
Towards a Static Type Checker for Python

Francisco Ortin
University of Oviedo

ortin@uniovi.es

J. Baltasar G. Perez-Schofield
University of Vigo
jbgarcia@uvigo.es

Jose M. Redondo
University of Oviedo
redondojose@uniovi.es

Abstract
We present the preliminary stage of stypy, a static type checker
for Python. stypy translates each Python program into Python code
that type-checks the original program. The generated code replaces
each variable with a type variable, evaluating expression types
instead of their values. The generated type checker detects type
errors in different tricky Python idioms, and ensures termination.

1. Introduction
There have been different efforts to bring static type-checking
to object-oriented dynamic languages such as Python, Ruby or
JavaScript [5]. These languages provide no type annotations, and
type checking is postponed until runtime. However, a compiler
may infer type information, and use it to detect some type errors
statically and to improve the runtime performance of the target
code [4].

Constraint-based type inference is an approach to statically infer
types of dynamically typed code. DRuby [3] and StaDyn [7] are
two example languages that represent types as constraints, checked
by a constraint resolution algorithm. Rubydust also follows this
approach, and introduces the idea of generating constraints with
dynamic program executions [5]. Runtime variables are wrapped
to associate them to type variables, and the wrapper generates
constraints when the wrapped value is used. At the end of the
execution, constraints are solved to type-check the program. This
constraint-based dynamic type inference approach is also followed
by Flow [1], which additionally provides gradual typing [11] for
JavaScript.

Refinement types have also been used to type-check dynamic
languages. For example, Dependent JavaScript (DJS) is a statically
typed dialect of JavaScript that provides a dependent type system,
expressive enough to reason about a variety of tricky JavaScript
idioms [2]. DJS requires the programmer to annotate types, but
some type annotations might be inferred by analyzing the source
program.

Our proposal is based on type-checking Python programs with
Python itself. Static type checking is obtained with the dynamic
execution of a convergent Python type checker generated for the
source program. Instead of generating constraints or predicates in
a refinement logic, types are represented in a subset of Python that
avoids non-termination. The generated type checkers take advan-
tage of the rich meta-programming features of the Python program-
ming language: introspection is used to inspect the structures of ob-
jects, classes and modules, and the inheritance graph; the AST of
the original program is easily obtained, transformed, compiled into
the target type checker, and executed; recursion can be detected
dynamically with the use of decorators; and the types of variables,
functions, classes and modules can evolve throughout the execution
of the type checker.

class Counter:
count = 0
def inc(self, value):

self.count += value
return self.count

obj = Counter()
sum = obj.inc(1) + obj.inc(0.2)

Figure 1. An example Python program.

class Counter:
count = int
def inc(self, *args)

if len(args) != 1:
return TypeError("Wrong number of args")

self.count = op(’+’, get_member(self, "count"), args[0])
return get_member(self, "count")

ts.set("Counter", Counter)
ts.set("obj", ts.get("Counter")())
ts.set("sum", op(’+’, get_member(ts.get("obj"),"inc")(int),

get_member(ts.get("obj"),"inc")(float))

Figure 2. A simplification of the type checker generated for the
program in Figure 1.

2. Type checker generation
Figures 1 and 2 show a simple example program and (a simplifi-
cation of) the corresponding type checker generated, respectively.
Each variable in the original program in Figure 1 (Counter, count,
inc, obj and sum) represents a type variable in the generated type
checker (Figure 2). Python facilitates this association, since most
of the language entities (modules, classes, functions, types. . . ) are
first-class objects.

The code in Figure 2 evaluates types of expressions instead of
their values. Python code is used to infer types instead of repre-
senting them as constraints or predicates [6]. When the inferred
type of an expression is TypeError, it means that it is not well
typed. After executing the type checker, the collection of instanti-
ated TypeErrors is consulted to see if the program is well typed.

Types are saved in a type store (ts), instead of using the Python
globals and locals functions. Thereby, when the original pro-
gram uses an undefined variable, the get method of ts returns
a TypeError. Similarly, the get member function makes use of
Python meta-programing to check if an object, class or module pro-
vide a member, inspecting the inheritance tree. The generated type
checker must never produce a runtime error, since it is aimed at
type-checking the source program.

The inc method in Figure 2 checks the original inc method in
Figure 1. If the number of parameters is not the expected one, a
TypeError is returned. Otherwise, the type of an addition1 is com-

1 The op function is part of the type system that the generated type check-
ers use (Section 5). That function returns the type of any binary Python
operator, passing the types of the operands as parameters.



puted and assigned to the count field of the particular Counter
object pointed by self. In our example, the second invocation to
inc changes the type of obj.count from int to float (in other
languages, this side effect is represented with a special kind of con-
straint [7]).

Our type system considers a different type for each single ob-
ject (e.g., obj). The type of an object is represented with another
object holding the types of its members. This consideration is es-
pecially useful for type-checking structural intercession operations,
since the structure of Python objects, classes and modules can be
modified at runtime [10].

3. Flow Sensitiveness
In dynamic languages, programmers often give variables flow-
sensitive types. In the left-hand side of Figure 3, the dynamic type
of obj.count depends on the dynamic value of condition. We
represent this flow-sensitiveness with union types [9].

