
1

A Type Safe Design to allow the Separation of different

Responsibilities into Parallel Hierarchies

FRANCISCO ORTIN, MIGUEL GARCIA

Computer Science Department

University of Oviedo

33007, Oviedo, Spain

The Tease Apart Inheritance refactoring is used to avoid tangled inheritance hierarchies that lead to

code duplication. This big refactoring creates two parallel hierarchies and use delegation to invoke one

from the other. One of the drawbacks of this approach is that the root class of the new refactored hie-

rarchy should be general enough to provide all its services. This weakness commonly leads to meaning-

less interfaces that violate the Liskov substitution principle.

This paper describes a behavioral design pattern that allows modularization of different responsibil-

ities in separate hierarchies that collaborate to achieve a common goal. It allows using the specific inter-

face of each class in the parallel hierarchy, without imposing a meaningless interface to its root class. The

proposed design is type safe, meaning that the compile-time type checking ensures that no type error will

be produced at runtime, avoiding the use of dynamic type checking and reflection.

Keywords: Design patterns, refactoring, software design, parametric polymorphism, generics

1. INTRODUCTION

The Tease Apart Inheritance is a "big" refactoring that separates a tangled inheritance hierarchy

that has different responsibilities in distinct (commonly) parallel hierarchies that use delegation to in-

voke from one to the other [7]. Each hierarchy has its own responsibility, and all together collaborate

to solve a problem. The delegation used to make different hierarchies collaborate is implemented with

an association between the root classes of each hierarchy. This commonly involves too general inter-

faces that are not detailed enough to be used by the parallel hierarchy. This limitation is more evident

with the classes below in the hierarchy, where the required interface is even more specific.

As an example, consider building a retargetable compiler [1] for a high-level object-oriented pro-

gramming language. Once the Abstract Syntax Tree (AST) has been built by the parser and semantic

(contextual) analysis has been performed over the AST [2], it will be necessary to generate code for

different platforms. We want the compiler of our high-level programming language not only to gener-

ate low-level code, but also to translate it to other high-level programming languages.

Similar to semantic analysis, code generation could be implemented using the Visitor design pat-

tern [3], traversing the AST –built using the Composite design pattern [3]– to generate the target code

[4]. As shown in Figure 1, source code for different programming languages can be generated with

different Visitor classes. Common strategies of high-level code generation can be factored out into a

common VisitorHighLevelCG superclass using the Template Method design pattern [3]. Since

many high-level programming languages share similar features, the AST traversal for this kind of

FRANCISCO ORTIN AND MIGUEL GARCIA

2

languages could be expressed with methods in the VisitorHighLevelCG class. These methods can

call to all the abstract methods defined in their hierarchy level to implement the template algorithms

that generate high-level source code. The same generalization can be done for low-level programming

languages (and even for all the target languages, using the VisitorCG class). For instance, the Java

Virtual Machine (JVM) assembly code [5] is quite similar to the Microsoft Intermediate Language

(MSIL) [6] because both are based on abstract stack machines. Common code generation templates to

both languages could be placed in the VisitorLowLevelCG class.

Fig. 1. Using the Visitor and Composite design patterns to generate code for multiple languages.

A benefit of the inheritance hierarchy in the left part of Figure 1 is that common strategies to

translate the source code to every target language could be placed in the VisitorCG class. For in-

stance, generating the code of a class to Java, C#, JVM and MSIL could be defined as generating the

code of its methods and fields (visitClassNode). This benefit is obtained with each level of the

hierarchy (e.g., high-level or low-level target language). However, since every target language has a

different instruction set, this polymorphic behavior needs to be specialized with the instruction set of

each particular target language. In order to make the code maintainable, a parallel hierarchy of Code-

Generation classes could be defined to generate the specific code of each target language. This is,

precisely, the Tease Apart Inheritance “big refactoring” [7]. The Visitor classes will use the classes of

the parallel CodeGeneration hierarchy to generate different target languages (Figure 2).

visitClassNode()
visitMethod()
...

VisitorCG

visitAttribute()
visitAssignment()
...

VisitorJVMCG

visitBinaryExpression()
...

VisitorHighLevelCG

accept()

ASTNode

accept()

operator

BinaryExpression

ExpressionvisitBinaryExpression()
...

VisitorLowLeveCG

accept()

ClassNode

Client

visitClassNode()
visitMethod()
visitAttribute()
visitBinaryExpression()
visitAssignment()
...

Visitor

visitAttribute()
visitAssignment()
...

VisitorMSILCG

visitAttribute()
visitAssignment()
...

VisitorJavaCG

visitAttribute()
visitAssignment()
...

VisitorCSharpCG

... accept()

MethodNode

accept()

AttributeNode

2

accept()

Assignment

accept()

IdNode

1

1

*

*

...

*

Statement

...

A TYPE SAFE DESIGN TO ALLOW THE SEPARATION OF DIFFERENT RESPONSIBILITIES INTO PARALLEL HIERARCHIES

3

Fig. 2. Tease Apart Inheritance refactoring.

