compiled, woven, run and debugged. The runtime context to

debug should be reproduced and, afterwards, all the information generated by the

aspects should be analyzed. If some error occurs, the application should be modi-

fied, recompiled, rewoven and rerun [9, 27]. In contrast, dynamic weaving allows the

programmer to add and remove aspects in exact points of execution, producing less

information to be analyzed. Moreover, application execution should not be stopped

in case we want to modify an aspect –it can be modified, recompiled and once again

rewoven at runtime. This has been referred to as edit-and-continue development

The DSAW Aspect-Oriented Software Development Platform 7

[12].

Different scenarios motivate the use of static weaving where possible and dy-

namic weaving when needed [14, 9, 28]. A tool that supports both techniques should

define aspects independently of their dynamism (weaving-time). This approach will

benefit from both static and dynamic weaving in the same system.

DSAW is a homogeneous static and dynamic weaving aspect-oriented platform.

Its main aim is to achieve weaving-time neutrality, and language and platform in-

dependence. Both kinds of weavers are offered and source code of neither aspect

nor components depends on their weaving time. The application should not be

changed if the programmer needs to convert an aspect from static to dynamic,

and vice versa. This way, it is possible to use aspect-orientation for rapid proto-

typing (dynamic weaving) and later, upon deployment, optimize the application

(static weaving) without performing any change to its source code. The program-

mer should finally indicate the trade-off between performance and flexibility in the

system requirements [14].

4. Formal Semantics of DSAW

There are different approaches to describe the semantics of aspect oriented lan-

guages [29, 30, 31]. However, most of them provide a semantics as a whole but do

not isolate the specific features of aspect languages. The formalization of the seman-

tics of DSAW is based on the Common Aspect Semantics Base (CASB) semantics

proposed by Djoko et al. [15]. CASB describes aspects semantics independently from

the base language, introducing the minimal constructions of the base language nec-

essary to plug aspects in. We present a variant of CASB in order to describe our

both static and dynamic weaving system.

4.1. The Base Language Semantics

The base language semantics is described in terms of a small-step semantics, for-

malized through the →b reduction on configurations made of a program (C) and a

state (Σ). A program C is a sequence of basic instructions terminated by the empty

instruction ε, where : denotes the concatenation of two instructions:

C ::= i : C | ε
A configuration is a tuple (C,Σ) where Σ represents the state of the interpreter.

Σ is kept as abstract as possible. It may contain environments, stacks, heaps, or

whatever element depending on the semantics of the considered language, and the

details of its implementation.

A reduction step of the base language semantics is written:

(i : C,Σ)→b (C ′,Σ′)

Intuitively, i represents the current instruction and C the following ones. The

final configuration has the form (ε,Σ).

8 F. Ortin, L. Vinuesa & J.M. Felix

4.2. Static Aspect Weaving

Aspects semantics is represented with a function ψ that, applied to the current

instruction i, returns a tuple of triples with all the aspects woven at the i instruction.

Each triple contains an advice φ, a type t (before, after or around) denoting the kind

of aspect, and w indicating when the aspect has been woven (static or dynamic). An

advice is a method-like construct used to define additional behavior at join-points

[32]. Join-points are those elements of the programming language semantics which

the aspects coordinate with [1].

In CASB, φ is a function that takes Σ and returns an advice. For the sake of

simplicity, we will rather assume that aspects are directly returned as executable

instructions (i.e., an advice is a sequence of instructions).

ψ(i) = ((φ1, t1, w1) . . . (φn, tn, wn))

where t ∈ {before, after, around} and w ∈ {static, dynamic}
The ψ function can be seen as a way to decide which join-points are woven.

Static ones are woven before the application is executed, and they do not change

while the program is running; dynamic ones can be added and removed at runtime

(Section 4.3). The ψ function returns ε when no aspect has been woven at the

instruction passed as an argument. Note that this formalization allows weaving any

instruction in the base language, not only function (or method) calls.

The semantics of weaving is described in terms of the → reduction on configu-

rations, which includes the semantics of the base language (→b). The NoAdvice

rule executes the current i instruction when it has no aspect woven.

ψ(i) = ε (i : C,Σ)→b (C ′,Σ′)

(i : C,Σ)→ (C ′,Σ′)
(NoAdvice)

4.2.1. Before, After and Around Aspects

To describe the semantics of before, after and around aspects we first depict the be-

havior when one single aspect is woven at an instruction. Afterwards, we generalize

this scenario with multiple different aspects intercepting the same join-point.

In order to formalize around aspects, the base language is enhanced with an

additional proceed instruction which can be used in the code of an around advice.

Around aspects execute their advice instead of the current instruction. The advice

code may execute the original instruction by using the proceed instruction –the

advice may also terminate without executing the current instruction if no proceed

instruction is run. In general, an around advice may contain several proceeds re-

sulting in multiple executions of the instruction matched by the around aspect.

To represent the behavior of around aspects a special stack P , called the proceed

stack, is introduced. This stack is used to describe the semantics of the proceed

instruction. The Around rule inserts the advice code followed by a popp instruction,

and pushes the current instruction i in the proceed stack so that it can be possibly

The DSAW Aspect-Oriented Software Development Platform 9

executed by a proceed. The popp instruction simply removes the top of the proceed

stack to restore the stack to its original state.

(Around)

ψ(i) = (φ, around,w)

(i : C,Σ, P)→ (φ : popp : C,Σ, i:P)

(Pop)

(popp : C,Σ, i : P)→ (C,Σ, P)

In order to prevent an instruction i to be matched, it is introduced the notion

of tagged instructions (written i). A tagged instruction i has exactly the same

semantics as i except that it is not subject to weaving. Formally:

∀ (i, C,Σ), (i : C,Σ)→b (C ′,Σ′)⇒ (i : C,Σ)→ (C ′,Σ′)

∀ i, ψ(i) = ε

The rule Proceed executes the instruction on top of the proceed stack. This

instruction is removed because i may be the code of an enclosing around aspect

whose proceed would refer to the top of the stack P (not i). After proceeding, i is

pushed again (Push), since the advice may contain other proceeds.

(Proceed)

(proceed : C,Σ, i:P)→ (i : pushpi : C,Σ, P)

(Push)

(pushpi : C,Σ, P)→ (C,Σ, i:P)

Note that aspects can be woven at any instruction, not only at function (method)

calls. We also assumed that the advice of an around aspect could be matched by

another around aspect and that there can be nested proceeds –AspectJ prevents

this case by syntactic restrictions.

After defining the semantics of around, we can describe the semantics of before

and after by means of a function γ, translating any aspect tuple into an equivalent

tuple of around aspects:

γ(φ, before, w) = (φ : proceed, around,w)

γ(φ, after, w) = (proceed : φ, around,w)

γ(φ, around,w) = (φ, around,w)

A before aspect is translated into an around one that inserts the advice before

it proceeds with the next aspect. Symmetrically, an after aspect is translated into

an around one that places the advice after the next aspect is executed.

4.2.2. Multiple Aspects in the same Join-Point

After formalizing the execution of aspects when only one can be woven at a join-

point, we now consider the weaving of several aspects at the same join-point. Al-

though several aspects of different kinds (after, before and around) can be woven

at the same join-point, we showed how a function γ can be used to translate all

of them into around aspects. Therefore, we simply tackle with potentially multiple

around aspects woven at each join-point.

The way aspects woven at the same join-point are sorted is not a trivial task.

For instance, AspectJ by default sorts these triples in the order before, after and

10 F. Ortin, L. Vinuesa & J.M. Felix

around, although the programmer can modify it by the use of declare precedence.

To generalize this, the use of a new α function has been previously considered [33].

α(Σ, (φ1, t1, w1), . . . , (φn, tn, wn)) = ((φ′1, t
′
1, w

′
1) . . . (φ′n, t

′
n, w

′
n))

This function sorts the set of triples in a join-point, introducing the possibility

to perform dynamic scheduling based on the dynamic context (Σ is passed as a

parameter), advice code (φ), the type of the aspects (t), and their weaving time

(w). Section 6.8 describes how we have defined the α function in our current imple-

mentation.

We can now specify the Around∗ rule that performs weaving of all the aspects

in a single join-point.

(Around∗)

ψ(i) = ((φ1, t1, w1) . . . (φn, tn, wn))

α(Σ, (φ1, t1, w1), . . . , (φn, tn, wn)) = ((φ′1, t
′
1, w

′
1) . . . (φ′n, t

′
n, w

′
n))

γ(φ′1, t
′
1, w

′
1) = (φ′′1 , around,w

′
1) . . . γ(φ′n, t

′
n, w

′
n) = (φ′′n, around,w

′
n)

(i : C,Σ, P)→ (φ′′1 : . . . : φ′′n : popp : C,Σ, i:P)

The semantics of multiple weaving in a single join-point differs from AspectJ

in how the proceed instruction works [15]. In AspectJ, the first advice is executed

and the rest of advice are pushed in the proceed stack. This means that, if the

code of the first advice proceeds, the second one will be executed and so on. In our

approach, every advice is executed in place of the i instruction. When one of them

proceeds, the i instruction is then run. It is worth noting that the AspectJ semantics

can be obtained in our system by weaving around aspects to another (before, after

or around) aspect, establishing a chain of woven aspects.

4.3. Dynamic Aspect Weaving

Since dynamic weaving may modify the set of aspects woven at a join-point while a

program is being executed, we enhance the configuration tuple with the ψ function.

The → reduction will now describe how to add/remove aspects to/from a specific

join-point at runtime.

Dynamic weaving is offered with two new instructions: weave and unweave. The

former adds a new dynamic aspect to the i instruction, specifying the advice (φ) and

the type of the aspect (t). ψ[i 7→ (φ, t, dynamic)] denotes the function ψ updated for

the instruction i to return the aspect (φ, t, dynamic), meaning that the new aspect

(φ, t, dynamic) will for now on be woven at the i instruction. Therefore, the next

time the Around∗ semantic rule is executed, the new dynamically woven aspects

will be taken into account.