The generated code (right-hand side of Figure 3) runs the con-
ditional execution paths sequentially. Before each branch, the type
store is cloned. The else body is executed with the initial type
store, before the if body. After the if-else statement, the mod-
ified types in each execution path are “joined” with union types,
following the algorithm described in [8]. After type-checking the
code in Figure 3, the type of obj.count is int ∨ float.

obj = Counter() ts.set("obj", ts.get("Counter")())
if condition: _ts_1 = ts.clone()

obj.inc(1) get_member(ts.get("obj"), "inc")(int)
else: _ts_2 = ts.clone(); ts.set(_ts_1)

obj.inc(0.5) get_member(ts.get("obj"), "inc")(float)
ts = join(_ts_1, _ts_2, ts)

Figure 3. Original Python program (left), and the generated type
checker (right) that infers a flow-sensitive type for obj.count.

4. Termination
Since type checking is performed via dynamic program execution,
termination of the generated type checkers must be ensured. The
following criteria were applied to avoid divergent type checkers:

– Python loops are analyzed the same way as conditionals, exe-
cuting the code sequentially and representing flow-sensitiveness
with union types.

– All the generated functions are annotated with the norecur-
sion decorator we developed. This decorator dynamically de-
tects and avoids recursive calls when types are being inferred.

– Native functions (e.g., str, len and range) are replaced with
convergent Python functions that infer the return type depend-
ing on the parameter types passed.

– All the algorithms used in the type system (provided as an API
to the generated type checkers) are designed to be convergent.

5. Project status
As shown in Figure 4, stypy consists of a compiler and an API.
The compiler takes the original program and generates a specific
type checker for that program. Then, the compiler executes the
type checker, which uses the type system implemented as a Python
API. The list of type errors, if any, is collected by the compiler and
shown to the programmer.

We implemented the type system (API) and tested it with most
Python features. We support tricky idioms such as conditional code
depending on the type of arguments [2], special method names
(e.g., add , repr and float ), adaptation of class and

Source

Program

Type

Checker2) Type checker 

generation

Type System

(API)

3) Type checker execution4) Type errors

Programmer

Compiler

1) Program 

compilation

Figure 4. Architecture of stypy.

object structures, and flow-sensitive definition of functions and
classes. The types of native built-in functions are included in the
type system (API), expressing their types with Python code.

We do not support dynamic code evaluation with the exec and
eval functions. For structural intercession, we type-check pro-
grams that add/remove class and object members using identifiers,
but not with dynamically evaluated strings (i.e., we do not support
direct access to dict ). Currently, our type system detects dif-
ferent type errors that existing tools (such as Pylint, PyChecker,
PyCharm, Pyntch, PyStarch and pyflakes) do not detect.

We are currently developing the compiler. We plan to validate
its implementation with mutations of real programs, comparing its
accuracy with the existing alternatives.

Acknowledgments
This work is funded by the European Union, through the Euro-
pean Regional Development Funds (ERDF); and by the Principality
of Asturias, through its Science, Technology and Innovation Plan
(grant GRUPIN14-100).

References
[1] A. Chaudhuri. Flow, a static type checker for JavaScript.

http://flowtype.org, 2015.
[2] R. Chugh, D. Herman, and R. Jhala. Dependent types for JavaScript.

In Object Oriented Programming Systems Languages and Applica-
tions, OOPSLA’12, pages 587–606, New York, NY, USA, 2012.

[3] M. Furr, A. D. Jong-Hoon, J. S. Foster, and M. Hicks. Static type
inference for Ruby. In ACM symposium on Applied Computing (SAC),
pages 1859–1866, Honolulu, Hawaii, March 2009. ACM.

[4] M. Garcia, F. Ortin, and J. Quiroga. Design and implementation of
an efficient hybrid dynamic and static typing language. Software:
Practice and Experience, to be published, 2015.

[5] D. A. Jong-Hoon, A. Chaudhuri, J. S. Foster, and M. Hicks. Dynamic
Inference of Static Types for Ruby. In Symposium on Principles of
Programming Languages (POPL), pages 459–472, 2011.

[6] G. Kuan, D. MacQueen, and R. B. Findler. A rewriting semantics for
type inference. In Proceedings of the 16th European conference on
Programming, ESOP’07, pages 426–440. Springer-Verlag, 2007.

[7] F. Ortin. Type inference to optimize a hybrid statically and dynami-
cally typed language. Computer Journal, 54(11):1901–1924, 2011.

[8] F. Ortin and M. Garcia. Supporting dynamic and static typing by
means of union and intersection types. In Progress in Informatics and
Computing (PIC), pages 993–999, Shanghai (China), Dec. 2010.

[9] F. Ortin and M. Garcia. Union and intersection types to support both
dynamic and static typing. Information Processing Letters, 111(6):
278–286, 2011.

[10] F. Ortin, M. A. Labrador, and J. M. Redondo. A hybrid class- and
prototype-based object model to support language-neutral structural
intercession. Information and Software Technology, 44(1):199–219,
Feb. 2014.

[11] J. G. Siek and W. Taha. Gradual typing for objects. In European
Conference on Object-Oriented Programming (ECOOP), pages 2–27,
Berlin, Germany, 2007. Springer-Verlag.


