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Abstract 

Return-oriented programming (ROP) is a security exploit technique that allows an 

attacker to execute code in the presence of security defenses. By modifying the 

contents of the runtime stack, the program control flow can be changed to execute 

specific machine sequences called gadgets. This new way of thinking about pro-

gram flow may be useful for improving the runtime performance of specific lan-

guage features such as structural reflection, dynamic code evaluation, and function 

composition. This article presents an initial evaluation of ROP as a JIT-compila-

tion technique. We compare runtime performance, memory consumption and 

compilation time of four different back-ends, including ROP, of a simple stack-

based virtual machine.  
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1    Introduction 

Return Oriented Programming (ROP) is a security exploit technique that allows 

the attacker to execute code in presence of Data Execution Prevention (DEP) [1]. 

Essentially, ROP is based on the idea that all the code a program needs to run 

could be found inside any other process. The organizational code unit in ROP is a 

gadget, a sequence of instructions ending in a ret instruction. With the control of 

the runtime stack, addresses of gadgets can be pushed and the execution path will 

flow through the gadgets code [2]. A successful attack can be composed based on 

code that already lives inside the attacked process. 



Although ROP has mostly been used for software attacks, it represents a new 

way of thinking about program flow. Any program can be codified with a mini-

mum fixed-length set of gadgets [10]. Then, programs are executed as a sequence 

of invocations to these gadgets. These invocations are performed by pushing the 

correct memory addresses of the gadgets to be called. Therefore, programs are 

codified as data, and pushed onto the stack. 

The idea of identifying programs as modifiable data is widely used in dynamic 

languages such as Python, Ruby and JavaScript [6]. Meta-programming services 

such as structural reflection and dynamic code generation make use of this idea, 

providing a high level of runtime adaptability. Therefore, the implementation of a 

ROP-based JIT-compiler for these language features may involve better runtime 

performance and simplicity, since the high- and low-level languages follow the 

same pattern: program representation as modifiable data. 

The main contribution of this paper is an initial evaluation of the pros and cons 

of ROP-based JIT compilation. For that purpose, we implement a simple stack-

based language with 4 different back-ends including a ROP JIT compiler. Runtime 

performance, memory consumption and compilation time are evaluated. 

2    Return-oriented programming 

ROP is based on the fact that the computer stack has not actually to store the real 

return addresses and arguments to chain function calls in an imperative language 

model. It can store any address in the process space. The addresses of common 

computation elements (gadgets) can be stored in the stack. Since each gadget ends 

with a ret instruction, the values in the stack control the execution flow of the 

program. 

The idea of ROP may be applied for program translation. A Turing-complete 

set of gadgets can be elected to run any program as a concatenation of gadgets. 

The set of gadgets would behave effectively like an interpreter or virtual machine, 

as can be seen in Figure 1. Execution flow jumps between the different gadgets 

due to two facts: gadgets end in a ret instruction, and programs are represented 

as addresses in the stack. Gadgets are executed following the program flow, ob-

taining the expected program behavior. 
 

 
Figure 1: Program representation using gadgets.  

There is a similar approach to ROP denominated Jump-Oriented Programming 

(JOP). This variant is a replacement in architectures which lack a stack, and 
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demonstrates that ROP is neither tied to a stack nor a ret instruction. Jump-Ori-

ented Programming (JOP) is based on gadgets ending in a jump instruction, whose 

address is also read from a linear structure [9]. This way, the common stack, if 

any, is free to be used in any other way required except to write down function 

calls to control program flow.  

One thing to notice is the high locality of the executed code. Program descrip-

tion lies sequentially in a stack in the form of gadget addresses, but the real code 

executed by the computer is a handful set of gadgets. Those gadgets can probably 

be stored in few pages of memory, thus improving code locality. 

3    Evaluation 

3.1 Methodology 

We implemented a simple language of a stack-based virtual machine taken from a 

compiler construction course [8]. It contains the following instructions: 

 Basic arithmetic operations performed by popping the operands off the 

stack, computing the operation, and pushing result back onto the stack. 

 Push constant values and variable addresses. 

 Load a variable value: the variable address is popped off the top of the 

stack, and its value is pushed. 

 Store: given a variable address and a value on the top of the stack, both 

are popped and the value is assigned to the variable. 

 Output: pops the value off the stack and shows it in console. 
 

 
Figure 2: Source code translations for different back-ends. 

The implementation consists in a basic interpreter with four back-ends: as an 

optimized interpreter, with typical JIT-compilation [4], and ROP and JOP JIT-

compilation. The three JIT-compiler approaches provide no optimization.  

The implementation of the ROP/JOP back-end comprises a set of gadgets that 

faithfully resembles the JIT implementation, as Figure 2 shows. In particular, the 

output routine and its invocation stay exactly the same among the back-ends. 

We measure execution time, memory consumption and compilation time of 

some synthetic source programs containing different number of output instructions 

(0%, 10%, 16%, 20%, 25%, 33% and 50%). As we saw in Section 3, the output 
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instruction has a strong influence on the evaluation. The executed programs have 

increasing code sizes. The binary sizes of the JIT-compiled programs vary in pow-

ers of two from 4KB to 1024KB.  