Each Visitor class relies on a corresponding CodeGeneration class to achieve its objective.

Each Visitor class traverses the AST tree, calling the parallel CodeGeneration class to generate the

code of a particular target language. Dynamic binding in both hierarchies is used to override all the

abstract operations used in the general template algorithms, defining the particular implementation of

each specific code generation operation for every target language. For instance, the generateOpen-

Class method of the code generation hierarchy is overridden in Java, JVM, C# and MSIL code

generators to describe how a class must be declared in each programming language. This

generalization makes it possible to implement the visitClassNode method with the simple Java

code in Figure 3. It is worth noting that this is the template of a general algorithm. If a new target

language needs to be generated, and it does not follow this template, dynamic binding can be used to

override the visitClassNode method for a particular Visitor subclass.

public abstract class VisitorCG extends Visitor {

 @Override

 public void visitClassNode(ClassNode node) {

 this.codeGenerator.generateClassHeader(node);

 for(FieldNode field : node.getFields())

 this.codeGenerator.generateField(field);

 for(MethodNode method : node.getMethods()) {

 this.codeGenerator.generateMethodHeader(method);

 method.accept(this);

 this.codeGenerator.generateMethodFooter(method);

 }

 this.codeGenerator.generateClassFooter(node);

 }

 //…

}

Fig. 3. Implementation of the visitClassNode method in the VisitorCG class.

The benefits of the generalization offered by polymorphism are counteracted by the necessity of

recovering the specific interface of a particular CodeGeneration class. As an example, we can think

about how to generate the code for an assignment expression. The Visitor design pattern traverses the

AST until the visitAssignmentNode is reached. The templates for generating assignment

expressions to Java and JVM are different. The former uses infix syntax, whereas the latter generates

the code of the right-hand side of the assignment first, followed by a store statement indicating the

visitClassNode()
visitMethod()
...

VisitorCG

visitAttribute()
visitAssignment()
...

VisitorJVMCG

visitBinaryExpression()
...

VisitorHighLevelCG

visitBinaryExpression()
...

VisitorLowLeveCG

Client

visitClassNode()
visitMethod()
visitAttribute()
visitBinaryExpression()
visitAssignment()
...

Visitor

visitAttribute()
visitAssignment()
...

VisitorMSILCG

visitAttribute()
visitAssignment()
...

VisitorJavaCG

visitAttribute()
visitAssignment()
...

VisitorCSharpCG

...

generateClassHeader()
generateClassFooter()
generateField()
generateMethodHeader()
generateMethodFooter()
...

CodeGeneration

visitBinaryExpression()
...

HighLevelCodeGeneration

visitBinaryExpression()
...

LowLevelCodeGeration

generateClassHeader()
generateClassFooter()
generateAssignmentOperator()
...

JavaCodeGeneration

generateClassHeader()
generateClassFooter()
generateAssignmentOperator()
...

CSharpCodeGeneration

generateClassHeader()
generateClassFooter()
generateAssignmentOperator()
...

JVMCodeGeneration

generateClassHeader()
generateClassFooter()
generateAssignmentOperator()
...

MSILCodeGeneration

codeGenerator

FRANCISCO ORTIN AND MIGUEL GARCIA

4

index of the local variable (Figure 5). This difference requires the visitAssignmentNode in the

VisitorJVMCG class to invoke the specific generateStore method in the JVMCodeGeneration

class, whereas the same method in VisitorJavaCG should call to the generateAssignmentOpera-

tor method in JavaCodeGeneration. Therefore, it is required to recover the specific interface of

the corresponding code generation class in the parallel hierarchy. Notice than adding these specific

methods to the whole code generation hierarchy might produce a design difficult to understand,

because some methods are meaningless for specific classes, violating the Liskov substitution principle

[8].

The main contribution of this paper is the description of a design pattern that provides a way to

make two parallel hierarchies collaborate to solve a problem, recovering the specific interfaces of

classes in the corresponding hierarchy. The usage of both generalized and specific interfaces in a class

hierarchy is obtained without violating the type safety offered by many statically typed programming

languages. This approach can be used to solve the expression problem [16] and together with other

design patterns such as Composite, Template or Visitor [3].

2. THE PARALLEL HIERARCHIES DESIGN PATTERN

The proposed design pattern, called Parallel Hierarchies, allows the recovery of the specific

interface used to connect the different hierarchies. Although this can be done with different

programming languages techniques (see Section 2.2), the use of generics (parametric polymorphism)

Fig. 4. Parametric polymorphism to connect the parallel hierarchies.

A TYPE SAFE DESIGN TO ALLOW THE SEPARATION OF DIFFERENT RESPONSIBILITIES INTO PARALLEL HIERARCHIES

5

is appropriate when the implementation language is statically typed. Generics offers the reliability of

type safety, plus the runtime performance improvement obtained by avoiding the use of runtime

reflection [9]. C++ implements (unbounded) parametric polymorphism (generics), whereas C# and

Java offers F-bounded polymorphism [10] (also known as constrained genericity). Both kinds of

parametric polymorphism can be used to implement the Parallel Hierarchies design pattern. Figure 4

shows how to use it in our motivating example.