ψ(i) = ((φ1, t1, w1) . . . (φn, tn, wn))

ψ′ = ψ[i 7→ ((φ1, t1, w1) . . . (φn, tn, wn)(φ, t, dynamic))]

(weave i, φ, t : C,Σ, P, ψ)→ (C,Σ, P, ψ′)
(Weave)

The DSAW Aspect-Oriented Software Development Platform 11

The unweave instruction does the opposite, removing a previously woven aspect

at an specific instructiona. Notice that aspects woven and unwoven at runtime are

always dynamic.

(Unweave)

ψ(i) = ((φ1, t1, w1) . . . (φj , tj , dynamic)
j∈[1,n] . . . (φn, tn, wn))

ψ′ = ψ[i7→((φ1, t1, w1). . .(φj−1, tj−1, wj−1)(φj+1, tj+1, wj+1)j∈[1,n] . . . (φn, tn, wn))]

(unweave i, φj , t
j∈[1,n]
j : C,Σ, P, ψ)→ (C,Σ, P, ψ′)

5. System Architecture

The architecture of DSAW is depicted in Figure 3. Although each module is detailed

in Section 6, this section briefly describes the responsibilities of each subsystem.

JoinPoint

Injector

IJoinPoint

IReflection

Application

Server
IServer

IMethod
Execution

IMethodCall
IProperty
FieldAccess

Application
Woven

Application

Aspect ServerAspect

Fig. 3. Architecture of DSAW.

Any existing .Net application, regardless of the programming language used to

develop it, can be adapted by DSAW. The Join-Point Injector (JPI) takes the appli-

cation binary code (assembly) and, prior to its execution, performs instrumentation

of the code in memory. If the weaving is static, a pointcut specification file must

be passed as a parameter (a pointcut is a set of join-points plus, optionally, some

of the values in the execution context of those join-points [32]). In that case, the

application is modified with calls to specific interfaces (IPropertyFieldAccess,

IMethodCall and IMethodExecution) of the appropriate aspect specified in the

pointcut specification file. This functionality is the ψ function described in Sec-

tion 4.2 when no weave or unweave instructions have been executed, indicating

which join-points have been statically woven.

aWe consider the collection of aspects woven at the same join-point as a set. This simplification

limits the possibility to weave the same advice code, with the same aspect kind, to the same
join-point more than once. To avoid this limitation, a unique identifier would have to be added to

each aspect.

12 F. Ortin, L. Vinuesa & J.M. Felix

In case dynamic weaving is required, the JPI also instruments the application

with more code to perform dynamic weaving. Since the JPI does not know in which

join-points the developer of a dynamic aspect could be interested in, it instru-

ments the application so that any join-point can be intercepted at runtime –notice

that, in our formalization, any join-point could be intercepted. The activation of

these join-points is offered by the IJoinPoint interface implementation added to

the application by the JPI (Figure 3). It is also injected an implementation of the

IReflection interface that allows aspects to reflective access applications at run-

time. This is particularly powerful in the case of around aspects.

The Application Server (AS) in Figure 3 coordinates applications and dynamic

aspects, providing the aspect-oriented adaptation of programs at runtime. This sub-

system allows the execution of the dynamic weave and unweave operations described

in Section 4.3. By means of the IServer interface, it allows aspects to be woven

with an specific application at certain join-points (IJoinPoint). The IServer inter-

face is also used to register and deregister aspects and applications at runtime. The

JPI instruments applications making them automatically register and deregister at

application startup and finalization, respectively.

Aspects implement code that may be woven with applications by implementing

three interfaces: IPropertyFieldAccess, IMethodCall and IMethodExecution.

These interfaces should be implemented depending on the type of the join-points

to be adapted. The advice code represented with the φ function in Section 4.2 is

the aspect code implementing these interfaces. The type of advice (before, after and

around) is specified in the pointcut description files (Section 6.4) that aspects pass

to the AS by means of the IServer interface.

6. System Design

6.1. Applications

DSAW has been developed over the .Net platform following its standard reference

[34] neither modifying nor extending its semantics. This guarantees a complete

language and platform independence, allowing the deployment of our system over

any .Net implementation (such as Mono, SSCLI and DotGNU) [35]. It is not only

possible to use any .Net language to develop aspect-oriented applications, but it is

also feasible to create each aspect in a different programming language (Figure 4).

DSAW performs software adaptation at the byte-code level of the virtual ma-

chine –libraries and executable files. This means that our weaver does not require

the source code of aspects or components, and it is language independent. At the

same time, it is not necessary to implement specific interfaces or inherit from any

given classes. Any existing application or library can be used in DSAW without

changing its implementation –we follow the POJO idea of the Java Persistence

API [36]. C# code in Figure 5 shows the core component of our credit card pay-

ment example. Using DSAW, no other concern needs to be included –they are now

implemented as aspects.

The DSAW Aspect-Oriented Software Development Platform 13

Visual Basic
Compiler

C# Compiler
IronPython
Compiler

0110001
0101010
1110101

namespace Payment {
class PaymentService {

…

public bool payment(CreditCard card, double ammount) {
if (!validateCard(card.Number, card.ExpDate, card.CardType))

return false;
CardCompany company = CardCompany.getCardCompany(card.CardType);
return company.transfer(card, this.myAccount, ammount);
}

}
}

Public Module Payment
Class ProfilerAspect implements IMethodCall
Private startTime as Double
Public Function exec(string ns, string cl, string member,

TypeOfMembers type, JPoint jp, Time time, Type ResultType,
object ResultVal, Param[] Params, object OBJECT_THIS,
IReflection ir) as object

if (time == Time.Before)
startTime = DateTime.Now.Ticks;

if (time == Time.After)
measure(member, (DateTime.Now.Ticks - startTime) /

TimeSpan.TicksPerMillisecond);
return null;

End Function
End Class

End Module

from time import clock
class Logger:
def __init__(self. PtrComp = None. Discr = 0. EnumComp = 0.

IntComp = 0. StringComp = 0):
self.PtrComp = PtrComp
self.Discr = Discr
self.EnumComp = EnumComp
self.IntComp = IntComp
self.StringComp = StringComp

def copy(self):
return Record(self.PtrComp. self.Discr.

self.EnumComp. self.IntComp. self.StringComp)

0101010
1110101
0110001

1110101
0110001
0101010

Core Functionality Concern Profiling Concern Logging Concern

DSAW Platform

Fig. 4. DSAW language neutrality.

namespace Payment {

class PaymentService {

public bool payment(CreditCard card, double ammount) {

if (!validateCard(card.Number, card.ExpDate, card.CardType))

return false;

CardCompany company = CardCompany.getCardCompany(card.CardType);

return company.transfer(card, this.myAccount, ammount);

}

}

}

Fig. 5. C# implementation of the core functionality in the DSAW platform.

6.2. Join-Point Injector

The Join-Point Injector (JPI) is the part of the DSAW platform that performs byte-

code instrumentation to incorporate any existing .Net binary application into our

aspect-oriented system. .Net byte-code is the source language of the .Net virtual

machine, being language and platform independent [34].

Prior to its execution, the application to be adapted is processed in memory

by the JPI, adding the code that allows its dynamic adaptation by aspects at

runtime (Figure 6). The JPI also performs static weaving; this feature is described

in Section 6.6.

One limitation of existing runtime weavers, compared to static ones, is commonly

a more reduced set of join-points. This is mainly due to the complexity of imple-

menting runtime adaptation [13]. One of the features that have been considered in

the design of DSAW is the set of join-points to be provided. The collection of join-

14 F. Ortin, L. Vinuesa & J.M. Felix

points DSAW offers is near to the one supplied by AspectJ [32] (see Section 7.2).

We currently support the following static and dynamic join-points: method and

constructor execution, method and constructor call, and field and property read

and write. We also provide the before, after, and around advice.

In order to implement join-points, the first functionality the JPI adds to the

program binaries is a Meta-Object Protocol (MOP) [37]. A MOP is a reflective

technique that offers dynamic adaptation of running applications [38]. The injected

MOP provides runtime modification of the program semantics such as message

passing or field access. This way, it is possible to adapt running applications with

dynamically woven aspects.

The JPI analyzes byte-code to detect join-point shadows. A join-point shadow

is the mapping between join-points and the points in the program code where the

compiler actually operates [39]. When a join-point shadow is detected, new byte-

code is added to implement the MOP. This new code checks at runtime if any aspect

has been subscribed to that join-point; if so, subscribed aspects will be called when

the join-point is reached. An implementation of the IJoinPoint interface is also

added to allow aspects to register for join-point activation (Figure 6).

The JPI also injects into the application other functionalities of the platform

such as application registration at startup, accessing the IServer interface of the

AS subsystem. It is also included a deregistration routine at application exit, and

the publication of .Net reflective information to permit aspects to inspect (and

invoke) application structure at runtime (the IReflection interface in Figure 6).

The application is now ready to be executed.

0110001
0101010
1110101

JPI

0110001

0101010

1110101

Core Funcionality

Application
registration

Application
deregistration

1001010

1001010

Join-point
injection

1010011

1010011

IJoinPoint
to(de)activate
join-points

0110010
1010110

IReflection to
inspect application
structure

1010101
0101100

Binary Application

Binary Code
Instrumentation

Core
Funcionality

Fig. 6. Byte-code instrumentation performed by the JPI.

6.3. Aspects

Aspects (both dynamic and static) can be developed in any .Net programming

language. DSAW does not need the source code of aspects, and hence it could be

possible to take third-party binary software and make them work as if they were

aspects.