3.2 Execution time 

Figure 3 shows the execution times of the 4 different back-ends. We evaluate the 

influence of program size and output instructions on the runtime performance. The 

first chart in Figure 3 presents the little influence of the program size, when no 

output instructions are used. We can see how the classical JIT compilation tech-

nique provides the best performance results for every program size. The execution 

time of the JIT approach is between 6.9% and 8.5% the execution time of the in-

terpreter version. The JOP JIT-compiler provides the second better performance, 

requiring on average 44% more execution time than the classical JIT-compiler ap-

proach. 
 

 
Figure 3: Execution time relative to ROP.  

The ROP back-end is significantly worse than the JIT and JOP approaches, but 

it is still 12.9% faster than the optimized interpreter. If we compare the two new 

ROP and JOP back-ends, we can see how JOP is surprisingly 787% faster. This 

difference is due to the different semantics of ret and jmp instructions. Return 

instructions are designed as companions of call instructions, performing a quite 

complex operation in x86 architectures compared to jump. On the other hand, 

modern architectures have quite effective branch prediction hardware to minimize 

the effect of jmp instructions in the pipeline of the processor. 

The second chart in Figure 3 shows the important influence of output instruc-

tions. For programs with at least 10% output instructions, execution times of the 4 
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approaches are not statistically significant. The time consumed by output instruc-

tions diminishes the differences among the approaches, as the out instruction re-

quire much more execution time that the rest of instructions. 

3.3 Memory consumption 

We also measured the memory consumed at runtime in the execution of each pro-

gram. The size of the program had no influence on the relative values, but the kind 

of compiled instructions did. Figure 4 shows the average memory consumption 

relative to the interpreter approach. As expected, the 3 JIT-compiler approaches 

consume more memory than the interpreter [3]. JIT-compilers provide better 

runtime performance, but also require additional memory resources.  

The ROP and JOP approaches always consume the same memory resources: 

twice the memory used by the interpreter version. However, the memory con-

sumption of the classical JIT-compiler depends on the program compiled. In fact, 

if the number of output instructions is 50%, it consumes 46% more memory re-

sources than the ROP and JOP approaches (almost 3 times the memory of the 

interpreter). 
 

 
Figure 4: Memory consumption relative to the interpreter.  

This difference between the two JIT-compilation techniques is caused by the 

way both approaches generate code. ROP and JOP include a fixed collection of 

gadgets in the generated code, and most instructions simply push a 4-byte value 

onto the stack (Table 1). These values are memory addresses of the corresponding 

gadget. However, the traditional JIT-compilation is based on the generation of a 

collection of binary instructions per source instruction. That is, instead of calling 

a gadget, they write their body for each instruction. As Table 1 shows, the classical 

JIT approach commonly requires more memory than the ROP/JOP alternative, 

even for our low-level stack-based language. We think this difference would be 

greater when compiling high-level languages. 

3.4 Compilation time 

JIT compilation includes the binary code generation in the application execution. 

Therefore, the compilation time may increase the global performance of short-
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running applications, and it must be measured [5]. Figure 5 shows compilation 

time relative to the ROP JIT-compiler. As expected, there is no significant differ-

ence between the ROP and JOP approaches, since code generation is analogous. 

However, these techniques generate binary code faster than the traditional ap-

proach. Besides, compilation time of the classical JIT compilation grows with the 

percentage of output instructions. The rationale is the same as for memory con-

sumption. Since the JIT-compiler must generate more binary instructions for the 

output instruction (Table 1), the compilation process takes longer. 
 

 

Instruc-

tion 

JIT ROP/ 

JOP 

ADD 5 4 
SUB 5 4 
MUL 5 4 
DIV 7 4 
PUSH 5 8 
PUSHA 7 8 
LOAD 4 4 
STORE 4 4 
OUT 18 4  

 

Table 1: Instruction sizes in 

bytes.  
Figure 5: Compilation time relative to ROP.  

4    Conclusions and future work 

An initial evaluation seems to imply that the ROP-based JOP technique can be 

used as an alternative mechanism for implementing JIT-compilers. JOP provides 

important performance benefits compared to interpretation, and 44% more execu-

tion time than the classical JIT-compiler approach. However, its memory con-

sumption grows linearly with the number of instruction, and it is generally lower 

than current JIT-compilation techniques. Finally, it requires less compilation time 

than the traditional JIT-compilation. 

We think that applying JOP compilation to high-level programming languages 

may increase the identified benefits. In these languages, the difference between 

the sizes of binary code generated for high-level instructions is higher than in a 

simple low-level stack-based machine. This higher difference will imply lower 

memory consumption and faster compilation of the JOP approach. 

We are currently working on the JOP/ROP compilation of a high-level lan-

guage to improve our evaluation. We think that this new compilation mechanism 

will improve the runtime performance of meta-programming features such as 

structural reflection and dynamic code evaluation [6]. These language features are 

based on the identification of code as data that can be modified, which is the idea 

behind ROP. Concatenative programming is also based on the idea of composing 

functions to create programs [7]. A common implementation of concatenative lan-

guages is with a stack machine, so ROP/JOP JIT-compilation may be applicable. 
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We also believe that execution time of JOP programs may be increased when 

compiling high-level languages. Our stack language does not have any instruction 

related with control flow, so its pipeline in the processor is ideal. Even in this 

worst-case scenario, the JOP-based JIT performed well. Thus, we think the effect 

of locality may decrement the impact in performance of breaking the pipeline. 
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