Both hierarchies are connected with one association between the VisitorCG class and CodeGe-

neration –its multiplicity vary depending on the problem. Each visitor object has a code generator

attribute to generate code in a particular programming language. However, the type of this attribute

would be the corresponding one in the parallel hierarchy if generics is used, achieving the recovery of

the whole particular interface of the corresponding code generation class. If the language offers

F-bounded polymorphism (e.g., Java or C#), the VisitorCG class will be declared as generic,

parameterized with a T type –being T a subtype of CodeGeneration. The attribute’s type will then

be T, and hence the CodeGeneration interface could be used in VisitorCG. This constraint (bound)

of the T type is specialized in all the subclasses of VisitorCG. For instance, in the VisitorHig-

hLevelCG class, T must be a subtype of HighLevelCodeGeneration, and a subclass of Visitor-

JavaCG in the case of JavaCodeGeneration. This modification on the constraints of T is possible

when constraints are covariant with respect to the types they are applied to [11] –as happens with Java

and C#. Consequently, the visitAssignmentNode method in the VisitorJVMCG class will be able

to invoke the generateStore method of the particular interface of the JVMCodeGeneration class

(its interface has been recovered) as shown in Figure 5.

public class VisitorJVMCG<T extends JVMCodeGeneration> extends VisitorLowLevelCG<T>{

@Override

 public void visitAssignment(AssignmentNode node) {

 node.getSecondOperand().accept(this);

 this.codeGenerator.generateStore(node.getFirstOperand().getIndex(),

 node.getFirstOperand().getType());

 }

 //…

}

Fig. 5. Implementation of the visitAssignmentNode of the VisitorJVMCG class.

2.1. Structure

The static structure of the proposed design pattern is shown in Figure 6, where the participants

can be identified:

FRANCISCO ORTIN AND MIGUEL GARCIA

6

Fig. 6. Structure of the Parallel Hierarchies design pattern.

• Template hierarchy. Classes in this hierarchy describe templates of algorithms, defining their

structure in the classes above in the hierarchy and the specific primitive operations in subclasses.

This hierarchy is intended to have only one clear responsibility, delegating other possible responsi-

bilities in parallel Interface hierarchies. The elements of the Template hierarchy are:

- AbstractTemplate (VisitorCG, VisitorHighLevelCG and VisitorLowLevelCG)

� Defines the common structure of general algorithms. Each general algorithm is implemented

in abstract TemplateMethod methods.

� Declares the interface of abstract primitive operations that are used in general algorithms

(PrimitiveOperation1 and PrimitiveOperation2).

� The implementations of general algorithms make use of the specific interface of the parallel

class (GeneralInterface).

� Each general algorithm is implemented using both primitive operations and the methods of the

parallel Interface classes.

� (optional) Intermediate AbstractTemplate classes (AbstractTemplateB) may appear to ge-

neralize the structure and behavior of ConcreteTemplate classes.

- ConcreteTemplate (VisitorJavaCG, VisitorJVMCG, VisitorCSharpCG and VisitorM-

SILCG)

� Implements the primitive operations to carry out subclass-specific operations of each general

algorithm (PrimitiveOperation1 and PrimitiveOperation2).

� The implementation of its specific primitive operations may use the concrete interface of its

parallel Interface classes.

� (optional) General algorithms (TemplateMethod) may be overridden in specific Concrete-

TemplateMethod()
PrimitiveOperation1()
PrimitiveOperation2()

AbstractTemplate

T extends GeneralInterface

PrimitiveOperation2()

ConcreteTemplateB

T extends ConcreteInterfaceB

PrimitiveOperation1()
PrimitiveOperation2()

ConcreteTemplateA

T extends ConcreteInterfaceA

GeneralOperation()

GeneralInterface

ConcreteOperationB2()

ConcreteInterfaceB

GeneralOperationB()
ConcreteOperationB1()

GeneralInterfaceB

TemplateMethod()
PrimitiveOperation1()

AbstractTemplateB

T extends GeneralInterfaceB

ConcreteOperationA()

ConcreteInterfaceA

interface

Client

…

interface.ConcreteOperationB2()

…

…

PrimitiveOperation1()

interface.GeneralOperationB()

PrimitiveOperation2()

…

…

Interface.GeneralOperationB()

Interface.ConcreteOperationB1()

…

…

PrimitiveOperation1()

interface.GeneralOperation()

PrimitiveOperation2()

…

A TYPE SAFE DESIGN TO ALLOW THE SEPARATION OF DIFFERENT RESPONSIBILITIES INTO PARALLEL HIERARCHIES

7

Template classes if the default implementation is not appropriate for a particular case.

