
An initial evaluation of ROP-based

JIT-compilation

P. Bravo1 & F. Ortin2
1Malwarebytes Corp., Anti-Exploit Technologies, EEUU
2University of Oviedo, Computer Science Department, Spain

Abstract

Return-oriented programming (ROP) is a security exploit technique that allows an

attacker to execute code in the presence of security defenses. By modifying the

contents of the runtime stack, the program control flow can be changed to execute

specific machine sequences called gadgets. This new way of thinking about pro-

gram flow may be useful for improving the runtime performance of specific lan-

guage features such as structural reflection, dynamic code evaluation, and function

composition. This article presents an initial evaluation of ROP as a JIT-compila-

tion technique. We compare runtime performance, memory consumption and

compilation time of four different back-ends, including ROP, of a simple stack-

based virtual machine.

Keywords: Return-oriented programming, JIT compilation, runtime performance,

memory consumption, stack-based virtual machine

1 Introduction

Return Oriented Programming (ROP) is a security exploit technique that allows

the attacker to execute code in presence of Data Execution Prevention (DEP) [1].

Essentially, ROP is based on the idea that all the code a program needs to run

could be found inside any other process. The organizational code unit in ROP is a

gadget, a sequence of instructions ending in a ret instruction. With the control of

the runtime stack, addresses of gadgets can be pushed and the execution path will

flow through the gadgets code [2]. A successful attack can be composed based on

code that already lives inside the attacked process.

Although ROP has mostly been used for software attacks, it represents a new

way of thinking about program flow. Any program can be codified with a mini-

mum fixed-length set of gadgets [10]. Then, programs are executed as a sequence

of invocations to these gadgets. These invocations are performed by pushing the

correct memory addresses of the gadgets to be called. Therefore, programs are

codified as data, and pushed onto the stack.

The idea of identifying programs as modifiable data is widely used in dynamic

languages such as Python, Ruby and JavaScript [6]. Meta-programming services

such as structural reflection and dynamic code generation make use of this idea,

providing a high level of runtime adaptability. Therefore, the implementation of a

ROP-based JIT-compiler for these language features may involve better runtime

performance and simplicity, since the high- and low-level languages follow the

same pattern: program representation as modifiable data.

The main contribution of this paper is an initial evaluation of the pros and cons

of ROP-based JIT compilation. For that purpose, we implement a simple stack-

based language with 4 different back-ends including a ROP JIT compiler. Runtime

performance, memory consumption and compilation time are evaluated.

2 Return-oriented programming

ROP is based on the fact that the computer stack has not actually to store the real

return addresses and arguments to chain function calls in an imperative language

model. It can store any address in the process space. The addresses of common

computation elements (gadgets) can be stored in the stack. Since each gadget ends

with a ret instruction, the values in the stack control the execution flow of the

program.

The idea of ROP may be applied for program translation. A Turing-complete

set of gadgets can be elected to run any program as a concatenation of gadgets.

The set of gadgets would behave effectively like an interpreter or virtual machine,

as can be seen in Figure 1. Execution flow jumps between the different gadgets

due to two facts: gadgets end in a ret instruction, and programs are represented

as addresses in the stack. Gadgets are executed following the program flow, ob-

taining the expected program behavior.

Figure 1: Program representation using gadgets.

There is a similar approach to ROP denominated Jump-Oriented Programming

(JOP). This variant is a replacement in architectures which lack a stack, and

1 – Instruction #2

2 – Instruction #1

…

N – Instruction #M

Gadget 1
…
ret

Gadget 2
…
ret

Gadget M
…
ret

DATA CODE
Stack (program description) Static memory (instructions coded as gadgets)

…

demonstrates that ROP is neither tied to a stack nor a ret instruction. Jump-Ori-

ented Programming (JOP) is based on gadgets ending in a jump instruction, whose

address is also read from a linear structure [9]. This way, the common stack, if

any, is free to be used in any other way required except to write down function

calls to control program flow.

One thing to notice is the high locality of the executed code. Program descrip-

tion lies sequentially in a stack in the form of gadget addresses, but the real code

executed by the computer is a handful set of gadgets. Those gadgets can probably

be stored in few pages of memory, thus improving code locality.

3 Evaluation

3.1 Methodology

We implemented a simple language of a stack-based virtual machine taken from a

compiler construction course [8]. It contains the following instructions:

 Basic arithmetic operations performed by popping the operands off the

stack, computing the operation, and pushing result back onto the stack.

 Push constant values and variable addresses.

 Load a variable value: the variable address is popped off the top of the

stack, and its value is pushed.