An aspect can be developed following two approaches. The first one, which

The DSAW Aspect-Oriented Software Development Platform 15

provides better runtime performance, requires the programmer to implement at

least one of the three following interfaces (all of them have one single exec method):

(1) IMethodCall. It is used for intercepting message passing. This interface can

be used to run at the after, before and around times. Its parameters are

(regarding to the join-point): the name of the namespace, the name of the

class, the name of the member (method or constructor), the type of join-point

(call or execution), the join-point time (after, before or around), the result

type, the result value, the types and values of parameters, the this reference

in the application, and a reference to IReflection –see Section 6.2. It can be

applied to both methods and constructors.

(2) IMethodExecution. This interface intercepts the execution of methods and con-

structors. The before, after and around times are provided, and its parame-

ters are the same as above.

(3) IPropertyFieldAccess. Interception of fields and properties accesses can be

done implementing this interface. The parameters of its unique exec method are

the names of the namespace, class and member, the type of member (field or

property), the type of join-point (reference for reading and set for writing),

the join-point time (after, before or around), the member value, and the this

reference in the application.

Following our example, we can suppose that the programmer is now interested

in adapting the application at runtime. Let us assume that, in a certain point of

execution, the credit card payment application performance seems to be poor. Under

these circumstances, a profiling aspect can be added at runtime, and removed later

when the application performance is recovered. The C# source code of this dynamic

aspect is shown in Figure 7. It is worth noting how the profiling concern has been

clearly separated from the core functionality shown in Figure 5.

The other way of creating an aspect is using an existing application or library on

.Net, even if the source code is not available. It could be a third-party component

or a static aspect that the programmer is interested in weaving it dynamically.

This approach makes it possible to convert an aspect from static to dynamic and

vice versa, without changing its implementation. This is how our platform offers a

transparent separation of the dynamism concern.

With this approach, DSAW takes the aspect binaries and an XML document

describing the aspect advice, and creates the appropriate implementation of at

least one of the interfaces shown above. In order to do that, an XML document

describing aspect advice [32] should be written (the structure of this XML document

is described in sections 6.4 and 6.7). These two elements (aspect code plus advice

type) comprise the two first elements of the formalization presented in Section 4:

(φ, t, w) –the w element, weaving time, in this case is dynamic.

16 F. Ortin, L. Vinuesa & J.M. Felix

namespace Payment {

public class ProfilerAspect : IMethodCall {

private double startTime=0;

public object exec(string ns, string cl, string member,

TypeOfMembers type, JPoint jp, Time time,

Type ResultType, object ResultVal, Param[] Params,

object OBJECT_THIS, IReflection ir) {

if (time == Time.Before)

startTime = DateTime.Now.Ticks;

if (time == Time.After)

measure(member,(DateTime.Now.Ticks-startTime)

/TimeSpan.TicksPerMillisecond);

return null;return null;

}

}

}

Fig. 7. C# implementation of the dynamic profiling aspect in the DSAW platform.

6.4. Pointcut Specification

We have seen how any existing application or library can be used as components

or aspects in DSAW. However, it is necessary to describe the mapping between

join-points and aspects by means of pointcuts. In DSAW, pointcuts are specified

by means of XML documents that describe the mapping between join-points and

aspects. The schema of these XML documents is an evolution of the one used by

the Weave.Net platform [40]. As described in Section 7.2, we have developed a

Visual Studio plug-in that automatically generates these XML documents, making

aspect-oriented programming in DSAW easier.

Describing mappings between components and aspects in separate XML files

provides a complete separation (no coupling) between them, improving the reuti-

lization of both aspects and components. In fact, aspects can also be treated as

components. They may be adapted by other aspects, statically or dynamically, re-

gardless of their programming language.

Figure 8 shows the pointcut description file of our dynamic profiler. We use

both before and after times of the methodcall join-point. We are interested in

any return type (regular expressions can be used) and only those methods that

are public (all the member flags used in the CLI [34] are supported). Our exam-

ple adapts all the methods (qualified method name) in every class (class and

identifier name) in the Payment namespace (namespace and type name), but the

Main method (name, not, identifier pattern, and identifier name).

The DSAW Aspect-Oriented Software Development Platform 17

<?xml version =" 1.0 " encoding =" UTF-8 " ?>

<aspect_definitions xmlns =" urn:gramaticapointcuts-schema " … >

<pointcut_definition>

<time >before</ time > < time >after</ time >

<joinpoint_type > < methodcall>

<method_signature >

<return_type><type_name >*</ type_name ></ return_type >

<method_flags ><public/></ method_flags >

<qualified_method_name >

<qualified_class >

<namespace><type_name >Payment</ type_name ></ namespace >

<class><identifier_name >*</ identifier_name ></ class >

</ qualified_class >

<name> < not><identifier_pattern ><identifier_name>Main

</ identifier_name ></ identifier_pattern ></ not ></ name>

</ qualified_method_name >

</ method_signature > </ methodcall >

</ joinpoint_type >

</ pointcut_definition >

</ aspect_definitions >

Fig. 8. XML pointcut description for the dynamic profiling aspect.

6.5. System Execution

When dynamic weaving is required, system execution is controlled by the AS (Ap-

plication Server). The AS coordinates components and dynamic aspects, providing

the aspect-oriented adaptation of programs at runtime. The AS acts as the system

registry of running applications. It offers aspects the list of active applications to

facilitate their dynamic adaptation.

Following with the credit card payment example, this is how the application,

the dynamic aspect profiler, and the AS work together at runtime (illustrated in

Figure 9):

(1) The application, once processed by the JPI, is executed. At startup it regis-

ters itself into the AS with a globally unique identifier (GUID), following the

OSF/DCE specification [41]. This GUID (and registration code) was previously

injected by the JPI during code instrumentation, and it is used to identify the

application in the system.

(2) When the developer detects low runtime performance, the profiling aspect is

run to dynamically adapt the application. The aspect calls the AS (IServer)

passing the pointcut XML document shown in Figure 8 and the GUID of the

application.

(3) The AS parses the XML document finding the pointcuts passed by the aspect.

18 F. Ortin, L. Vinuesa & J.M. Felix

The join-points that match these pointcuts are activated in the application by

means of the MOP injected by the JPI (IJoinPoint). This activation implies

aspect invocation at runtime. This action is the weave i, φ, t instruction formal-

ized in Section 4.3, where i and t are, respectively, the join-point and advice

type described in the XML document, and φ is the aspect code.

(4) When the credit card application execution reaches a woven join-point (e.g.,

calling the payment method), it calls the profiling aspect through IMethodCall.

Then, the application sends the aspect information regarding the join-point and

a reference to the own application. The profiling aspect now saves the execution

time to measure runtime performance.

(5) Although it is not used in this example, the aspect may use the application

reference to access the application by means of reflection. The JPI adds the

IReflection interface for this purpose. Therefore, the aspect could inspect

and modify the values of any field or property of the application, and invoke

any of its methods (not only the intercepted one).

(6) When the aspect execution is about to finish, the AS deactivates the application

join-points previously turned on by the aspect (if no other aspect uses those

join-points). This action is what we formalized as the unweave i, φ, t instruction

in Section 4.3.

(7) Finally, when the application finishes its execution, the code added by the JPI

notifies the AS that the application has exited.

IJoinPoint

IReflection

Application
Server

IServer
1) Application registration

3) Dynamic Weaving: Activates
the selected join-points

Credit Card
Application

IReflection

Profiler
Aspect

IServer

IMethodCall

7) Application deregistration

2) Asks for weaving an
specific application

6) The aspect
deregisters from the
application join-points

4) Execution reaches an
activated join-point

5) The aspect could access the
application to adapt it

Fig. 9. Dynamic application adaptation at runtime.

It could be necessary to modify the pointcuts used by an aspect at runtime. This

operation is also offered by the AS. In this case, the aspect should send a new XML

document specifying the new pointcut document. The AS will then analyze this

XML file, activating new join-points and deactivating existing ones in the running

application.

The DSAW Aspect-Oriented Software Development Platform 19

The AS acts as a mediator between aspects and applications [42]. This mediation

is only performed when join-points are woven or unwoven. Once these operations

have been performed, the application and the aspects interact directly. The appli-

cation calls the aspect when an activated join-point is reached, and then the aspect

may inspect the application.

With this design, applications do not need to know their runtime-woven aspects

before its execution. At the same time, aspects can be applied to any application,

or even aspects, without any static dependency. This behavior reduces coupling and

promotes both aspect and component reuse.

We have used .Net remoting (now part of the Windows Communication Foun-

dation framework) to intercommunicate the AS, aspects and applications. .Net

remoting is a standard service over the .Net platform and is channel (protocol)

independent, allowing DSAW to run over distributed environments.

6.6. The JPI as a Static Weaver

Although dynamic weaving facilitates interactive software development following

the AOSD approach, it also involves a common runtime performance cost. At the

same time, although there are scenarios where the dynamic adaptation of aspects

is appropriate, many others do not require that level of dynamism. This is the

reason why we have designed DSAW to support both approaches at the same time,

obtaining the benefits of both.

We have applied the Separation of Concerns principle to DSAW. In particular,

we have separated the dynamism (weaving-time) concern to facilitate the use of

AOSD in multiple scenarios. This process has been performed transparently, reduc-

ing the impact of changing the dynamism concern in the application source code.

The programmer could use dynamic weaving for interactive development and, once

the application has been tested, use static weaving to obtain better performance.

An existing dynamic aspect can also be easily converted to a dynamic one. More-

over, both kinds of aspects, dynamic and static, can be simultaneously applied to

the same application.

We have seen how the JPI instruments the byte-code to obtain dynamic adapta-

tion of applications. In addition, if an XML document describing pointcuts is passed

as an argument to the JPI, it performs static weaving between components and as-

pects. Therefore, as shown in Figure 10, the JPI not only instruments applications

to be adapted at runtime, but it also weaves them statically.

Following with our example, we can reuse an existing logging aspect taken from

another aspect-oriented program. Maintaining the dynamic profiling aspect, we can

add a new static one to perform logging tasks. The source code in Figure 11 shows

the last concern of our example. Notice that the method signature is exactly the

same as the exec method of the dynamic aspect (Figure 7).