• Interface hierarchy. This parallel hierarchy modularizes a responsibility that the Template hierarchy

may require to achieve its aim. It can also be seen as a set of helper classes used by the Template

hierarchy to accomplish its objective. In this design pattern, multiple parallel Interface hierarchies

may be used by the same Template abstraction.

- GeneralInterface (CodeGeneration, HighLevelCodeGeneration and LowLevelCodeGe-

neration)

� Defines operations common to all the classes in the Interface hierarchy (GeneralOpera-

tion).

� (optional) Implements default behavior of these general operations, which may be overridden

in its subclasses.

� (optional) If intermediate AbstractTemplate classes are defined in the parallel Template

hierarchy, another intermediate Interface class will define operations common to that Tem-

plate hierarchy level (ConcreteOperationB1).

- ConcreteInterface (JavaCodeGeneration, CSharpCodeGeneration, JVMCodeGeneration

and MSILCodeGeneration)

� Implements concrete operations applicable only to its specific level in the hierarchy (Con-

creteOperationA and ConcreteOperationB2).

� Overrides general default operation implementations for a particular ConcreteInterface

class.

• Client

� Invokes the TemplateMethod methods of the AbstractTemplate class.

2.2. Collaborations

The sequence diagram in Figure 7 illustrates the collaborations between a client, a concrete tem-

plate object, and its corresponding interface instance.

FRANCISCO ORTIN AND MIGUEL GARCIA

8

Fig. 7. Example collaboration sequence diagram.

- A client that uses the Parallel Hierarchies design pattern must create a ConcreteTemplate ob-

ject and call to one of the TemplateMethod methods this class implements.

- The TemplateMethod invokes the GeneralOperation on its corresponding Interface class.

- To respond to the TemplateMethod message, the Template object also makes use of its poly-

morphic primitive operations.

- Thanks to dynamic binding, the PrimitiveOperation request is associated to the Concrete-

Template object created by the client. At this moment, the particular Template object recovers

the whole interface of its parallel class and invokes a specific method of its corresponding Inter-

face type (e.g., ConcreteOperationB2).

- GeneralOperation could be overridden in an intermediate level of the Interface hierarchy, and

its execution may call to concrete operations of this intermediate level (e.g., the GeneralOpe-

rationB method could make use of the ConcreteOperationB1 method).

2.3. Consequences

The use of the Parallel Hierarchies design pattern has the following benefits and limitations:

1. Parallel Hierarchies gathers related operations and separates unrelated ones. Related behavior

is not spread over the classes defining the template hierarchy. Classes above in the hierarchy de-

fine the global structure of the algorithms, whereas particular and primitive cases are imple-

mented as operations in the leaf classes. At the same time, the Template classes only define the

skeleton algorithms in a problem; other responsibilities will be factored out into parallel Interface

hierarchies. In our motivating example, the Template classes aim at traversing ASTs of source

programs (describing both the global algorithms valid to every target language and the particular

cases). All the issues concerned with writing code for a particular language are implemented in

A TYPE SAFE DESIGN TO ALLOW THE SEPARATION OF DIFFERENT RESPONSIBILITIES INTO PARALLEL HIERARCHIES

9

the code generation hierarchy.

2. Parallel Hierarchies makes adding new Interface hierarchies easy. The implementation of the

methods in the Template hierarchy could make use of more than one hierarchy of Interface

classes. At the same time, it is also possible to use another different Interface hierarchy without

changing the implementation of Template classes. For instance, the code generation hierarchy

could be replaced by another one that creates an intermediate-representation of programs in

memory, to execute it later by means of the Interpreter design pattern [3]. For this purpose, the

Interface hierarchy should first be defined with interfaces, following the Bridge design pattern

(Figure 8). In that case, each class of the Interface hierarchy should implement its corresponding

interface.

3. Type safety and runtime performance. Although there are different possible implementations of

the Parallel Hierarchies design pattern (see Section 2.2), the one that uses parametric polymor-

phism (generics) detects type errors (those regarding to the usage of the interface attribute) at

compile time. However, if reflection is used instead, type errors will be detected at runtime.

Moreover, runtime performance is commonly increased because no dynamic type checking needs

to be done [9].

4. Supporting new kinds of templates is difficult. The addition of a new class to the Template hie-

rarchy in order to include new particular behavior is not a trivial task. That is because each ele-

ment in the Template hierarchy should have a corresponding element on the parallel Interface one.

Therefore, a new Interface class has to be created, overriding all the appropriate methods to help

the new Template class achieve its purpose. In our example, if we want to translate the source

language to a new target language, two new Visitor and CodeGeneration classes should be

added. At the same time, specific operations of the Visitor class and concrete operations of

Fig. 8. Decoupling the Interface abstraction from its implementation.