 Store: given a variable address and a value on the top of the stack, both

are popped and the value is assigned to the variable.

 Output: pops the value off the stack and shows it in console.

Figure 2: Source code translations for different back-ends.

The implementation consists in a basic interpreter with four back-ends: as an

optimized interpreter, with typical JIT-compilation [4], and ROP and JOP JIT-

compilation. The three JIT-compiler approaches provide no optimization.

The implementation of the ROP/JOP back-end comprises a set of gadgets that

faithfully resembles the JIT implementation, as Figure 2 shows. In particular, the

output routine and its invocation stay exactly the same among the back-ends.

We measure execution time, memory consumption and compilation time of

some synthetic source programs containing different number of output instructions

(0%, 10%, 16%, 20%, 25%, 33% and 50%). As we saw in Section 3, the output

JIT binary code generation:
(classical) (ROP) (JOP)

instruction has a strong influence on the evaluation. The executed programs have

increasing code sizes. The binary sizes of the JIT-compiled programs vary in pow-

ers of two from 4KB to 1024KB.

3.2 Execution time

Figure 3 shows the execution times of the 4 different back-ends. We evaluate the

influence of program size and output instructions on the runtime performance. The

first chart in Figure 3 presents the little influence of the program size, when no

output instructions are used. We can see how the classical JIT compilation tech-

nique provides the best performance results for every program size. The execution

time of the JIT approach is between 6.9% and 8.5% the execution time of the in-

terpreter version. The JOP JIT-compiler provides the second better performance,

requiring on average 44% more execution time than the classical JIT-compiler ap-

proach.

Figure 3: Execution time relative to ROP.

The ROP back-end is significantly worse than the JIT and JOP approaches, but

it is still 12.9% faster than the optimized interpreter. If we compare the two new

ROP and JOP back-ends, we can see how JOP is surprisingly 787% faster. This

difference is due to the different semantics of ret and jmp instructions. Return

instructions are designed as companions of call instructions, performing a quite

complex operation in x86 architectures compared to jump. On the other hand,

modern architectures have quite effective branch prediction hardware to minimize

the effect of jmp instructions in the pipeline of the processor.

The second chart in Figure 3 shows the important influence of output instruc-

tions. For programs with at least 10% output instructions, execution times of the 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

4 8 16 32 64 128 256 512 1024

Generated binary code size (in KB)

0

0.2

0.4

0.6

0.8

1

1.2

0% 10% 16% 20% 25% 33% 50%

Percentage of I/O instructions

Interpreter

JIT

ROP

JOP

approaches are not statistically significant. The time consumed by output instruc-

tions diminishes the differences among the approaches, as the out instruction re-

quire much more execution time that the rest of instructions.

3.3 Memory consumption

We also measured the memory consumed at runtime in the execution of each pro-

gram. The size of the program had no influence on the relative values, but the kind

of compiled instructions did. Figure 4 shows the average memory consumption

relative to the interpreter approach. As expected, the 3 JIT-compiler approaches

consume more memory than the interpreter [3]. JIT-compilers provide better

runtime performance, but also require additional memory resources.

The ROP and JOP approaches always consume the same memory resources:

twice the memory used by the interpreter version. However, the memory con-

sumption of the classical JIT-compiler depends on the program compiled. In fact,

if the number of output instructions is 50%, it consumes 46% more memory re-

sources than the ROP and JOP approaches (almost 3 times the memory of the

interpreter).

Figure 4: Memory consumption relative to the interpreter.

This difference between the two JIT-compilation techniques is caused by the

way both approaches generate code. ROP and JOP include a fixed collection of

gadgets in the generated code, and most instructions simply push a 4-byte value

onto the stack (Table 1). These values are memory addresses of the corresponding

gadget. However, the traditional JIT-compilation is based on the generation of a

collection of binary instructions per source instruction. That is, instead of calling

a gadget, they write their body for each instruction. As Table 1 shows, the classical

JIT approach commonly requires more memory than the ROP/JOP alternative,

even for our low-level stack-based language. We think this difference would be

greater when compiling high-level languages.

3.4 Compilation time

JIT compilation includes the binary code generation in the application execution.

Therefore, the compilation time may increase the global performance of short-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0% 10% 16% 20% 25% 33% 50%

Percentage of output instructions

Interpreter

JIT

ROP

JOP

running applications, and it must be measured [5]. Figure 5 shows compilation

time relative to the ROP JIT-compiler. As expected, there is no significant differ-

ence between the ROP and JOP approaches, since code generation is analogous.