20 F. Ortin, L. Vinuesa & J.M. Felix

JPI

Core Functionality

Static Aspect1

Pointcuts (XML)

Static Aspect2

Code of the Core Functionality

Code of the Static Aspect2

Code of the Static Aspect1

Code of the Core Functionality

Code of the Static Aspect2

Code for Dynamic Adaptation

Binary Woven
Application

Both static weaving (Aspect1 and Aspect2)
and binary code instrumentation

AOSD Application

Fig. 10. Static weaving performed by the JPI.

namespace Payment {

public class LoggerAspect {

static public object exec(string ns, string cl,

string member, TypeOfMembers type, JPoint jp,

Time time, Type ResultType, object ResultVal,

Param[] Params, object OBJECT_THIS,

IReflection ir) {

ILog logger = LogManager.GetLogger(

MethodBase.GetCurrentMethod().DeclaringType);

if (time == Time.Before) {

logger.Info("Entering the " + member + " method");

StringBuilder sb = new StringBuilder("Arguments: {");

for (int i = 0; i < Params.Length; i++) {

sb.Append(Params[i].name + "=" + Params[i].val);

sb.Append(i < Params.Length - 1 ? ", " : "}");

}

logger.Debug(sb.ToString());

}

if (time == Time.After) {

logger.Debug("The payment has been " +

((bool)ResultVal?"successful":"erroneous"));

logger.Info("Exiting the " + member + " method");

}}

return ResultVal;

}

}

}

Fig. 11. C# implementation of the static logging aspect in the DSAW platform.

6.7. Pointcut and Advice Description for Static Weaving

As mentioned, the JPI performs static weaving when an XML document is passed

as an argument from the command line. This document describes pointcuts, but

also requires advice annotation. In DSAW, an advice indicates which methods in

an aspect must be called when join-points (described by pointcuts in the XML file)

are reached. This is what we formalized as the ψ function in Section 4.2.

The DSAW Aspect-Oriented Software Development Platform 21

Figure 12 shows the XML document used to statically weave the logging as-

pect of our example with the rest of the application. Pointcuts are defined first,

the same way as described in Section 6.4, and then comes the advice specification

(advice definition). After the name of the aspect (StaticLoggerAspect) its as-

sembly is identified (static.logger.dll); then, we indicate the class name includ-

ing its namespace (Payment.LoggerAspect), the method to be called at join-point

interception (exec), an optional priority (it is explained in the following section),

and a reference to its corresponding pointcut description. In this example, whenever

a public method of any class in the Payment namespace is reached, the exec method

of the Payment.LoggerAspect class will be called.

<?xml version =" 1.0 " encoding =" UTF-8 " ?>

<aspect_definitions xmlns =" urn:gramaticapointcuts-schema " … >

<pointcut_definition id =" DynamicMethodCall" >

<time >before </ time > < time >after </ time >

<joinpoint_type > < methodcall >

<method_signature >

<return_type ><type_name >* </ type_name ></ return_type >

<method_flags ><public /></ method_flags >

<qualified_method_name >

<qualified_class >

<namespace ><type_name >Payment </ type_name ></ namespace >

<class ><identifier_name >* </ identifier_name ></ class >

</ qualified_class >

<name><identifier_name >* </ identifier_name ></ name>

</ qualified_method_name >

</ method_signature >

</ methodcall ></ joinpoint_type >

</ pointcut_definition >

<advice_definition>

<name>StaticLoggerAspect</ name>

<assembly >static.logger.dll</ assembly ><assembly >static.logger.dll</ assembly >

<type >Payment.LoggerAspect</ type >

<behaviour >exec</ behaviour >

<priority >1</ priority >

<pointcut_definitionRef idRef =" DynamicMethodCall" />

</ advice_definition >

</ aspect_definitions >

Fig. 12. XML pointcut and advice description for the static logging aspect.

As mentioned in Section 6.4, dynamic aspects could also use advice XML

documents. In that case, it is not necessary to implement the IMethodCall,

IMethodExecution or IPropertyFieldAccess interfaces; DSAW creates these im-

plementations taking into account advice descriptions. This makes possible the tran-

sition from dynamic to static, and the other way around, without modifying the

implementation of aspects.

22 F. Ortin, L. Vinuesa & J.M. Felix

6.8. Conflict Resolution

In DSAW, it is possible to create applications with statically woven aspects woven

together with aspects that are later added at runtime. Therefore, it is necessary to

define a conflict resolution mechanism [43]. A conflict between aspects is produced

when two different aspects are woven at the same join-point. A conflict resolution

algorithm should make it possible to specify a flexible strategy to determine which

aspect should be called first when two or more aspects are woven at the same

join-point.

In Section 4.2.2 we formalized the conflict resolution strategy as a function α

that could be implemented in different ways, taking the dynamic environment infor-

mation into consideration. Our current implementation of the α conflict resolution

function, although straightforward, takes into account four variables: the aspect

dynamism, its advice type, its priority, and when it was woven.

(1) Taking into account its dynamism, DSAW gives priority to dynamic aspects.

Since a dynamic aspect is not intercepted by the application throughout its

whole execution, DSAW gives priority to these type of aspects.

(2) Considering the advice type, aspect code is executed following the before, around

and after order. As mentioned in Section 4.2.2, if the programmer wants around

aspects to adapt the rest of aspects woven at the same join-point (following the

AspectJ semantics), the around aspect should weave the existing aspects instead

of the application.

(3) For each kind of aspect, the programmer may set its priority with a number

between 1 and 100. The higher this value is, the sooner the aspect is executed.

This mechanism is quite similar to the declare precedence construction of

AspectJ. However, DSAW establishes precedence between pointcuts, whereas

AspectJ uses aspects. This makes DSAW capable of solving more than one

conflict at the very same aspect.

(4) Finally, aspects with the same dynamism and priority are executed following a

FIFO policy strategy.

Although our current implementation of conflict resolution is simplistic, we have

separated the conflict resolution mechanism from aspect implementation to facili-

tate the addition of new conflict resolution strategies in the future. The first ap-

proach would be extending the XML advice description file to allow the programmer

to specify a method to be called for dynamic conflict resolution. This approach is

similar to JAsCo connectors [19], but it would be language neutral in our case. An-

other approach to improve our conflict resolution mechanism is to include declar-

ative rules that, making use of composition operators [44], would allow the user

to reorder or nest the aspects involved in a conflict. Following steps could include

more advanced solutions such as stateful aspects [45] to improve dynamicity of con-

flict resolution (taking into account the history of computation), or even semantic

conflict detection and correction [46].

The DSAW Aspect-Oriented Software Development Platform 23

7. Evaluation

In this section we evaluate different AOSD platforms, comparing them with DSAW.

Our experimental methodology is outlined first. Afterwards, qualitative and quan-

titative evaluations are performed. Finally, we present a discussion regarding to the

evaluation obtained, and a description of two real applications developed in DSAW.

7.1. Methodology

We measure both qualitative and quantitative features of some well-known AOSD

systems. The qualitative features are those mentioned throughout the paper (de-

tailed in Section 7.2). Quantitative characteristics are runtime performance and

memory consumption.

Quantitative assessment gives us an estimate of what are the benefits of static

weaving versus dynamic weaving. It also can be used to contrast runtime perfor-

mance and memory consumption between different platforms. We have developed

a micro-benchmark over different join-points to assess the cost of aspect-oriented

primitives in each platform. Two real applications are also evaluated.

In order to compare DSAW with existing systems, we first analyze those sys-

tems that support both dynamic and static weaving. The only one that seemed to

be mature enough was LOOM.Net. However, LOOM.Net applies different weavers

for static and dynamic scenarios (Gripper and Rapier respectively). Therefore, we

have also selected those advanced AOP systems that appear to be used in the

development of real applications (AspectJ, Spring for both Java and .Net, and

JBoss). Finally, we assessed two systems that offer a high level of dynamism (see

Section 7.2): PROSE and JAsCo. No native platform-dependent approach has been

evaluated because we consider platform independence a key feature. These are the

specific implementations:

• AspectJ 1.6.9 [32]. It is probably the most widely used aspect-oriented tool in

software development. It is a seamless aspect-oriented extension to the Java

programming language. Although it offers dynamism with pointcuts such as

cflow or within, its weaver is not launched at runtime. We have used the ajc

compiler in the evaluation.

• Spring Java 3.2.0 [21]. Spring is a layered Java/J2EE application framework

that supports Aspect-Oriented Programming (AOP). Spring Java runs over

Java 1.4+. It offers an API to add and remove advice at runtime, supporting

both load-time and dynamic weaving. Spring Java uses AspectJ to support

static weaving.

• Spring .Net 1.3.0 [47]. Spring.NET is an open source application framework to

make enterprise .Net applications development easier. The design of Spring.Net

is based on the Java version of the Spring Framework. It implements the

Spring.AOP to support AOSD. An aspect library provides predefined aspects

for transactions, logging, performance monitoring, caching, method retry and

24 F. Ortin, L. Vinuesa & J.M. Felix

exception handling. Spring.Net 1.1.2 runs on .Net frameworks over 1.2.

• LOOM.Net (Rapier-LOOM.Net 2.2. and Gripper-LOOM.Net 0.92) [48]. The

LOOM.Net project aims to investigate and promote the usage of AOP in the

context of the Microsoft .Net framework. In order to do that, two AOP tools

have been developed, implementing two different weavers. Gripper-LOOM.Net

is a static weaver that makes the result of the weaving process permanent.

It is language-neutral because it operates on binary .Net assemblies. Rapier-

LOOM.Net is the original runtime aspect weaver. Although aspects are woven

at runtime, it is not possible to add a new aspect (or replace an existing one)

once the application is running.