TemplateMethod()
PrimitiveOperation1()
PrimitiveOperation2()

AbstractTemplate

T extends GeneralInterface

PrimitiveOperation2()

ConcreteTemplateB

T extends InterfaceB

PrimitiveOperation1()
PrimitiveOperation2()

ConcreteTemplateA

T extends InterfaceA

TemplateMethod()
PrimitiveOperation1()

AbstractTemplateB

interface

Client

…

interface.ConcreteOperationB2()

…

…

PrimitiveOperation1()

interface.GeneralOperationB()

PrimitiveOperation2()

…

…

Interface.GeneralOperationB()

Interface.ConcreteOperationB1()

…

…

PrimitiveOperation1()

interface.GeneralOperation()

PrimitiveOperation2()

…

GeneralOperation()

GeneralInterfaceImpl

ConcreteOperationB2()

ConcreteInterfaceBImpl

GeneralOperationB()
ConcreteOperationB1()

GeneralInterfaceBImpl

GeneralOperation()

«interface»
GeneralInteface

ConcreteOperationA()

ConcreteInterfaceAImpl

ConcreteOperationA()

«interface»
IntefaceA

GeneralOperationB()
ConcreteOperationB1()

«interface»
GeneralIntefaceB

ConcreteOperationB2()

«interface»
IntefaceB

T extends GeneralInterfaceB

FRANCISCO ORTIN AND MIGUEL GARCIA

10

CodeGeneration should also be implemented.

5. Coupling between Template and Interface hierarchies. Although one benefit of this design pat-

tern is that the Template classes can use the whole interface of the corresponding Interface ones,

the use of this particular interface produces a coupling between the Template classes and the im-

plementation of the Interface ones. This limitation can be lessened by applying the Bridge design

pattern as stated in the second consequence of the Parallel Hierarchies design pattern, using the

structure shown in Figure 8.

2.4. Implementation

Some implementation issues of the Parallel Hierarchies pattern are worth noting:

1. Use of access control. The primitive operations defined in the Template hierarchy should be de-

clared as protected. This ensures that they are only called by the general template methods. At the

same time, the Template classes would reduce their interface, making it easier to use for the pro-

grammer. If no default implementation can be provided for primitive operations, they should be

declared as abstract.

When the parallel Interface hierarchy has been factor out from the Template one, and we do not

want to it be used by another component, it could be useful to make it private except for the Tem-

plate classes. This feature is not directly supported by most programming languages. In Java 6,

for example, both hierarchies must be placed in the same package, and the Interface classes

should not be declared as public. With the superpackages feature to be included in Java 7 [12],

the two hierarchies could be implemented in different packages. In C++, friend classes can be

used for this purpose; C# provides assembly-level information hiding.

2. Naming conventions. Since this design pattern uses two (or more) parallel hierarchies, many dif-

ferent classes will be required and they will be connected with other corresponding classes in the

same hierarchy level. Therefore, following a naming convention makes the code easier to read

and more understandable. In our example (see Section 3), being L a particular target language, we

define a LCodeGeneration class for each corresponding VisitorLCG class in the Interface

hierarchy.

3. Favor the use of generics. Parametric polymorphism is a statically typed programming language

feature that promotes type safety and efficiency. Dynamic casts can also be used to check whether

the type of the associated Interface object has the appropriate type or not. Source code in Figure 9

is an equivalent implementation of the code shown in Figure 5 that uses dynamic type coercion.

A TYPE SAFE DESIGN TO ALLOW THE SEPARATION OF DIFFERENT RESPONSIBILITIES INTO PARALLEL HIERARCHIES

11

public class VisitorJVMCG extends VisitorLowLevelCG {

private JVMCodeGeneration getCodeGenerator() {

 if (!(this.codeGenerator instanceof JVMCodeGeneration))

 throw new IllegalStateException(

 "The attribute codeGenerator does not have the appropriate type.");

 return (JVMCodeGeneration)this.codeGenerator;

 }

 @Override

 public void visitAssignment(AssignmentNode node) {

 node.getSecondOperand().accept(this);

 this.getCodeGenerator().generateStore(node.getFirstOperand().getIndex(),

 node.getFirstOperand().getType());

 } //…

}

Fig. 9. Sample implementation using dynamic type coercion.

The problem of this approach is twofold. The first one is that both the instanceof operation

and the type cast are evaluated at runtime. Therefore, if some error occurs, it will occur at runtime,

reducing the robustness of this approach. The second drawback is the runtime performance pe-

nalty that is caused by runtime type inspection [9].

4. Minimize the General Interface of the Interface hierarchy. Since a class should only define oper-

ations that are meaningful to its subclasses [8], only those messages that are meaningful for every

class of the Interface hierarchy should be placed in the GeneralInterface class. Recall that

the Parallel Hierarchies design pattern recovers the specific interface of each Interface class.

This feature allows reducing the interface of these classes to the exact set of messages that are

meaningful to them.

5. Use the Bridge pattern to decouple hierarchies. As mentioned in Section 2.1, the Template hie-

rarchy is coupled with the implementation of the Interface one. It could be necessary to add new

implementations of Interface classes, or to support different implementations for each Template

object at the same time –e.g., following the State design pattern [3]. If either of these scenarios

occurs, the Bridge design pattern [3] should be used in the Interface hierarchy, resulting in the

pattern structure shown in Figure 8.