However, these techniques generate binary code faster than the traditional ap-

proach. Besides, compilation time of the classical JIT compilation grows with the

percentage of output instructions. The rationale is the same as for memory con-

sumption. Since the JIT-compiler must generate more binary instructions for the

output instruction (Table 1), the compilation process takes longer.

Instruc-

tion

JIT ROP/

JOP

ADD 5 4
SUB 5 4
MUL 5 4
DIV 7 4
PUSH 5 8
PUSHA 7 8
LOAD 4 4
STORE 4 4
OUT 18 4

Table 1: Instruction sizes in

bytes.
Figure 5: Compilation time relative to ROP.

4 Conclusions and future work

An initial evaluation seems to imply that the ROP-based JOP technique can be

used as an alternative mechanism for implementing JIT-compilers. JOP provides

important performance benefits compared to interpretation, and 44% more execu-

tion time than the classical JIT-compiler approach. However, its memory con-

sumption grows linearly with the number of instruction, and it is generally lower

than current JIT-compilation techniques. Finally, it requires less compilation time

than the traditional JIT-compilation.

We think that applying JOP compilation to high-level programming languages

may increase the identified benefits. In these languages, the difference between

the sizes of binary code generated for high-level instructions is higher than in a

simple low-level stack-based machine. This higher difference will imply lower

memory consumption and faster compilation of the JOP approach.

We are currently working on the JOP/ROP compilation of a high-level lan-

guage to improve our evaluation. We think that this new compilation mechanism

will improve the runtime performance of meta-programming features such as

structural reflection and dynamic code evaluation [6]. These language features are

based on the identification of code as data that can be modified, which is the idea

behind ROP. Concatenative programming is also based on the idea of composing

functions to create programs [7]. A common implementation of concatenative lan-

guages is with a stack machine, so ROP/JOP JIT-compilation may be applicable.

0

0.5

1

1.5

2

2.5

3

0% 10% 16% 20% 25% 33% 50%

Percentage of output instructions

JIT ROP JOP

We also believe that execution time of JOP programs may be increased when

compiling high-level languages. Our stack language does not have any instruction

related with control flow, so its pipeline in the processor is ideal. Even in this

worst-case scenario, the JOP-based JIT performed well. Thus, we think the effect

of locality may decrement the impact in performance of breaking the pipeline.

Acknowledgements

This work was partially funded by the Department of Science and Innovation

(Spain) under the National Program for Research, Development and Innovation:

project TIN2011-25978. We have also received funds from the Principality of As-

turias to support the Computational Reflection research group, grant GRUPIN14-

100.

References

[1] Shacham, H., The Geometry of Innocent Flesh on the Bone: Return-into-libc

without Function Calls (on the x86). Proc. 14th ACM Conference in Com-

puter and Communications Security (CCS 07), pp. 552–561, 2007.

[2] Prandini, M. & Ramilli, M., Return-Oriented Programming. IEEE Security

& Privacy, pp. 84-87, 2012.
[3] Ortin, F., Labrador, M. A. & Redondo, J. M., A hybrid class- and prototype-

based object model to support language-neutral structural intercession. Infor-

mation and Software Technology, Volume 56, Issue 2, pp. 199-219, 2014.

[4] Aycock, J., A brief history of just-in-time compilation. ACM Computing

Surveys (CSUR) Surveys, Volume 35 Issue 2, pp. 97-113, 2003.

[5] Georges, A., Buytaert, D., & Eeckhout, L., Statistically rigorous Java perfor-

mance evaluation, OOPSLA ’07, ACM, New York, NY, USA, pp. 57–76,

2007.

[6] Redondo, J. M. & Ortin, F., A Comprehensive Evaluation of Widespread

Python Implementations. IEEE Software, to be published.

[7] Diggins, C., What is a concatenative language, Dr. Dobbs, 2008.

[8] Ortin, F., Zapico, D., & Cueva, J. M., Design Patterns for Teaching Type

Checking in a Compiler Construction Course. IEEE Transactions on Educa-

tion, Volume 50, Issue 3, pp. 273-283, 2007.

[9] Bletsch, T., Jiang, X., Freeh, V. W., & Liang, Z., Jump-oriented program-

ming: a new class of code-reuse attack. 6th ACM Symposium on Infor-

mation, Computer and Communications Security, pp. 30-40, 2011.

[10] Homescu, A., Stewart, M., Larsen, P., & Brunthaler, S. Microgadgets: size

does matter in Turing-complete Return-oriented programming. 6th USENIX

Workshop on Offensive Technologies, Bellevue, WA, 2012.