• PROSE 1.4.0 [17]. PROSE (PROgrammable extenSions of sErvices) allows

aspect-oriented Java programs to be modified at runtime. PROSE supports dy-

namic weaving and unweaving of aspects, even if they are unknown at compile

time. We have evaluated the JVMDI/JVMTI event notification based weaver

for the JDK 1.5 Windows XP release.

• JAsCo 0.8.7 [19]. A dynamic AOP language originally tailored for the compo-

nent-based field. The JAsCo technology excels at providing dynamic integration

and removal of aspects with a minimal performance overhead. The JAsCo lan-

guage is an aspect-oriented extension of Java. It requires a Java 1.5 compatible

virtual machine.

• JBoss AOP 2.1.8.GA [18]. JBoss AOP is a 100% pure Java aspect-oriented

framework usable in any Java programming environment, or tightly integrated

with an application server. It offers a prepackaged set of aspects that are applied

via annotations, pointcut expressions, or dynamically at runtime. Java 1.5 is

required.

These implementations have been compared with the DSAW platform using the

.Net Framework 2.0 build 50727 for 32 bits, over a Windows XP SP 3 operating

system. All tests have been carried out on a lightly loaded 3.2 GHz iPIV hyper-

threading system with 1 GB of RAM. We developed all the tests in Java and C#

programming languages.

To evaluate runtime performance, we have instrumented the code with hooks

to record the value of the processor time stamp counter. We have measured the

difference in the value between the beginning and the end of each benchmark to

obtain the total execution time of each program. To suppress the cost of native

code generation by the JIT compiler, we first make a single use of each join-point

primitive. This first invocation is not taken into account in the evaluation. Therefore,

this assessment ignores the time required to dynamically generate native code by

the JIT compiler of the virtual machine.

All the benchmarks have been executed utilizing the Windows XP performance

monitor. We have measured the maximum size of working set memory used by

the process since it started (the PeakWorkingSet property). The working set of a

process is the number of memory pages currently visible to the process in physical

The DSAW Aspect-Oriented Software Development Platform 25

RAM memory. These pages are resident and available for an application to use

without triggering a page fault. The working set includes both shared and private

data. The shared data comprises the pages that contain all the instructions that the

process executes, including instructions from the process modules and the system

libraries.

To evaluate average percentages and ratios, we use the geometric mean.

7.2. Qualitative Evaluation

Analyzing those features that were considered in the design of DSAW, we have

established a qualitative comparison. The objective of this comparison is not to

evaluate which AOSD platform is better, but to clarify what scenarios they have

been developed for. More exhaustive AOSD evaluations could be found in [49], [50]

and [27]. A global assessment of these features is displayed in Table 1.

Table 1. Features offered by different AOSD platforms.

Req. AspectJ DSAW PROSE JAsCo Spring Spring LOOM JBoss
Java Net .Net AOP

1 Yes Partially Partially
2 Yes Partially Partially Partially Partially

3 Yes Yes

4 Yes Yes Yes
5 Yes Yes Partially Yes Partially Partially Partially Yes

6 Partially Yes Partially Partially Partially Partially Partially

7 Yes Partially Yes Yes Yes Yes
8 18 18/16 4 3 3 3 11 18

(1) Full dynamic weaving. This feature is commonly taken into account when

dynamic weaving systems are analyzed [19]. Unlike many dynamic AOP ap-

proaches, unweaving and reweaving during runtime should be possible, even

at join-points that were not woven before. That means that there must be no

coupling between aspects and components at all. An aspect must be able to

adapt a running application, even if the former was created after running the

latter.

Both implementations of the Spring framework require the programmer to

specify an XML file declaring advice (advisors). At the same time, runtime

aspect weaving and unweaving must be explicitly stated in the applications’

source code. In the case of JBoss, it is required to specify an XML document

with pointcuts and advices. If so, aspects could be used later, once the applica-

tion has been launched. However, aspects that were not specified in this XML

file could not be woven together with the application at runtime.

Although JAsCo, PROSE and DSAW offer a higher level of dynamism than

the rest of systems, both JAsCo and PROSE show a limitation if re-weaving

26 F. Ortin, L. Vinuesa & J.M. Felix

is required. In the fix-and-continue debugging scheme it is necessary to weave

an aspect at runtime, unweave it later because the runtime behavior is not the

expected one, and finally re-weave it with the debugged aspect. Both JAsCo and

PROSE permit aspect unweaving, deactivating aspects at runtime. However, if

the aspect implementation is replaced by a new one, its new functionality is not

reflected at runtime when the aspect is rewoven.

(2) Both dynamic and static weaving. Both kinds of weavers are supported

in order to obtain better runtime performance and dynamic adaptiveness. If

full dynamism is mandatory to fulfill this requirement, only DSAW offers this

feature. JBoss, Spring and LOOM.Net partially achieve it.

(3) Separation of the dynamism concern. This feature implies the conversion

of a static aspect into a dynamic one (and vice versa) without changing its im-

plementation. Both JBoss and DSAW provide this feature. LOOM.Net and the

Spring framework use different approaches for both kinds of weaving. Therefore,

they do not really separate the dynamism (weaving-time) concern.

(4) Language neutrality. This feature implies the development of applications

and aspects in any programming language. All the systems but LOOM.Net,

Spring.Net and DSAW only support the Java programming language.

(5) Source code is not required. Although the LOOM.Net weaves components

with aspects at the virtual machine level, it imposes specific requirements on

applications: methods need to be virtual, public methods of classes must be

extracted in separate interfaces, and the use of the operator new is restricted.

This might be interpreted as a source code modification requirement. Something

similar happens to PROSE. Although the weaver does not require the source

code, the aspect manager should be explicitly included in the applications’

source code. Both versions of the Spring AOP framework also require either

the explicit load of the advice (advisor) document or the inclusion of code that

programmatically defines them.

(6) Integration of existing applications. This feature represents the idea of

taking any existing program or library and use it as a component or aspect.

Therefore, it could not be imposed the implementation of specific interfaces or

particular naming conventions on component or aspects.

Concerning to components, only LOOM.Net establishes specific require-

ments –described in the previous point. Regarding to aspects, all the platforms

but DSAW imposes important restrictions over the aspects.

(7) Separation of pointcuts and aspects. Both AspectJ and JAsCo include

pointcut descriptions in aspects, extending the syntax of the Java programming

language. In the case of PROSE, pointcuts are represented by explicit calls

to system methods. Therefore, these platforms show some coupling between

pointcuts and aspects, making it difficult to reuse aspects.

(8) Join-point set. A precise analysis must be done to evaluate the set of join-

points offered by each system. This assessment is depicted in Table 2, show-

ing whether or not each system implements the {constructor, method}{call,

The DSAW Aspect-Oriented Software Development Platform 27

execution} and field{get, set} join-points. AspectJ offers more join-points

but, since they are not provided by the rest of the systems, we have not taken

them into account. Join-points have been analyzed with the before, after and

around times. In each column, we can see how many join-points each platform

implements. This number is also displayed as the eighth row in Table 1. JBoss

AOP has just included the before and after times in its last version.

Table 2. Join-point set offered by different AOSD platforms.

AspectJ DSAW DSAW PROSE JAsCo Spring Spring Rapier Gripper JBoss
Static Dynamic Java .Net AOP

Method

Call
All All All

Before,

After
All All All All All All

Method

Execution
All All All All

Constructor
Call

All All
Before,
After

All All All

Constructor

Execution
All All

Before,

After
All

FieldGet All All All Around
Before,

After

Before,

After
All

FieldSet All All All Around All All All

Number of
Join-Points

18 18 16 4 3 3 3 11 11 18

Another issue that we are currently working in is the easy-of-use of the AOSD

platform. We have recently developed a Visual Studio plug-in (Figure 13) to facili-

tate the development of aspect-oriented applications in DSAW. The appearance of

the IDE is similar to the AspectJ Development Tools (AJDT) for Eclipse. Current

features include visual pointcut and advice connection (upper center window), plus

XML autocomplete (bottom center window), to facilitate the creation of the point-

cut specification documents described in this paper. For each pointcut, the IDE

shows the programmer the join-points that the pointcut activates and the woven

advice (bottom left window). Selecting an advice, it is shown the adviced pointcuts

and join-points. Using reflection, the structure of every component and aspect is

shown regardless its programming language (upper left window). Existing projects

do not need to be modified to be included in the DSAW platform (the solution

explorer window on the right). It is only necessary to add a new DSAW project in

any existing solution to make use of AOSD.

7.3. Quantitative Evaluation

To obtain an evaluation of runtime performance and memory consumption, we

have assessed the cost of the join-points shown in Table 2. We have evaluated the

28 F. Ortin, L. Vinuesa & J.M. Felix

Fig. 13. DSAW Visual Studio plug-in.

execution of 6 join-points in the 10 different AOSD platforms mentioned before.

Table 3: Execution time and memory consumption of join-points.

Join-
Point

Time AspectJ
DSAW
Static

DSAW
Dynamic

PROSE JAsCo
Spring
Java

Spring
.Net

Rapier Gripper
JBoss
AOP

M
e
t
h
.
C
a
ll

Before
10,532 10,814 37,363 2,550,900 24,071 30,017 24,527 38,805 38,782 27,794
13,328 5,940 12,784 9,916 16,288 21,944 11,556 11,972 7,988 21,436

After
10,510 10,515 37,893 2,564,100 23,814 29,901 24,161 37,836 38,516 28,980
13,368 5,948 12,772 9,944 15,744 21,896 11,596 12,012 7,976 21,384

Around
10,382 10,470 37,599 N/A 23,708 27,708 14,912 38,313 41,461 30,208
13,336 5,796 12,728 15,768 21,876 11,500 12,020 7,960 21,376

M
e
t
h
.E

x
e
c
.