2.5. Applicability

Use the Parallel Hierarchies in either of the following cases:

- The Template Method design pattern is suitable, but it is difficult to generalize a common inter-

face for all the classes in the hierarchy. Although there are methods common to every class, oth-

ers are only applicable to particular ones.

- More than one responsibility can be identified in a hierarchy and these new responsibilities can be

factored out and integrated in another parallel hierarchy. In fact, this is the Tease Apart Inherit-

ance “big” refactoring identified by Fowler and Beck [7].

- A problem can be solved with a combination of general algorithms plus specific operations of

different particular types.

FRANCISCO ORTIN AND MIGUEL GARCIA

12

3. SAMPLE CODE

We will follow the motivating example of implementing a retargetable compiler for a high-level

object-oriented programming language. A fragment of the AST is shown in Figure 1. The traversal of

this AST is done with the Visitor design pattern [3]. The specific visitors for code generation play the

Template role of the Parallel Hierarchies design pattern. Since we are interested in generating code

for different programming languages, the Java VisitorCG class shown in Figure 10 represents the

AbstractTemplate class of the Parallel Hierarchies structure.

public abstract class VisitorCG<T extends CodeGeneration> extends Visitor {

protected T codeGenerator;

 public VisitorCG(T codeGenerator) {

 this.codeGenerator=codeGenerator;

 }

 @Override

 public void visitClassNode(ClassNode node) {

 this.codeGenerator.generateClassHeader(node);

 for(FieldNode field : node.getFields())

 this.codeGenerator.generateField(field);

 for(MethodNode method : node.getMethods()) {

 this.codeGenerator.generateMethodHeader(method);

 method.accept(this);

 this.codeGenerator.generateMethodFooter(method);

 }

 this.codeGenerator.generateClassFooter(node);

 }

 //…

}

Fig. 10. VisitorCG sample code.

Figure 10 only shows one visit method of the Visitor design pattern. The implementation of

this method defines the general classNode code-generation template for every programming lan-

guage. If this template is not appropriate for a specific target language, its corresponding Visitor sub-

class will override it.

The visit method makes use of two different kinds of operations: methods of the Interface

(CodeGeneration) hierarchy, and messages of its own hierarchy (accept messages). The accept

method is a double-dispatch implementation that actually represents indirect calls to visit methods. All

these visit methods play the role of TemplateMethod in the Parallel Hierarchies design pattern.

Figure 10 shows the template that generates the code of a classNode relying on the templates that

generate its methods and fields.

The other operations that the visit methods use are the messages offered by its corresponding

parallel class. The codeGenerator field reference provides these services. For the VisitorCG class,

only the methods in the CodeGeneration class can be used. This means that the general template for

all the target languages can only use the operations of code generation defined for every target lan-

guage. Source code in Figure 11 shows the CodeGeneration class. Its abstract methods identify the

operations applicable to every target programming language, but they are not concrete enough to pro-

vide a default implementation.

A TYPE SAFE DESIGN TO ALLOW THE SEPARATION OF DIFFERENT RESPONSIBILITIES INTO PARALLEL HIERARCHIES

13

public abstract class CodeGeneration {

protected FileWriter file;

 public CodeGeneration(String filename) {

 file = new FileWriter(filename);

 }

 public abstract void generateClassHeader(ClassNode klass);

 public abstract void generateClassFooter(ClassNode klass);

 public abstract void generateField(FieldNode field);

 public abstract void generateMethodHeader(MethodNode method);

 public abstract void generateMethodFooter(MethodNode method);

 //…

}

Fig. 11. CodeGeneration sample code.

Since both JVM and MSIL are abstract stack machines languages, we can factor out common

code generation operations for both languages in a new LowLevelCodeGeneration class (Figure

12).

public abstract class LowLevelCodeGeneration extends CodeGeneration {

 public LowLevelCodeGeneration(String filename) {

 super(filename);

 }

 public abstract void generateStackOperation(String operator, TypeNode type);

 //…

}

Fig. 12. LowLevelCodeGeneration sample code.

The specific generateStackOperation method offered by LowLeveCodeGeneration can

be used by the VisitorLowLevelCG class. Therefore, it is possible to write the visitBinaryEx-

pression shown in Figure 13: for every stack-based abstract machine, most binary expressions can

be generated writing the code for the first and second operands, followed by the operation (postfix no-

tation). It is worth noting that, thanks to Java generics, it is type safe to pass the specific generateS-

tackOperation message to the inherited codeGeneration field, although it has been declared to

be of type “T extends CodeGeneration” in the VisitorCG class. This shows how the Parallel

Hierarchies design pattern recovers the original interface of the actual object used in the Template

hierarchy.

public abstract class VisitorLowLevelCG<T extends LowLevelCodeGeneration>

 extends VisitorCG<T> {

 public VisitorLowLevelCG(T codeGeneration) {

 super(codeGeneration);

 }

 public void visitBinaryExpression(BinaryExpressionNode node) {

 // * Postfix notation

 node.getFirstOperand().accept(this);

 node.getSecondOperand().accept(this);

 this.codeGenerator.generateStackOperation(node.getOperator(), node.getType());

 }

}

Fig. 13. VisitorLowLevelCG sample code.