Before
11,398 10,814 42,813 N/A N/A N/A N/A N/A N/A 27,213
13,220 7,760 14,556 21,572

After
11,261 11,289 39,933 N/A N/A N/A N/A N/A N/A 29,166
13,224 5,924 14,444 21,660

Around
11,293 13,798 42,171 N/A N/A N/A N/A N/A N/A 29,851
13,224 6,628 12,764 21,656

C
o
n
s
.
C
a
ll

Before
6,622 11,065 44,086 N/A N/A N/A N/A 67,429 52,137 33,231
13,320 5,784 12,828 11,960 7,996 21,516

After
8,181 10,947 41,498 N/A N/A N/A N/A 65,540 52,567 32,180
13,332 5,772 12,788 12,060 7,964 21,612

Around
9,870 268,747 N/A N/A N/A N/A N/A 66,476 55,028 27,530
13,340 6,312 12,064 8,004 21,524

C
o
n
s
.E

x
e
c
.

Before
13,450 10,856 39,384 N/A N/A N/A N/A N/A N/A 24,294
13,216 5,936 12,816 21,664

After
13,432 10,845 39,210 N/A N/A N/A N/A N/A N/A 24,374
13,212 5,776 12,760 21,668

Around
15,575 274,176 N/A N/A N/A N/A N/A N/A N/A 26,058
13,256 6,972 21,740

F
ie

ld
G

e
t

Before
7,352 3,198 31,212 N/A N/A N/A N/A 27,914 27,634 12,613
13,296 5,772 12,740 11,272 7,448 22,028

After
6,874 3,178 30,215 N/A N/A N/A N/A 28,474 28,386 12,184
13,276 5,776 12,760 11,340 7,452 22,064

Around
6,821 3,305 31,423 1,382,100 N/A N/A N/A N/A N/A 14,205
13,296 5,768 12,736 11,568 22,076

F
ie

ld
S
e
t

Before
8,834 3,162 30,680 N/A N/A N/A N/A 28,163 27,605 14,141
13,284 5,780 12,732 11,320 7,444 22,096

After
8,854 3,187 29,904 N/A N/A N/A N/A 28,386 27,653 14,154
13,364 5,744 13,276 11,388 7,412 22,176

Around
8,680 3,381 32,886 41,417,400N/A N/A N/A 28,255 27,537 15,977
13,260 5,744 12,748 11,576 11,320 7,424 22,228

The DSAW Aspect-Oriented Software Development Platform 29

For each join-point, we have measured the before, after and around times.

The aspect code used in our micro-benchmark accesses the signature and target

values (plus argument values in case of methods and constructors execution/call)

using the reference to the join-point received (e.g., in AspectJ, thisJoinPoint for

methods and constructors and thisJoinPointStaticPart for fields). In the case

of around constructor call/execution, the proceed method is also called to create

the corresponding instance; we also invoke proceed in the around field set.

Each join-point interception has been run in a loop of 10 million iterations. The

first call has not been included to rule out the cost of JIT compilation. Table 3 shows

the results; execution time (first row of each join-point evaluation) is expressed in

milliseconds and memory consumption (second row) in Kbytes.

A summary of the results is displayed in Figures 14 and 15. All values are

shown relative to AspectJ (values were divided by the values of AspectJ). It is

worth noting that not every platform implements all the join-points. The average

assessment shown in both figures is the geometric mean of each platform values (for

before, after and around times).

7.3.1. Discussion

From the comparison illustrated in Figures 14 and 15, three major discussions could

be identified. The first one is related to the cost of dynamic weaving. We can see

how runtime performance of the three full dynamic platforms is significantly lower

than the static ones: on average, dynamic DSAW, PROSE and JAsCo are 2.89,

616 and 1.28 times slower than AspectJ. The cost of dynamic weaving in DSAW

is obtained by comparing its two weaving implementations, where static weaving is

2.6 times faster than dynamic weaving.

0

1

2

3

4

5

6

7

8

9

Method Call Method Execution Constructor Call Constructor Execution Field Get Field Set

DSAW Static AspectJ String .Net Rapier Gripper Spring Java JBoss AOP DSAW Dynamic PROSE JAsCo

E
x

e
cu

ti
o

n
T

im
e

 R
e

la
ti

v
e

to
A

sp
e

ct
J

243.08 202.62 4771.58

Fig. 14. Execution time relative to AspectJ.

Regarding to memory consumption, only DSAW seems to require more memory

resources when weaving is performed at runtime (1.14 times). The rest of dynamic

30 F. Ortin, L. Vinuesa & J.M. Felix

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Method Call Method Execution Constructor Call Constructor Execution Field Get Field Set

DSAW Static AspectJ String .Net Rapier Gripper Spring Java JBoss AOP DSAW Dynamic PROSE JasCo

M
e
m
o
ry
C
o
n
su
m
p
ti
o
n
R
e
la
ti
v
e
to

A
sp
e
ct
J

Fig. 15. Memory consumption relative to AspectJ.

weavers do not consume more memory than static ones. This difference between

DSAW and the rest of systems must be due to the join-point injection technique

we use to implement dynamic weaving.

The second comparison to be established is between static weaving systems (in-

cluding those that do not obtain the full dynamism degree described in Section 7.1).

On average, AspectJ is the fastest one being only 8.16% faster than DSAW, which

is the second one. The rest of static weaving platforms require 197% (String .Net),

229% (JBoss AOP), 278% (Spring Java), 418% (Gripper-LOOM.Net) and 424%

(Rapier-LOOM.Net) the time used by AspectJ to run the same code.

With regard to memory consumption, DSAW is the best one (45.47% the mem-

ory used by AspectJ). Gripper-LOOM.Net, Spring .Net and Rapier-LOOM.Net

consume less memory than AspectJ (57.86%, 86.56% and 87.59% respectively).

JBoss AOP and Spring Java require 63.68% and 64.15% more memory than As-

pectJ. Therefore, we can see how the good runtime performance of AspectJ is coun-

teracted with a higher memory consumption. In fact, DSAW obtains the highest

performance per memory consumption ratio, being more than order of magnitude

better than AspectJ (the second-best one).

Finally, those dynamic weaving platforms that offer a real decoupling between

applications and aspects (Dynamic DSAW, PROSE and JAsCo) are also compared.

JAsCo offers the best runtime performance, being 1.27 times slower than AspectJ.

Dynamic weaving in DSAW is 71.09% slower than JAsCo and more than 157 times

faster than PROSE. It is worth noting that the good runtime performance of JAsCo

is obtained implementing only one join-point (see Table 7.2). JAsCo utilizes the

Java agents for program instrumentation included in the java.lang.instrument

package of the Java 1.5 release. Although this technology permits the optimal re-

placement of code at runtime, it seems to be difficult to use it for the implementation

of the remaining 5 join-points. The low runtime performance showed by PROSE is

explained by the mechanism used to interconnect aspects and components. PROSE

uses the JVMDI/JVMTI event notification API that lowers the overall performance

of the system.

The DSAW Aspect-Oriented Software Development Platform 31

Measuring the average performance per memory ratio, DSAW uses 38.09% less

memory than JAsCo to obtain the same runtime performance, whereas PROSE

requires 189 times more memory than DSAW.

7.3.2. The Cost of Weaving

The benefits of using AOSD also involve a cost of runtime performance. Hilsdade

and Hugunin showed that AspectJ adds a maximum 20% performance overhead

relative to hand-coded implementations [51]. We have reproduced the experiment

described by them where AspectJ involved a 3% performance penalty [51], obtaining

a 1.13% performance cost using the static weaver of DSAW.

At the same time, we have previously seen how dynamic weaving commonly

implies a performance cost as well. DSAW shows an average performance penalty

of 260.37% with regard to static weaving. We have measured this cost, breaking

it down into the following percentages. The code injected by the JPI, when no

aspect has been woven, implies a 31.2% of the total cost. The remaining perfor-

mance penalty (68.8%) is produced by the dynamic dispatching of messages from

applications to components. This dynamic dispatch selects the advice to be called

when many aspects intercept the same join-point (the α function described in Sec-

tion 4.2.2). To perform the dynamic invocation of advice, DSAW creates a new

method stub at runtime using CodeDOM. This strongly typed method invocation

avoids the important performance penalty caused by the usage of reflection in the

.Net platform [52].

7.4. Real Applications

Web have used both the static and dynamic weavers of DSAW to develop security

issues of distributed systems [53]. DSAW has been used to implement access control,

data flow and encryption of transmissions in two different scenarios. Details of both

implementations are presented in [53].

The first scenario is based on distributed systems made up by mobile devices,

where network topologies and communication channels may dynamically change. If

the user is connected to a distributed system and it is detected that the communica-

tion channel is not secure any more, encryption of transmissions may be required.

Therefore, a dynamic encrypting aspect is woven with the application that uses

the distributed system while the system is running. The aspect is even able to for-

ward the channel to another secure one if the mobile device allows it. Any kind

of encryption or forwarding aspect can be woven at runtime, because the DSAW

dynamic weaver does not impose any coupling between aspects and components.

Finally, if the mobile device returns to a trusted environment, the encrypting aspect

is unwoven to avoid the unnecessary overhead of encryption.

bIn collaboration with the Liverpool John Moores University.

32 F. Ortin, L. Vinuesa & J.M. Felix

In the second scenario, we tackle vulnerabilities caused by the flow of data

through the network. Each node in the network has an authorization level. The

security policy of the distributed system dictates that a node with an authorization

level can only send and receive information from those nodes with greater or equal

authorization level [54]. Figure 16.a shows an example. Nodes 1 and 4 can send

information to any other node because the confidential level is the lowest one. Node

2 can only send information to node 3, since the secret authorization level is lower

than top secret. Finally, node 3 cannot send information to anyone because it has

the highest authorization level.

1

2 3

4 1

2 3

4Confidential Confidential

Top Secret Top SecretSecret Secret

a) Data flow based on the authorization level b) Bidirectional data flow adding aspects

Confidential Confidential

Fig. 16. Using aspects to modify the data flow.