The responsibility of the JVMCodeGeneration class is to generate JVM code following the

Jasmin assembly syntax [13]. This class not only overrides methods of the general CodeGeneration

class (generateClassHeader and generateClassFooter) and the LowLevelCodeGeneration

FRANCISCO ORTIN AND MIGUEL GARCIA

14

class (generateStackOperation), but it also defines its particular interface (generateStore) that

produces the store JVM instruction). Part of its implementation is shown in Figure 14.

public class JVMCodeGeneration extends LowLevelCodeGeneration {

 // * Methods of the CodeGeneration class

 @Override

 public void generateClassHeader(ClassNode klass) {

 this.file.write(".class " +" "+ klass.getHidingLevel()+ " "+ klass.getName()+"\n");

 }

 @Override

 public void generateClassFooter(ClassNode klass) {

 this.file.write("; end of the " + klass.getName() + " class\n");

 }

 // …

 // * Methods of the LowLeveCodeGeneration class

 @Override

 public void generateStackOperation(String operator, TypeNode type) {

 if (!operatorsToJVM.containsKey(operator))

 throw new IllegalArgumentException("Operator '"+operator+"' not defined in JVM.");

 StringBuilder sb = new StringBuilder();

 sb.append(type.getJVMTranslation());

 sb.append(operatorsToJVM.get(operator));

 this.file.write(sb.toString()+"\n");

 }

 // …

 // * Specific methods of the JVMCodeGeneration class

 public void generateStore(int index, TypeNode type) {

 this.file.write(type.getJVMTranslation()+"store "+index+"\n");

 }

 // …

}

Fig. 14. JVMCodeGeneration sample code.

Finally, it is possible to write the VisitorJVMCG class that traverses only the specific nodes for

which the default traversal is not appropriate (visitAssignment in Figure 15). The assembly syntax

of assignments in JVM is defined as the code that pushes the right-hand expression of the assignment,

followed by a store instruction whose operand is the index of the variable on left-hand side of the

assignment. In the implementation of these specific visit methods, any method of the particular in-

terface of the parallel JVMCodeGeneration class can be used (generateStore is an example of

this kind of methods).

public class VisitorJVMCG<T extends JVMCodeGeneration>

 extends VisitorLowLevelCG<T> {

 public VisitorJVMCG(T codeGeneration) {

 super(codeGeneration);

 }

@Override

 public void visitAssignment(AssignmentNode node) {

 node.getSecondOperand().accept(this);

 this.codeGenerator.generateStore(node.getFirstOperand().getIndex(),

 node.getFirstOperand().getType());

 }

 // …

}

Fig. 15. VisitorJVMCG sample code.

4. RELATED WORK

The necessity of recovering the specific interfaces of two parallel hierarchies was detected in the

expression problem, first named by Philip Wadler in 1998 [16]. The issue was to obtain a modular ex-

A TYPE SAFE DESIGN TO ALLOW THE SEPARATION OF DIFFERENT RESPONSIBILITIES INTO PARALLEL HIERARCHIES

15

tensibility of data structures. This problem was then revisited by Mads Torgersen that used the Java

F-bound polymorphism to recover the type of inherited associations [17]. The solution was applied to

the Composite and Visitor design patterns [3] instead of going into this topic and identify it as a design

pattern.

In [18], the recovery of inherited associations is tackled using the Scala programming language.

They emphasize the significance of solving this problem in a type safe way (without runtime type er-

rors), becoming really interesting when it is exposed to a type system that ensures the safe execution

of the code. For this purpose, a solution using parameterized classes (generics) is provided. They also

identify the possibility of using Scala's virtual types: a mechanism similar to parameterized classes but,

instead of giving the types as parameters, a class contains a type variable [18].

Erik Ernst introduced the notion of higher-order hierarchies to represent hierarchies of hierarchies

[19]. The idea is to define a hierarchy that could be later extended and reused in a type safe way. Al-

though the idea seems to be suitable to model parallel hierarchies, higher-order hierarchies do not al-

low the specialization of inherited associations in parallel hierarchies.

The structure of this design pattern has been previously recognized as a Big Refactoring by Fow-

ler and Beck [7]. It is applied to solve the problem of tangled inheritance [7]. However, they do not

describe how both hierarchies can collaborate to obtain a common objective, using the specific inter-

faces in each hierarchy level; only the generalized polymorphic behavior is described.