The traditional implementation only considers one-to-one relationships [55], im-

plying restrictions on data flow in point-to-point networks with changing topologies.

For example, nodes 1 and 4 in Figure 16.a have the same access level, but they can-

not exchange information because node 3 cannot relay messages to nodes 2 and

4.

We have used the static weaver of DSAW to implement a distributed system

with this security policy that guarantees the secure transmission of information

over changing topologies, tagging data with the authorization levels of nodes. Ap-

plications are built relying on the classical send and receive operations, and aspects

intercept these two messages to include the following functionalities:

(1) Encryption of information to avoid unauthorized access to it.

(2) Authentication to grant the user the appropriate authorization level.

(3) Data tagging to determinate how information flows across the network and to

control the access to it.

As shown in the right part of Figure 16, all nodes can now exchange information

between them regardless of their authorization level, because aspects control the

data flow and restrict the access to data. As a result, nodes 1 and 4 can securely

exchange data through nodes 2 and 3.

The DSAW Aspect-Oriented Software Development Platform 33

7.4.1. Performance and Memory Cost

We have assessed the performance and memory costs of using AOSD in these

two systems. The aspect-oriented implementation was compared with an equiv-

alent object-oriented program that offers the same functionalities, but with the

corresponding aspect code tangled throughout the application. In the static weav-

ing scenario, aspects involved a 3.89% and 1.41% cost of runtime performance and

memory consumption respectively. Costs did not depend on the number of messages

sent.

For the encryption scenario, we used dynamic weaving. In this case, the run-

time performance penalty was 59.18% and the increase of memory consumption

was 55.96%. These results show how the assessment presented above (Section 7.3)

represents the maximum cost of weaving. Since we measured the costs of join-point

interception, the maximum performance penalty is obtained when every join-point

is woven. These two systems show the overall performance and memory costs of two

real aspect-oriented applications developed in DSAW.

8. Related Work

There exist many static weaving AOSD tools, and there are also some dynamic

ones. However, there are few that offer both approaches.

Wicca is one example of a dynamic and static aspect-oriented system [56]. Wicca

has been developed over the .Net platform making use of the Phoenix framework –

a back-end compiler infrastructure [57]. Wicca performs static weaving by means of

code instrumentation. They achieved dynamic weaving using the debugging API of

the CLR. Dynamic weaving is released in an alpha version, and it does not support

dynamic aspect deletion yet. The static and dynamic weavers are not equivalent;

static weaving is more expressive than the dynamic one [22]. Current runtime per-

formance of Wicca is not competitive because applications should be executed in

debugging mode, enabling the edit-and-continue support of the CLR [22].

AOP.NET, formerly called NAop, is another dynamic and static weaving pro-

posal –no implementation has been released yet [13]. Its design follows a proxy-based

component decoration. This proxy is used in both static and dynamic scenarios. The

weaver uses a proxy class instead of each component class. The proxy adapts the

behavior of its decorated class. Depending on the pointcuts, the proxy delegates

its functionality on the original class or it calls the registered aspects. The static

weaver performs this process prior to application execution, whereas the dynamic

weaver does it at runtime.

The LOOM.NET project provides dynamic and static weaving over the same

core implementation, using the .Net platform [48]. Rapier LOOM.NET is the dy-

namic weaver. Pointcuts in aspects are expressed by means of custom attributes

in .Net. At load-time, the application is woven together with aspects. Applica-

tions and aspects should be linked prior to their execution. A static weaver, called

Gripper-LOOM.NET (in version 0.92), is currently being developed [58]. The syntax

34 F. Ortin, L. Vinuesa & J.M. Felix

of the pointcut language description is not the same for both weavers. This makes

it difficult to convert aspects from static to dynamic. The dynamic weaver needs

the source code of applications and does not provide an ample set of join-points

[48, 59]; dynamic aspect deletion is not supported either [20].

Regarding aspect formalization, most existing semantics consider object oriented

base programs [60, 31, 61, 62], while others consider functional languages [29], as

well as process calculi [63]. The Common Aspect Semantics Base (CASB) specifies

the aspect semantics independently from its base language [15]. For each aspect

feature, it is introduced a minimal construction of the base language necessary to

plug aspects in. The CASB semantics was previously used to discuss the benefits of

scheduling aspects at runtime [33]. The static scheduling semantics of AspectJ was

extended with the concept of aspect group, the aspects scheduled for the current

join-point, with the opportunity to access them from the advice body.

9. Conclusions

There are many tools that support AOSD. Some of them offer application weaving

before its execution, while others provide this adaptation at runtime. Although the

static approach is suitable in many cases, dynamic adaptation may also be required

when the application should respond to runtime emerging contexts and require-

ments. Static weaving supports efficient AOSD, whereas dynamic weaving involves

runtime adaptiveness. DSAW is an AOSD platform that obtains the benefits of

both sorts of weavers, combining the features of different existing platforms into

one system.

The design of DSAW has been performed following the Separation of Concerns

principle, so that the weaving-time concern does not interfere in the aspect-oriented

development process. Aspects can be changed from static to dynamic and vice

versa depending on the life cycle stage, and both type of weavers can be used in

the same application. This facilities both edit-and-continue development (at first

stages of software development) and efficient static weaving (when the application

is about to be released). That is, DSAW completely separates the weaving-time

concern. The programmer may modify the flexibility/performance trade-off during

the development life cycle.

DSAW has been designed over the .Net platform, taking advantage of its fea-

tures. Both weavers use byte-code instrumentation, making DSAW be language

neutral. This permits the adaptation of legacy applications, and promotes aspects

and components reuse. The system offers a wide set of join-points, language and

platform neutrality, and full dynamic program adaptation.

The assessment of runtime performance has shown that the static weaver of

DSAW is the second fastest, being on average 8.16% slower than AspectJ. Compar-

ing full dynamic weavers, DSAW is 71.09% slower than JAsCo and more than 157

times faster than PROSE. Considering the performance per memory ratio, DSAW

has obtained the best measurements for both dynamic and static weaving. Two

The DSAW Aspect-Oriented Software Development Platform 35

real applications developed in DSAW have entailed a performance cost of 3.89%

and 59.18%, respectively comparing static and dynamic weaving with the tradi-

tional object-oriented development.

Future work will be focused on designing a conflict resolution mechanism, in-

cluding composition operators [44] and semantic conflict correction techniques [46].

We are also extending the developed Visual Studio plug-in to facilitate the dynamic

(un)weaving of aspects.

Current implementation of DSAW can be freely downloaded from its Web page

at http://www.reflection.uniovi.es/dsaw

Acknowledgements

This work was supported by the Department of Science and Innovation (Spain)

under the National Program for Research, Development and Innovation, projects

TIN2008-00276 and TIN2011-25978; it has also been partially funded by the Uni-

versity of Oviedo, with the project entitled AOSD System to support both Dynamic

and Static Weaving in a Language and Platform Neutral way, UNOV-08-MB-15.

References

[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
and J. Irwin, “Aspect-Oriented Programming,” in ECOOP: European Conference on
Object-Oriented Programming, (Berlin), pp. 220–242, Springer Verlag, 1997.

[2] W. Hürsch and C. Lopes, Separation of Concerns, Technical Report NU-CCS-95-03.
Boston: Northeastern University, 1995.

[3] D. L. Parnas, “On the criteria to be used in decomposing systems into modules,”
Communications of the ACM, vol. 15, pp. 1053–1058, December 1972.

[4] F. Ortin, B. Lopez, and J. B. G. Perez-Schofield, “Separating adaptable persistence
attributes through computational reflection,” IEEE Software, vol. 21, no. 6, pp. 41–
49, 2004.

[5] J. A. Zinky, D. E. Bakken, and R. E. Schantz, “Architectural support for quality of
service for corba objects,” TAPOS, vol. 3, no. 1, pp. 55–73, 1997.

[6] M. Ségura-Devillechaise, J.-M. Menaud, G. Muller, and J. L. Lawall, “Web cache
prefetching as an aspect: towards a dynamic-weaving based solution,” in AOSD ’03:
Proceedings of the 2nd international conference on Aspect-oriented software develop-
ment, (New York, NY, USA), pp. 110–119, ACM, 2003.

[7] A. Stevenson and S. MacDonald, “Dynamic aspect-oriented load balancing in java
rmi,” in PDPTA: Parallel and Distributed Processing Techniques and Applications,
pp. 485–491, 2008.

[8] A. Popovici, T. Gross, and G. Alonso, Dynamic Homogenous AOP with PROSE,
Technical Report. Department of Computer Science, ETH Zürich, 2001.

[9] K. Böllert, “On weaving aspects,” in Proceedings of the Workshop on Object-Oriented
Technology, (London, UK), pp. 301–302, Springer-Verlag, 1999.

[10] M. Haupt and M. Mezini, “Micro-measurements for dynamic aspect-oriented sys-
tems,” in Net.ObjectDays, (Berlin), pp. 81–96, 2004.

[11] M. Dmitriev, “Applications of the hotswap technology to advanced profiling,”
in USE2002: First International Workshop on Unanticipated Software Evolution,
(Berlin), Springer, 2002.

36 F. Ortin, L. Vinuesa & J.M. Felix

[12] M. Eaddy and S. Feiner, Multi-Language Edit-and-Continue for the Masses. New
York: Technical Report CUCS-015-05, Department of Computer Science, Columbia
University, 2005.

[13] M. Blackstock, “Aspect weaving with C# and .Net.” http://www.cs.ubc.ca/

michael/publications/AOPNET5.pdf, 2004.
[14] W. Gilani, F. Scheler, D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat, “Uni-

fication of static and dynamic aop for evolution in embedded software systems,” in
Software Composition, pp. 216–234, 2007.

[15] S. D. Djoko, P. Fradet, and D. L. Botlan, CASB: Common Aspect Semantics Base,
Deliverable 5. AOSD-Europe, EU Network of Excellence in AOSD, 2006.

[16] Apache Software Foundation, “Apache log4net, logging services.” http://logging.

apache.org/log4net/index.html.
[17] A. Nicoară and G. Alonso, “Dynamic aop with prose,” in 1st International Workshop

on Adaptive and Self-Managing Enterprise Applications, pp. 125–138, 2005.
[18] JBoss Community, “Jboss AOP homepage.” http://labs.jboss.com/jbossaop/.
[19] D. Suvée, W. Vanderperren, and V. Jonckers, “Jasco: an aspect-oriented approach

tailored for component based software development,” in AOSD ’03: Proceedings of the
2nd international conference on Aspect-oriented software development, (New York,
NY, USA), pp. 21–29, ACM, 2003.

[20] A. Frei, P. Grawehr, and G. Alonso, A Dynamic AOP-Engine for .Net, Technical
Report 445. Zürich: Department of Computer Science, ETH, 2004.

[21] The Spring Framework, “Spring java/j2ee application framework, reference documen-
tation, version 2.5.5.” http://static.springframework.org/spring/docs/2.5.x/

spring-reference.pdf.
[22] Computer Science Department, Columbia University, “Wicca v2 home page.” http:

//www1.cs.columbia.edu/~eaddy/wicca/.
[23] L. Vinuesa and F. Ortin, “A dynamic aspect weaver over the .net platform,” in

Metainformatics, pp. 197–212, 2003.
[24] C. Bockisch, M. Arnold, T. Dinkelaker, and M. Mezini, “Adapting virtual machine

techniques for seamless aspect support,” in OOPSLA ’06: Proceedings of the 21st an-
nual ACM SIGPLAN conference on Object-oriented programming systems, languages,
and applications, (New York, NY, USA), pp. 109–124, ACM, 2006.

[25] F. Ogel, G. Thomas, and B. Folliot, “Supporting efficient dynamic aspects through
reflection and dynamic compilation,” in SAC ’05: Proceedings of the 2005 ACM sym-
posium on Applied computing, (New York, NY, USA), pp. 1351–1356, ACM, 2005.

[26] R. Douence, T. Fritz, N. Loriant, J.-M. Menaud, M. Ségura-Devillechaise, and
M. Südholt, “An expressive aspect language for system applications with arachne,”
in AOSD ’05: Proceedings of the 4th international conference on Aspect-oriented soft-
ware development, (New York, NY, USA), pp. 27–38, ACM, 2005.

[27] M. Eaddy, A. Aho, W. Hu, P. McDonald, and J. Burger, “Debugging aspect-composed
programs,” in SC2007: International Symposium on Software Composition, 2007.

[28] W. Schroder-Preikschat, D. Lohmann, F. Scheler, W. Gilani, and O. Spinczyk, “Static
and dynamic weaving in system software with aspectc++,” in HICSS ’06: Proceedings
of the 39th Annual Hawaii International Conference on System Sciences, (Washing-
ton, DC, USA), p. 214.1, IEEE Computer Society, 2006.

[29] D. Walker, S. Zdancewic, and J. Ligatti, “A theory of aspects,” in ACM International
Conference on Functional Programming, (Uppsala), Aug. 2003.

[30] R. Jagadeesan, A. Jeffrey, and J. Riely, “Typed parametric polymorphism for as-
pects,” Sci. Comput. Program., vol. 63, no. 3, pp. 267–296, 2006.

[31] R. Lämmel, “A Semantical Approach to Method-Call Interception,” in Proceedings of

The DSAW Aspect-Oriented Software Development Platform 37

the 1st International Conference on Aspect-Oriented Software Development (AOSD
2002), (Twente, The Netherlands), pp. 41–55, ACM Press, Apr. 2002.

[32] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold, “An
overview of aspectj,” in ECOOP: European Conference on Object-Oriented Program-
ming, (Berlin), pp. 327–353, Springer Verlag, 2001.

[33] A. Assaf and J. Noyé, “Dynamic aspectj,” in DLS ’08: Proceedings of the 2008 sym-
posium on Dynamic languages, (New York, NY, USA), pp. 1–12, ACM, 2008.

[34] European Computers Manufacturing Association, Standard ECMA-335, Common
Language Infrastructure (CLI), 4th edition. ECMA - European Computers Manu-
facturing Association, 2006.

[35] D. Lafferty and V. Cahill, “Language-independent aspect-oriented programming,” in
OOPSLA ’03: Proceedings of the 18th annual ACM SIGPLAN conference on Object-
oriented programing, systems, languages, and applications, (New York, NY, USA),
pp. 1–12, ACM, 2003.

[36] Sun Microsystems, Java Specification Request (JSR) 220. Enterprise Java Beans,
version 3.0. Java Persitence API. Java Community Process, 2006.

[37] G. Kiczales and J. D. Rivieres, The Art of the Metaobject Protocol. Cambridge, MA,
USA: MIT Press, 1991.

[38] F. Ortin, J. M. Cueva, and A. B. Martinez, “The reflective nitro abstract machine,”
SIGPLAN Not., vol. 38, no. 6, pp. 40–49, 2003.

[39] H. G. Andchris, H. Masuhara, G. Kiczales, and C. Dutchyn, “A compilation and
optimization model for aspect-oriented programs,” in Compiler Construction, volume
2622 of Springer Lecture Notes in Computer Science, pp. 46–60, Springer, 2003.

[40] Weave.NET homepage, “Trinity college dublin.” http://www.dsg.cs.tcd.ie/index.

php?category_id=193.
[41] S. Miller, DEC/HP Network Computing Architecture Remote Procedure Call Run

Time Extensions version OSF TX1.0.11. , Open Software Foundation, Cambridge,
MA, 1992.

[42] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[43] I. Nagy, L. Bergmans, and M. Aksit, “Composing aspects at shared join points,” in
Conference proceedings : Erfurt, Germany, Lecture Notes in Informatics 69, pp. 19–
38, 2005.

[44] É. Tanter, “Aspects of Composition in the Reflex AOP Kernel,” in Software Com-
position, volume 4089 of Lecture Notes in Computer Science, pp. 98–113, Springer,
2006.

[45] R. Douence, P. Fradet, and M. Südholt, “Composition, reuse and interaction analysis
of stateful aspects,” in AOSD ’04: Proceedings of the 3rd international conference on
Aspect-oriented software development, (New York, NY, USA), pp. 141–150, ACM,
2004.

[46] P. Durr, T. Staijen, L. Bergmans, and M. Aksit, “Reasoning about semantic conflicts
between aspects,” in EIWAS 2005: 2nd European Interactive Workshop on Aspects
in Software, 2005.

[47] The Spring Framework, “Spring.net reference docu-
mentation, version 1.2.0 m1.” http://www.springframework.net/docs/1.2.0-M1/

reference/pdf/spring-net-reference.pdf.
[48] W. Schult and P. Trögger, “Loom.net — an aspect weaving tool,” in Workshop on

Aspect-Oriented Programming, European Conference on Object-Oriented Program-
ming, (Darmstadt, Germany), 2003.

[49] J. Brichau and M. HauptSurvey, Survey of Aspect-oriented Languages and Execution

38 F. Ortin, L. Vinuesa & J.M. Felix

Models. Document VUB-01, AOSD-Europe, 2005.
[50] L. Vinuesa, Dynamic Separation of Aspects by means of Language and Platform Neu-

tral Computational Reflection, Ph.D. Dissertation. University of Oviedo, Spain, 2007.
[51] E. Hilsdale and J. Hugunin, “Advice weaving in AspectJ,” in AOSD ’04: Proceedings

of the 3rd international conference on Aspect-oriented software development, (New
York, NY, USA), pp. 26–35, ACM, 2004.

[52] F. Ortin, J. M. Redondo, and J. Baltasar Garćıa Perez-Schofield, “Efficient virtual
machine support of runtime structural reflection,” Science of Computing Program-
ming, vol. 74, no. 10, pp. 836–860, 2009.

[53] M. Garcia, D. Llewellyn-Jones, M. Merabti, and F. Ortin, “Applying Dynamic
Separation of Aspects to Distributed Systems Security, Technical Report.” http:

//www.reflection.uniovi.es/publications/2010/DSS.pdf, 2010.
[54] N. C. S. C. NCSC, “Trusted network interpretation environments guideline,” 1990.
[55] U. Lang and R. Schreiner, Developing secure distributed systems with CORBA. Artech

House Publishers, 2002.
[56] M. Eaddy, “Wicca 2.0: Dynamic weaving using the .Net 2.0 debugging api,” in AOSD

2007: Aspect-Oriented Software Development, 2007.
[57] Microsoft Research, “Phoenix academic program.” http://research.microsoft.

com/phoenix.
[58] HPI (Hasso Plattner Institut), “Gripper-loom.net.”

http://www.dcl.hpi.uni-potsdam.de/research/loom/gripper_loom.htm.
[59] K. Köhne, W. Schult, and A. Polze, Design by contract in .Net Using Aspect Ori-

ented Programming, Technical Report. Hasso Plattner Institut, Universität, Potsdam,
Germany, 2005.

[60] R. Jagadeesan, A. Jeffrey, and J. Riely, “A calculus of untyped aspect-oriented pro-
grams,” in European Conference on Object-Oriented Programming, pp. 54–73, 2003.

[61] R. Douence and L. Teboul, “A pointcut language for control-flow,” in Generative
Programming and Component Engineering (GPCE), pp. 95–114, 2004.

[62] M. Wand, G. Kiczales, and C. Dutchyn, “A semantics for advice and dynamic join
points in aspect-oriented programming,” ACM Transactions on Programming Lan-
guages and Systems, vol. 26, pp. 890–910, September 2004.

[63] G. Bruns, R. Jagadeesan, A. Jeffrey, and J. Riely, “µabc: A minimal aspect calculus,”
in Concurrency Theory, volume 3170 of Lecture Notes in Computer Science, pp. 209–
224, Springer, 2004.