Parallel Hierarchies has some relation with several design patterns in the classic catalog [3]. Pa-

rallel Hierarchies classes commonly appear from refactoring behavioral design patterns that use a

hierarchy for their purpose, like Template, Visitor or Interpreter. In the Memento pattern, originators

and mementoes often form parallel hierarchies. If recursive polymorphic methods are added to the

Composite design pattern, their implementation can rely on a parallel hierarchy. Finally, the Abstract

Factory design pattern creates families of related objects, to use them later separately. The Parallel

Hierarchies design pattern could be applied when the specific interfaces of these objects need to be

used together for a particular purpose.

4. CONCLUSIONS

The association of two (or more) parallel hierarchies to solve a specific problem using delegation

is a common design scenario. The problem is that the association in the root classes in the hierarchy

provides too general interfaces useless for the classes below in the hierarchy. The Parallel Hierarchies

design pattern described in this paper provides a type safe solution that could be used whenever the

programming language provides either F-bound polymorphism or (unbounded) parametric polymor-

phism such as Java, C# or C++. The design pattern has been described using the classical sections of

structure, collaborations, consequences, Implementation, applicability and sample code [3].

We have successfully used the Parallel Hierarchies design pattern in the C# implementation of

the StaDyn programming language [14], to compile the StaDyn high-level programming language to

FRANCISCO ORTIN AND MIGUEL GARCIA

16

MSIL for the CLR, ЯRotor [9] and the DLR [15] platforms, as well as produce high-level C# 4.0

source code.

5. ACKNOWLEDGEMENTS

This work has been funded by the Department of Science and Technology (Spain) under the Na-

tional Program for Research, Development and Innovation: Project TIN2008-00276, entitled Improv-

ing Performance and Robustness of Dynamic Languages to develop Efficient, Scalable and Reliable

Software.

REFERENCES

1. D.R. Hanson, and C.W. Fraser, A Retargetable C Compiler: Design and Implementation, Addison-Wesley

Professional, 1995.

2. A.W. Appel, Modern Compiler Implementation in Java, 2
nd

 Edition, Cambridge University Press, 2002.

3. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented

Software, Addison Wesley, 1994.

4. D. Watt, D. Brown, Programming Language Processors in Java: Compilers and Interpreters, Prentice Hall,

2000.

5. T. Lindholm, and F. Yellin, Java Virtual Machine Specification, 2
nd

 Edition, Prentice Hall, 1999.

6. ECMA 335, European Computer Manufacturers Association (ECMA), Common Language Infrastructure

(CLI), Partition IV: CIL Instruction Set, 4
th

 Edition, 2006.

7. M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: Improving the Design of Existing

Code, Addison-Wesley Professional, 1999.

8. B. Liskov, “Data Abstraction and Hierarchy,” in Conference on Object Oriented Programming Systems

Languages and Applications (OOPSLA), Orlando, Florida, United States, 1987, pp. 17-34.

9. F. Ortin, J.M Redondo, and J.B.G. Perez-Schofield, “Efficient virtual machine support of runtime structural

reflection,” Science of Computer Programming, Vol. 74(10), 2009, pp. 836-860.

10. P. Canning, W. Cook, W. Hill, O. Walter, and J.C. Mitchell, “F-bounded polymorphism for object-oriented

programming,” in Proceedings of the fourth International Conference on Functional Programming Languag-

es and Computer Architecture, London, United Kingdom, 1989, pp. 273-280.

11. M. Odersky, and P. Wadler, “Pizza into Java: Translating theory into practice,” in Proceedings of the 24th

ACM Symposium on Principles of Programming Languages (POPL), Paris, France, 1997, pp. 146-159.

12. JSR 294 Sun Microsystems, JSR 294: Improved Modularity Support in the Java Programming Language,

2007, http://jcp.org/en/jsr/detail?id=294

13. J. Meyer, Jasmin Instructions, 1996, http://jasmin.sourceforge.net/instructions.html

14. F. Ortin, D. Zapico, J.B.G. Perez-Schofield, Miguel Garcia. Including both Static and Dynamic Typing in the

same Programming Language. IET Software, Volume 4, Issue 4, pp. 268-282. August 2010.

15. J. Hugunin, “Bringing dynamic languages to .NET with the DLR,” in Proceedings of the Symposium on

Dynamic Languages, Montreal, Quebec, Canada, 2007, pp. 101-101.

16. P. Wadler, “The expression problem”, Posted on the Java Genericity mailing list, 1998.

A TYPE SAFE DESIGN TO ALLOW THE SEPARATION OF DIFFERENT RESPONSIBILITIES INTO PARALLEL HIERARCHIES

17

17. M. Torgersen. The Expression Problem Revisited. European Conference on Object-Oriented Programming

(ECOOP), pp. 123-143, 2004.

18. E.T. Nielsen, K.A. Larsen, S. Markert, K.E. Kjaer. The Expression Problem in Scala. Technical Report, Aar-

hus University, May 31, 2005.

19. E. Ernst. Higher-Order Hierarchies. European Conference on Object-Oriented Programming (ECOOP), pp.

303-329, Darmstadt, Germany, July 2003.

